1 | /*! |
---|
2 | \file |
---|
3 | \brief Bayesian Filtering for linear Gaussian models (Kalman Filter) and extensions |
---|
4 | \author Vaclav Smidl. |
---|
5 | |
---|
6 | ----------------------------------- |
---|
7 | BDM++ - C++ library for Bayesian Decision Making under Uncertaint16y |
---|
8 | |
---|
9 | Using IT++ for numerical operations |
---|
10 | ----------------------------------- |
---|
11 | */ |
---|
12 | |
---|
13 | #ifndef EKFfix_H |
---|
14 | #define EKFfix_H |
---|
15 | |
---|
16 | |
---|
17 | #include <estim/kalman.h> |
---|
18 | #include "fixed.h" |
---|
19 | #include "matrix.h" |
---|
20 | #include "matrix_vs.h" |
---|
21 | #include "reference_Q15.h" |
---|
22 | #include "parametry_motoru.h" |
---|
23 | #include "mpf_double.h" |
---|
24 | |
---|
25 | using namespace bdm; |
---|
26 | |
---|
27 | double minQ(double Q); |
---|
28 | |
---|
29 | void mat_to_int16(const imat &M, int16 *I); |
---|
30 | void vec_to_int16(const ivec &v, int16 *I); |
---|
31 | void UDtof(const mat &U, const vec &D, imat &Uf, ivec &Df, const vec &xref); |
---|
32 | |
---|
33 | #ifdef XXX |
---|
34 | /*! |
---|
35 | \brief Extended Kalman Filter with full matrices in fixed point16 arithmetic |
---|
36 | |
---|
37 | An approximation of the exact Bayesian filter with Gaussian noices and non-linear evolutions of their mean. |
---|
38 | */ |
---|
39 | class EKFfixed : public BM { |
---|
40 | public: |
---|
41 | void init_ekf(double Tv); |
---|
42 | void ekf(double ux, double uy, double isxd, double isyd); |
---|
43 | |
---|
44 | /* Declaration of local functions */ |
---|
45 | void prediction(int16 *ux); |
---|
46 | void correction(void); |
---|
47 | void update_psi(void); |
---|
48 | |
---|
49 | /* Constants - definovat jako konstanty ?? ?kde je vyhodnejsi aby v pameti byli?*/ |
---|
50 | int16 Q[16]; /* matrix [4,4] */ |
---|
51 | int16 R[4]; /* matrix [2,2] */ |
---|
52 | |
---|
53 | int16 x_est[4]; |
---|
54 | int16 x_pred[4]; |
---|
55 | int16 P_pred[16]; /* matrix [4,4] */ |
---|
56 | int16 P_est[16]; /* matrix [4,4] */ |
---|
57 | int16 Y_mes[2]; |
---|
58 | int16 ukalm[2]; |
---|
59 | int16 Kalm[8]; /* matrix [5,2] */ |
---|
60 | |
---|
61 | int16 PSI[16]; /* matrix [4,4] */ |
---|
62 | |
---|
63 | int16 temp15a[16]; |
---|
64 | |
---|
65 | int16 cA, cB, cC, cG, cH; // cD, cE, cF, cI ... nepouzivane |
---|
66 | |
---|
67 | int32 temp30a[4]; /* matrix [2,2] - temporary matrix for inversion */ |
---|
68 | enorm<fsqmat> E; |
---|
69 | mat Ry; |
---|
70 | |
---|
71 | public: |
---|
72 | //! Default constructor |
---|
73 | EKFfixed ():BM(),E(),Ry(2,2){ |
---|
74 | int16 i; |
---|
75 | for(i=0;i<16;i++){Q[i]=0;} |
---|
76 | for(i=0;i<4;i++){R[i]=0;} |
---|
77 | |
---|
78 | for(i=0;i<4;i++){x_est[i]=0;} |
---|
79 | for(i=0;i<4;i++){x_pred[i]=0;} |
---|
80 | for(i=0;i<16;i++){P_pred[i]=0;} |
---|
81 | for(i=0;i<16;i++){P_est[i]=0;} |
---|
82 | P_est[0]=0x7FFF; |
---|
83 | P_est[5]=0x7FFF; |
---|
84 | P_est[10]=0x7FFF; |
---|
85 | P_est[15]=0x7FFF; |
---|
86 | for(i=0;i<2;i++){Y_mes[i]=0;} |
---|
87 | for(i=0;i<2;i++){ukalm[i]=0;} |
---|
88 | for(i=0;i<8;i++){Kalm[i]=0;} |
---|
89 | |
---|
90 | for(i=0;i<16;i++){PSI[i]=0;} |
---|
91 | |
---|
92 | set_dim(4); |
---|
93 | E._mu()=zeros(4); |
---|
94 | E._R()=zeros(4,4); |
---|
95 | init_ekf(0.000125); |
---|
96 | }; |
---|
97 | //! Here dt = [yt;ut] of appropriate dimensions |
---|
98 | void bayes ( const vec &yt, const vec &ut ); |
---|
99 | //!dummy! |
---|
100 | const epdf& posterior() const {return E;}; |
---|
101 | |
---|
102 | }; |
---|
103 | |
---|
104 | UIREGISTER(EKFfixed); |
---|
105 | |
---|
106 | #endif |
---|
107 | |
---|
108 | //! EKF for testing q44 |
---|
109 | class EKFtest: public EKF_UD{ |
---|
110 | void bayes ( const vec &yt, const vec &cond ) { |
---|
111 | EKF_UD::bayes(yt,cond); |
---|
112 | vec D = prior()._R()._D(); |
---|
113 | |
---|
114 | if (D(3)>10) D(3) = 10; |
---|
115 | |
---|
116 | prior()._R().__D()=D; |
---|
117 | } |
---|
118 | }; |
---|
119 | UIREGISTER(EKFtest); |
---|
120 | |
---|
121 | /*! |
---|
122 | \brief Extended Kalman Filter with UD matrices in fixed point16 arithmetic |
---|
123 | |
---|
124 | An approximation of the exact Bayesian filter with Gaussian noices and non-linear evolutions of their mean. |
---|
125 | */ |
---|
126 | class EKFfixedUD : public BM { |
---|
127 | public: |
---|
128 | LOG_LEVEL(EKFfixedUD,logU, logG, logD, logA, logP); |
---|
129 | |
---|
130 | void init_ekf(double Tv); |
---|
131 | void ekf(double ux, double uy, double isxd, double isyd); |
---|
132 | |
---|
133 | /* Constants - definovat jako konstanty ?? ?kde je vyhodnejsi aby v pameti byli?*/ |
---|
134 | int16 Q[16]; /* matrix [4,4] */ |
---|
135 | int16 R[4]; /* matrix [2,2] */ |
---|
136 | |
---|
137 | int16 x_est[4]; /* estimate and prediction */ |
---|
138 | |
---|
139 | int16 PSI[16]; /* matrix [4,4] */ |
---|
140 | int16 PSIU[16]; /* matrix PIS*U, [4,4] */ |
---|
141 | |
---|
142 | int16 Uf[16]; // upper triangular of covariance (inplace) |
---|
143 | int16 Df[4]; // diagonal covariance |
---|
144 | int16 Dfold[4]; // temp of D |
---|
145 | int16 G[16]; // temp for bierman |
---|
146 | |
---|
147 | int16 cA, cB, cC, cG, cH; // cD, cE, cF, cI ... nepouzivane |
---|
148 | |
---|
149 | enorm<fsqmat> E; |
---|
150 | mat Ry; |
---|
151 | |
---|
152 | public: |
---|
153 | //! Default constructor |
---|
154 | EKFfixedUD ():BM(),E(),Ry(2,2){ |
---|
155 | int16 i; |
---|
156 | for(i=0;i<16;i++){Q[i]=0;} |
---|
157 | for(i=0;i<4;i++){R[i]=0;} |
---|
158 | |
---|
159 | for(i=0;i<4;i++){x_est[i]=0;} |
---|
160 | for(i=0;i<16;i++){Uf[i]=0;} |
---|
161 | for(i=0;i<4;i++){Df[i]=0;} |
---|
162 | for(i=0;i<16;i++){G[i]=0;} |
---|
163 | for(i=0;i<4;i++){Dfold[i]=0;} |
---|
164 | |
---|
165 | for(i=0;i<16;i++){PSI[i]=0;} |
---|
166 | |
---|
167 | set_dim(4); |
---|
168 | dimy = 2; |
---|
169 | dimc = 2; |
---|
170 | E._mu()=zeros(4); |
---|
171 | E._R()=zeros(4,4); |
---|
172 | init_ekf(0.000125); |
---|
173 | }; |
---|
174 | //! Here dt = [yt;ut] of appropriate dimensions |
---|
175 | void bayes ( const vec &yt, const vec &ut ); |
---|
176 | //!dummy! |
---|
177 | const epdf& posterior() const {return E;}; |
---|
178 | void log_register(logger &L, const string &prefix){ |
---|
179 | BM::log_register ( L, prefix ); |
---|
180 | |
---|
181 | L.add_vector ( log_level, logG, RV("G",16), prefix ); |
---|
182 | L.add_vector ( log_level, logU, RV ("U", 16 ), prefix ); |
---|
183 | L.add_vector ( log_level, logD, RV ("D", 4 ), prefix ); |
---|
184 | L.add_vector ( log_level, logA, RV ("A", 16 ), prefix ); |
---|
185 | L.add_vector ( log_level, logP, RV ("P", 16 ), prefix ); |
---|
186 | |
---|
187 | }; |
---|
188 | //void from_setting(); |
---|
189 | }; |
---|
190 | |
---|
191 | UIREGISTER(EKFfixedUD); |
---|
192 | |
---|
193 | /*! |
---|
194 | * \brief Extended Kalman Filter with UD matrices in fixed point16 arithmetic |
---|
195 | * |
---|
196 | * An approximation of the exact Bayesian filter with Gaussian noices and non-linear evolutions of their mean. |
---|
197 | */ |
---|
198 | class EKFfixedUD2 : public BM { |
---|
199 | public: |
---|
200 | LOG_LEVEL(EKFfixedUD2,logU, logG, logD, logA, logC, logP); |
---|
201 | |
---|
202 | void init_ekf2(double Tv); |
---|
203 | void ekf2(double ux, double uy, double isxd, double isyd); |
---|
204 | |
---|
205 | /* Constants - definovat jako konstanty ?? ?kde je vyhodnejsi aby v pameti byli?*/ |
---|
206 | int16 Q[4]; /* matrix [4,4] */ |
---|
207 | int16 R[4]; /* matrix [2,2] */ |
---|
208 | |
---|
209 | int16 x_est[2]; /* estimate and prediction */ |
---|
210 | int16 y_est[2]; /* estimate and prediction */ |
---|
211 | int16 y_old[2]; /* estimate and prediction */ |
---|
212 | |
---|
213 | int16 PSI[4]; /* matrix [4,4] */ |
---|
214 | int16 PSIU[4]; /* matrix PIS*U, [4,4] */ |
---|
215 | int16 C[4]; /* matrix [4,4] */ |
---|
216 | |
---|
217 | int16 Uf[4]; // upper triangular of covariance (inplace) |
---|
218 | int16 Df[2]; // diagonal covariance |
---|
219 | int16 Dfold[2]; // temp of D |
---|
220 | int16 G[4]; // temp for bierman |
---|
221 | |
---|
222 | int16 cA, cB, cC, cG, cH; // cD, cE, cF, cI ... nepouzivane |
---|
223 | |
---|
224 | enorm<fsqmat> E; |
---|
225 | mat Ry; |
---|
226 | |
---|
227 | public: |
---|
228 | //! Default constructor |
---|
229 | EKFfixedUD2 ():BM(),E(),Ry(2,2){ |
---|
230 | int16 i; |
---|
231 | for(i=0;i<4;i++){Q[i]=0;} |
---|
232 | for(i=0;i<4;i++){R[i]=0;} |
---|
233 | |
---|
234 | for(i=0;i<2;i++){x_est[i]=0;} |
---|
235 | for(i=0;i<2;i++){y_est[i]=0;} |
---|
236 | for(i=0;i<2;i++){y_old[i]=0;} |
---|
237 | for(i=0;i<4;i++){Uf[i]=0;} |
---|
238 | for(i=0;i<2;i++){Df[i]=0;} |
---|
239 | for(i=0;i<4;i++){G[i]=0;} |
---|
240 | for(i=0;i<2;i++){Dfold[i]=0;} |
---|
241 | |
---|
242 | for(i=0;i<4;i++){PSI[i]=0;} |
---|
243 | for(i=0;i<4;i++){C[i]=0;} |
---|
244 | |
---|
245 | set_dim(2); |
---|
246 | dimc = 2; |
---|
247 | dimy = 2; |
---|
248 | E._mu()=zeros(2); |
---|
249 | E._R()=zeros(2,2); |
---|
250 | init_ekf2(0.000125); |
---|
251 | }; |
---|
252 | //! Here dt = [yt;ut] of appropriate dimensions |
---|
253 | void bayes ( const vec &yt, const vec &ut ); |
---|
254 | //!dummy! |
---|
255 | const epdf& posterior() const {return E;}; |
---|
256 | void log_register(logger &L, const string &prefix){ |
---|
257 | BM::log_register ( L, prefix ); |
---|
258 | |
---|
259 | L.add_vector ( log_level, logG, RV("G2",4), prefix ); |
---|
260 | L.add_vector ( log_level, logU, RV ("U2", 4 ), prefix ); |
---|
261 | L.add_vector ( log_level, logD, RV ("D2", 2 ), prefix ); |
---|
262 | L.add_vector ( log_level, logA, RV ("A2", 4 ), prefix ); |
---|
263 | L.add_vector ( log_level, logC, RV ("C2", 4 ), prefix ); |
---|
264 | L.add_vector ( log_level, logP, RV ("P2", 4 ), prefix ); |
---|
265 | |
---|
266 | }; |
---|
267 | //void from_setting(); |
---|
268 | }; |
---|
269 | |
---|
270 | UIREGISTER(EKFfixedUD2); |
---|
271 | |
---|
272 | /*! |
---|
273 | * \brief Extended Kalman Filter with UD matrices in fixed point16 arithmetic |
---|
274 | * |
---|
275 | * An approximation of the exact Bayesian filter with Gaussian noices and non-linear evolutions of their mean. |
---|
276 | */ |
---|
277 | class EKFfixedUD3 : public BM { |
---|
278 | public: |
---|
279 | LOG_LEVEL(EKFfixedUD3,logU, logG, logD, logA, logC, logP); |
---|
280 | |
---|
281 | void init_ekf3(double Tv); |
---|
282 | void ekf3(double ux, double uy, double isxd, double isyd); |
---|
283 | |
---|
284 | /* Constants - definovat jako konstanty ?? ?kde je vyhodnejsi aby v pameti byli?*/ |
---|
285 | int16 Q[9]; /* matrix [4,4] */ |
---|
286 | int16 R[4]; /* matrix [2,2] */ |
---|
287 | |
---|
288 | int16 x_est[3]; /* estimate and prediction */ |
---|
289 | int16 y_est[2]; /* estimate and prediction */ |
---|
290 | int16 y_old[2]; /* estimate and prediction */ |
---|
291 | |
---|
292 | int16 PSI[9]; /* matrix [4,4] */ |
---|
293 | int16 PSIU[9]; /* matrix PIS*U, [4,4] */ |
---|
294 | int16 C[6]; /* matrix [4,4] */ |
---|
295 | |
---|
296 | int16 Uf[9]; // upper triangular of covariance (inplace) |
---|
297 | int16 Df[3]; // diagonal covariance |
---|
298 | int16 Dfold[3]; // temp of D |
---|
299 | int16 G[9]; // temp for bierman |
---|
300 | |
---|
301 | int16 cA, cB, cC, cG, cF, cH; // cD, cE, cF, cI ... nepouzivane |
---|
302 | |
---|
303 | enorm<fsqmat> E; |
---|
304 | mat Ry; |
---|
305 | |
---|
306 | public: |
---|
307 | //! Default constructor |
---|
308 | EKFfixedUD3 ():BM(),E(),Ry(2,2){ |
---|
309 | int16 i; |
---|
310 | for(i=0;i<9;i++){Q[i]=0;} |
---|
311 | for(i=0;i<4;i++){R[i]=0;} |
---|
312 | |
---|
313 | for(i=0;i<3;i++){x_est[i]=0;} |
---|
314 | for(i=0;i<2;i++){y_est[i]=0;} |
---|
315 | for(i=0;i<2;i++){y_old[i]=0;} |
---|
316 | for(i=0;i<9;i++){Uf[i]=0;} |
---|
317 | for(i=0;i<3;i++){Df[i]=0;} |
---|
318 | for(i=0;i<4;i++){G[i]=0;} |
---|
319 | for(i=0;i<3;i++){Dfold[i]=0;} |
---|
320 | |
---|
321 | for(i=0;i<9;i++){PSI[i]=0;} |
---|
322 | for(i=0;i<6;i++){C[i]=0;} |
---|
323 | |
---|
324 | set_dim(3); |
---|
325 | dimc = 2; |
---|
326 | dimy = 2; |
---|
327 | E._mu()=zeros(3); |
---|
328 | E._R()=zeros(3,3); |
---|
329 | init_ekf3(0.000125); |
---|
330 | }; |
---|
331 | //! Here dt = [yt;ut] of appropriate dimensions |
---|
332 | void bayes ( const vec &yt, const vec &ut ); |
---|
333 | //!dummy! |
---|
334 | const epdf& posterior() const {return E;}; |
---|
335 | void log_register(logger &L, const string &prefix){ |
---|
336 | BM::log_register ( L, prefix ); |
---|
337 | }; |
---|
338 | //void from_setting(); |
---|
339 | }; |
---|
340 | |
---|
341 | UIREGISTER(EKFfixedUD3); |
---|
342 | |
---|
343 | /*! |
---|
344 | * \brief Extended Kalman Filter with Chol matrices in fixed point16 arithmetic |
---|
345 | * |
---|
346 | * An approximation of the exact Bayesian filter with Gaussian noices and non-linear evolutions of their mean. |
---|
347 | */ |
---|
348 | class EKFfixedCh : public BM { |
---|
349 | public: |
---|
350 | LOG_LEVEL(EKFfixedCh,logCh, logA, logP); |
---|
351 | |
---|
352 | void init_ekf(double Tv); |
---|
353 | void ekf(double ux, double uy, double isxd, double isyd); |
---|
354 | |
---|
355 | /* Constants - definovat jako konstanty ?? ?kde je vyhodnejsi aby v pameti byli?*/ |
---|
356 | int16 Q[16]; /* matrix [4,4] */ |
---|
357 | int16 R[4]; /* matrix [2,2] */ |
---|
358 | |
---|
359 | int16 x_est[4]; /* estimate and prediction */ |
---|
360 | |
---|
361 | int16 PSI[16]; /* matrix [4,4] */ |
---|
362 | int16 PSICh[16]; /* matrix PIS*U, [4,4] */ |
---|
363 | |
---|
364 | int16 Chf[16]; // upper triangular of covariance (inplace) |
---|
365 | |
---|
366 | int16 cA, cB, cC, cG, cH; // cD, cE, cF, cI ... nepouzivane |
---|
367 | |
---|
368 | enorm<chmat> E; |
---|
369 | mat Ry; |
---|
370 | |
---|
371 | public: |
---|
372 | //! Default constructor |
---|
373 | EKFfixedCh ():BM(),E(),Ry(2,2){ |
---|
374 | int16 i; |
---|
375 | for(i=0;i<16;i++){Q[i]=0;} |
---|
376 | for(i=0;i<4;i++){R[i]=0;} |
---|
377 | |
---|
378 | for(i=0;i<4;i++){x_est[i]=0;} |
---|
379 | for(i=0;i<16;i++){Chf[i]=0;} |
---|
380 | |
---|
381 | for(i=0;i<16;i++){PSI[i]=0;} |
---|
382 | |
---|
383 | set_dim(4); |
---|
384 | dimc = 2; |
---|
385 | dimy =2; |
---|
386 | E._mu()=zeros(4); |
---|
387 | E._R()=zeros(4,4); |
---|
388 | init_ekf(0.000125); |
---|
389 | }; |
---|
390 | //! Here dt = [yt;ut] of appropriate dimensions |
---|
391 | void bayes ( const vec &yt, const vec &ut ); |
---|
392 | //!dummy! |
---|
393 | const epdf& posterior() const {return E;}; |
---|
394 | void log_register(logger &L, const string &prefix){ |
---|
395 | BM::log_register ( L, prefix ); |
---|
396 | |
---|
397 | L.add_vector ( log_level, logCh, RV ("Ch", 16 ), prefix ); |
---|
398 | L.add_vector ( log_level, logA, RV ("A", 16 ), prefix ); |
---|
399 | L.add_vector ( log_level, logP, RV ("P", 16 ), prefix ); |
---|
400 | |
---|
401 | }; |
---|
402 | //void from_setting(); |
---|
403 | }; |
---|
404 | |
---|
405 | UIREGISTER(EKFfixedCh); |
---|
406 | |
---|
407 | /*! |
---|
408 | * \brief Extended Kalman Filter with UD matrices in fixed point16 arithmetic |
---|
409 | * |
---|
410 | * An approximation of the exact Bayesian filter with Gaussian noices and non-linear evolutions of their mean. |
---|
411 | */ |
---|
412 | class EKFfixedCh2 : public BM { |
---|
413 | public: |
---|
414 | LOG_LEVEL(EKFfixedCh2,logCh, logA, logC, logP); |
---|
415 | |
---|
416 | void init_ekf2(double Tv); |
---|
417 | void ekf2(double ux, double uy, double isxd, double isyd); |
---|
418 | |
---|
419 | /* Constants - definovat jako konstanty ?? ?kde je vyhodnejsi aby v pameti byli?*/ |
---|
420 | int16 Q[4]; /* matrix [4,4] */ |
---|
421 | int16 R[4]; /* matrix [2,2] */ |
---|
422 | |
---|
423 | int16 x_est[2]; /* estimate and prediction */ |
---|
424 | int16 y_est[2]; /* estimate and prediction */ |
---|
425 | int16 y_old[2]; /* estimate and prediction */ |
---|
426 | |
---|
427 | int16 PSI[4]; /* matrix [4,4] */ |
---|
428 | int16 PSICh[4]; /* matrix PIS*U, [4,4] */ |
---|
429 | int16 C[4]; /* matrix [4,4] */ |
---|
430 | |
---|
431 | int16 Chf[4]; // upper triangular of covariance (inplace) |
---|
432 | |
---|
433 | int16 cA, cB, cC, cG, cH; // cD, cE, cF, cI ... nepouzivane |
---|
434 | |
---|
435 | enorm<fsqmat> E; |
---|
436 | mat Ry; |
---|
437 | |
---|
438 | public: |
---|
439 | //! Default constructor |
---|
440 | EKFfixedCh2 ():BM(),E(),Ry(2,2){ |
---|
441 | int16 i; |
---|
442 | for(i=0;i<4;i++){Q[i]=0;} |
---|
443 | for(i=0;i<4;i++){R[i]=0;} |
---|
444 | |
---|
445 | for(i=0;i<2;i++){x_est[i]=0;} |
---|
446 | for(i=0;i<2;i++){y_est[i]=0;} |
---|
447 | for(i=0;i<2;i++){y_old[i]=0;} |
---|
448 | for(i=0;i<4;i++){Chf[i]=0;} |
---|
449 | |
---|
450 | for(i=0;i<4;i++){PSI[i]=0;} |
---|
451 | for(i=0;i<4;i++){C[i]=0;} |
---|
452 | |
---|
453 | set_dim(2); |
---|
454 | dimc = 2; |
---|
455 | dimy = 2; |
---|
456 | E._mu()=zeros(2); |
---|
457 | E._R()=zeros(2,2); |
---|
458 | init_ekf2(0.000125); |
---|
459 | }; |
---|
460 | //! Here dt = [yt;ut] of appropriate dimensions |
---|
461 | void bayes ( const vec &yt, const vec &ut ); |
---|
462 | //!dummy! |
---|
463 | const epdf& posterior() const {return E;}; |
---|
464 | void log_register(logger &L, const string &prefix){ |
---|
465 | BM::log_register ( L, prefix ); |
---|
466 | |
---|
467 | L.add_vector ( log_level, logCh, RV ("Ch2", 4 ), prefix ); |
---|
468 | L.add_vector ( log_level, logA, RV ("A2", 4 ), prefix ); |
---|
469 | L.add_vector ( log_level, logC, RV ("C2", 4 ), prefix ); |
---|
470 | L.add_vector ( log_level, logP, RV ("P2", 4 ), prefix ); |
---|
471 | |
---|
472 | }; |
---|
473 | //void from_setting(); |
---|
474 | }; |
---|
475 | |
---|
476 | UIREGISTER(EKFfixedCh2); |
---|
477 | |
---|
478 | |
---|
479 | //! EKF for comparison of EKF_UD with its fixed-point16 implementation |
---|
480 | class EKF_UDfix : public BM { |
---|
481 | protected: |
---|
482 | //! logger |
---|
483 | LOG_LEVEL(EKF_UDfix,logU, logG); |
---|
484 | //! Internal Model f(x,u) |
---|
485 | shared_ptr<diffbifn> pfxu; |
---|
486 | |
---|
487 | //! Observation Model h(x,u) |
---|
488 | shared_ptr<diffbifn> phxu; |
---|
489 | |
---|
490 | //! U part |
---|
491 | mat U; |
---|
492 | //! D part |
---|
493 | vec D; |
---|
494 | |
---|
495 | mat A; |
---|
496 | mat C; |
---|
497 | mat Q; |
---|
498 | vec R; |
---|
499 | |
---|
500 | enorm<ldmat> est; |
---|
501 | |
---|
502 | |
---|
503 | public: |
---|
504 | |
---|
505 | //! copy constructor duplicated |
---|
506 | EKF_UDfix* _copy() const { |
---|
507 | return new EKF_UDfix(*this); |
---|
508 | } |
---|
509 | |
---|
510 | const enorm<ldmat>& posterior()const{return est;}; |
---|
511 | |
---|
512 | enorm<ldmat>& prior() { |
---|
513 | return const_cast<enorm<ldmat>&>(posterior()); |
---|
514 | } |
---|
515 | |
---|
516 | EKF_UDfix(){} |
---|
517 | |
---|
518 | |
---|
519 | EKF_UDfix(const EKF_UDfix &E0): pfxu(E0.pfxu),phxu(E0.phxu), U(E0.U), D(E0.D){} |
---|
520 | |
---|
521 | //! Set nonlinear functions for mean values and covariance matrices. |
---|
522 | void set_parameters ( const shared_ptr<diffbifn> &pfxu, const shared_ptr<diffbifn> &phxu, const mat Q0, const vec R0 ); |
---|
523 | |
---|
524 | //! Here dt = [yt;ut] of appropriate dimensions |
---|
525 | void bayes ( const vec &yt, const vec &cond = empty_vec ); |
---|
526 | |
---|
527 | void log_register ( bdm::logger& L, const string& prefix ){ |
---|
528 | BM::log_register ( L, prefix ); |
---|
529 | |
---|
530 | if ( log_level[logU] ) |
---|
531 | L.add_vector ( log_level, logU, RV ( dimension()*dimension() ), prefix ); |
---|
532 | if ( log_level[logG] ) |
---|
533 | L.add_vector ( log_level, logG, RV ( dimension()*dimension() ), prefix ); |
---|
534 | |
---|
535 | } |
---|
536 | /*! Create object from the following structure |
---|
537 | |
---|
538 | \code |
---|
539 | class = 'EKF_UD'; |
---|
540 | OM = configuration of bdm::diffbifn; % any offspring of diffbifn, bdm::diffbifn::from_setting |
---|
541 | IM = configuration of bdm::diffbifn; % any offspring of diffbifn, bdm::diffbifn::from_setting |
---|
542 | dQ = [...]; % vector containing diagonal of Q |
---|
543 | dR = [...]; % vector containing diagonal of R |
---|
544 | --- optional fields --- |
---|
545 | mu0 = [...]; % vector of statistics mu0 |
---|
546 | dP0 = [...]; % vector containing diagonal of P0 |
---|
547 | -- or -- |
---|
548 | P0 = [...]; % full matrix P0 |
---|
549 | --- inherited fields --- |
---|
550 | bdm::BM::from_setting |
---|
551 | \endcode |
---|
552 | If the optional fields are not given, they will be filled as follows: |
---|
553 | \code |
---|
554 | mu0 = [0,0,0,....]; % empty statistics |
---|
555 | P0 = eye( dim ); |
---|
556 | \endcode |
---|
557 | */ |
---|
558 | void from_setting ( const Setting &set ); |
---|
559 | |
---|
560 | void validate() {}; |
---|
561 | // TODO dodelat void to_setting( Setting &set ) const; |
---|
562 | |
---|
563 | }; |
---|
564 | UIREGISTER(EKF_UDfix); |
---|
565 | |
---|
566 | |
---|
567 | class MPF_pmsm_red:public BM{ |
---|
568 | double qom, qth, r; |
---|
569 | |
---|
570 | |
---|
571 | public: |
---|
572 | MPF_pmsm_red(){ |
---|
573 | dimy=2; |
---|
574 | dimc=2; |
---|
575 | qom=1e-1; |
---|
576 | qth=1e-6; |
---|
577 | r=1e-1; |
---|
578 | }; |
---|
579 | void bayes ( const vec &val, const vec &cond ) { |
---|
580 | const double &isa = val(0); |
---|
581 | const double &isb = val(1); |
---|
582 | const double &usa = cond(0); |
---|
583 | const double &usb = cond(1); |
---|
584 | mpf_bayes(isa,isb,usa,usb); |
---|
585 | } |
---|
586 | |
---|
587 | class mp:public epdf{ |
---|
588 | public: |
---|
589 | mp():epdf(){set_dim(3);} |
---|
590 | vec sample() const {return zeros(3);} |
---|
591 | double evallog(const vec &v) const {return 0.0;} |
---|
592 | vec mean() const {vec tmp(3); mpf_mean(tmp._data(), tmp._data()+1, tmp._data()+2); return tmp;} |
---|
593 | vec variance() const {return zeros(3);} |
---|
594 | }; |
---|
595 | |
---|
596 | mp mypdf; |
---|
597 | const mp& posterior() const {return mypdf;} |
---|
598 | |
---|
599 | void from_setting(const Setting &set){ |
---|
600 | BM::from_setting(set); |
---|
601 | UI::get(qom,set,"qom",UI::optional); |
---|
602 | UI::get(qth,set,"qth",UI::optional); |
---|
603 | UI::get(r,set,"r",UI::optional); |
---|
604 | } |
---|
605 | void validate(){ |
---|
606 | mpf_init(qom,qth,r); |
---|
607 | |
---|
608 | } |
---|
609 | }; |
---|
610 | UIREGISTER(MPF_pmsm_red); |
---|
611 | |
---|
612 | |
---|
613 | #endif // KF_H |
---|
614 | |
---|