| 1 | /*! |
|---|
| 2 | \file |
|---|
| 3 | \brief Bayesian Filtering for linear Gaussian models (Kalman Filter) and extensions |
|---|
| 4 | \author Vaclav Smidl. |
|---|
| 5 | |
|---|
| 6 | ----------------------------------- |
|---|
| 7 | BDM++ - C++ library for Bayesian Decision Making under Uncertaint16y |
|---|
| 8 | |
|---|
| 9 | Using IT++ for numerical operations |
|---|
| 10 | ----------------------------------- |
|---|
| 11 | */ |
|---|
| 12 | |
|---|
| 13 | #ifndef EKFfix_H |
|---|
| 14 | #define EKFfix_H |
|---|
| 15 | |
|---|
| 16 | |
|---|
| 17 | #include <estim/kalman.h> |
|---|
| 18 | #include "fixed.h" |
|---|
| 19 | #include "matrix.h" |
|---|
| 20 | #include "matrix_vs.h" |
|---|
| 21 | #include "reference_Q15.h" |
|---|
| 22 | #include "parametry_motoru.h" |
|---|
| 23 | #include "mpf_double.h" |
|---|
| 24 | #include "fast_exp.h" |
|---|
| 25 | #include "ekf_mm.h" |
|---|
| 26 | #include "qmath.h" |
|---|
| 27 | |
|---|
| 28 | using namespace bdm; |
|---|
| 29 | |
|---|
| 30 | double minQ(double Q); |
|---|
| 31 | |
|---|
| 32 | void mat_to_int16(const imat &M, int16 *I); |
|---|
| 33 | void vec_to_int16(const ivec &v, int16 *I); |
|---|
| 34 | void UDtof(const mat &U, const vec &D, imat &Uf, ivec &Df, const vec &xref); |
|---|
| 35 | |
|---|
| 36 | #ifdef XXX |
|---|
| 37 | /*! |
|---|
| 38 | \brief Extended Kalman Filter with full matrices in fixed point16 arithmetic |
|---|
| 39 | |
|---|
| 40 | An approximation of the exact Bayesian filter with Gaussian noices and non-linear evolutions of their mean. |
|---|
| 41 | */ |
|---|
| 42 | class EKFfixed : public BM { |
|---|
| 43 | public: |
|---|
| 44 | void init_ekf(double Tv); |
|---|
| 45 | void ekf(double ux, double uy, double isxd, double isyd); |
|---|
| 46 | |
|---|
| 47 | /* Declaration of local functions */ |
|---|
| 48 | void prediction(int16 *ux); |
|---|
| 49 | void correction(void); |
|---|
| 50 | void update_psi(void); |
|---|
| 51 | |
|---|
| 52 | /* Constants - definovat jako konstanty ?? ?kde je vyhodnejsi aby v pameti byli?*/ |
|---|
| 53 | int16 Q[16]; /* matrix [4,4] */ |
|---|
| 54 | int16 R[4]; /* matrix [2,2] */ |
|---|
| 55 | |
|---|
| 56 | int16 x_est[4]; |
|---|
| 57 | int16 x_pred[4]; |
|---|
| 58 | int16 P_pred[16]; /* matrix [4,4] */ |
|---|
| 59 | int16 P_est[16]; /* matrix [4,4] */ |
|---|
| 60 | int16 Y_mes[2]; |
|---|
| 61 | int16 ukalm[2]; |
|---|
| 62 | int16 Kalm[8]; /* matrix [5,2] */ |
|---|
| 63 | |
|---|
| 64 | int16 PSI[16]; /* matrix [4,4] */ |
|---|
| 65 | |
|---|
| 66 | int16 temp15a[16]; |
|---|
| 67 | |
|---|
| 68 | int16 cA, cB, cC, cG, cH; // cD, cE, cF, cI ... nepouzivane |
|---|
| 69 | |
|---|
| 70 | int32 temp30a[4]; /* matrix [2,2] - temporary matrix for inversion */ |
|---|
| 71 | enorm<fsqmat> E; |
|---|
| 72 | mat Ry; |
|---|
| 73 | |
|---|
| 74 | public: |
|---|
| 75 | //! Default constructor |
|---|
| 76 | EKFfixed ():BM(),E(),Ry(2,2){ |
|---|
| 77 | int16 i; |
|---|
| 78 | for(i=0;i<16;i++){Q[i]=0;} |
|---|
| 79 | for(i=0;i<4;i++){R[i]=0;} |
|---|
| 80 | |
|---|
| 81 | for(i=0;i<4;i++){x_est[i]=0;} |
|---|
| 82 | for(i=0;i<4;i++){x_pred[i]=0;} |
|---|
| 83 | for(i=0;i<16;i++){P_pred[i]=0;} |
|---|
| 84 | for(i=0;i<16;i++){P_est[i]=0;} |
|---|
| 85 | P_est[0]=0x7FFF; |
|---|
| 86 | P_est[5]=0x7FFF; |
|---|
| 87 | P_est[10]=0x7FFF; |
|---|
| 88 | P_est[15]=0x7FFF; |
|---|
| 89 | for(i=0;i<2;i++){Y_mes[i]=0;} |
|---|
| 90 | for(i=0;i<2;i++){ukalm[i]=0;} |
|---|
| 91 | for(i=0;i<8;i++){Kalm[i]=0;} |
|---|
| 92 | |
|---|
| 93 | for(i=0;i<16;i++){PSI[i]=0;} |
|---|
| 94 | |
|---|
| 95 | set_dim(4); |
|---|
| 96 | E._mu()=zeros(4); |
|---|
| 97 | E._R()=zeros(4,4); |
|---|
| 98 | init_ekf(0.000125); |
|---|
| 99 | }; |
|---|
| 100 | //! Here dt = [yt;ut] of appropriate dimensions |
|---|
| 101 | void bayes ( const vec &yt, const vec &ut ); |
|---|
| 102 | //!dummy! |
|---|
| 103 | const epdf& posterior() const {return E;}; |
|---|
| 104 | |
|---|
| 105 | }; |
|---|
| 106 | |
|---|
| 107 | UIREGISTER(EKFfixed); |
|---|
| 108 | |
|---|
| 109 | #endif |
|---|
| 110 | |
|---|
| 111 | //! EKF for testing q44 |
|---|
| 112 | class EKFtest: public EKF_UD{ |
|---|
| 113 | void bayes ( const vec &yt, const vec &cond ) { |
|---|
| 114 | EKF_UD::bayes(yt,cond); |
|---|
| 115 | vec D = prior()._R()._D(); |
|---|
| 116 | |
|---|
| 117 | if (D(3)>10) D(3) = 10; |
|---|
| 118 | |
|---|
| 119 | prior()._R().__D()=D; |
|---|
| 120 | } |
|---|
| 121 | }; |
|---|
| 122 | UIREGISTER(EKFtest); |
|---|
| 123 | |
|---|
| 124 | /*! |
|---|
| 125 | \brief Extended Kalman Filter with UD matrices in fixed point16 arithmetic |
|---|
| 126 | |
|---|
| 127 | An approximation of the exact Bayesian filter with Gaussian noices and non-linear evolutions of their mean. |
|---|
| 128 | */ |
|---|
| 129 | class EKFfixedUD : public BM { |
|---|
| 130 | public: |
|---|
| 131 | LOG_LEVEL(EKFfixedUD,logU, logG, logD, logA, logP); |
|---|
| 132 | |
|---|
| 133 | void init_ekf(double Tv); |
|---|
| 134 | void ekf(double ux, double uy, double isxd, double isyd); |
|---|
| 135 | |
|---|
| 136 | /* Constants - definovat jako konstanty ?? ?kde je vyhodnejsi aby v pameti byli?*/ |
|---|
| 137 | int16 Q[16]; /* matrix [4,4] */ |
|---|
| 138 | int16 R[4]; /* matrix [2,2] */ |
|---|
| 139 | |
|---|
| 140 | int16 x_est[4]; /* estimate and prediction */ |
|---|
| 141 | |
|---|
| 142 | int16 PSI[16]; /* matrix [4,4] */ |
|---|
| 143 | int16 PSIU[16]; /* matrix PIS*U, [4,4] */ |
|---|
| 144 | |
|---|
| 145 | int16 Uf[16]; // upper triangular of covariance (inplace) |
|---|
| 146 | int16 Df[4]; // diagonal covariance |
|---|
| 147 | int16 Dfold[4]; // temp of D |
|---|
| 148 | int16 G[16]; // temp for bierman |
|---|
| 149 | |
|---|
| 150 | int16 cA, cB, cC, cG, cH; // cD, cE, cF, cI ... nepouzivane |
|---|
| 151 | |
|---|
| 152 | enorm<fsqmat> E; |
|---|
| 153 | mat Ry; |
|---|
| 154 | |
|---|
| 155 | public: |
|---|
| 156 | //! Default constructor |
|---|
| 157 | EKFfixedUD ():BM(),E(),Ry(2,2){ |
|---|
| 158 | int16 i; |
|---|
| 159 | for(i=0;i<16;i++){Q[i]=0;} |
|---|
| 160 | for(i=0;i<4;i++){R[i]=0;} |
|---|
| 161 | |
|---|
| 162 | for(i=0;i<4;i++){x_est[i]=0;} |
|---|
| 163 | for(i=0;i<16;i++){Uf[i]=0;} |
|---|
| 164 | for(i=0;i<4;i++){Df[i]=0;} |
|---|
| 165 | for(i=0;i<16;i++){G[i]=0;} |
|---|
| 166 | for(i=0;i<4;i++){Dfold[i]=0;} |
|---|
| 167 | |
|---|
| 168 | for(i=0;i<16;i++){PSI[i]=0;} |
|---|
| 169 | |
|---|
| 170 | set_dim(4); |
|---|
| 171 | dimy = 2; |
|---|
| 172 | dimc = 2; |
|---|
| 173 | E._mu()=zeros(4); |
|---|
| 174 | E._R()=zeros(4,4); |
|---|
| 175 | init_ekf(0.000125); |
|---|
| 176 | }; |
|---|
| 177 | //! Here dt = [yt;ut] of appropriate dimensions |
|---|
| 178 | void bayes ( const vec &yt, const vec &ut ); |
|---|
| 179 | //!dummy! |
|---|
| 180 | const epdf& posterior() const {return E;}; |
|---|
| 181 | void log_register(logger &L, const string &prefix){ |
|---|
| 182 | BM::log_register ( L, prefix ); |
|---|
| 183 | |
|---|
| 184 | L.add_vector ( log_level, logG, RV("G",16), prefix ); |
|---|
| 185 | L.add_vector ( log_level, logU, RV ("U", 16 ), prefix ); |
|---|
| 186 | L.add_vector ( log_level, logD, RV ("D", 4 ), prefix ); |
|---|
| 187 | L.add_vector ( log_level, logA, RV ("A", 16 ), prefix ); |
|---|
| 188 | L.add_vector ( log_level, logP, RV ("P", 16 ), prefix ); |
|---|
| 189 | |
|---|
| 190 | }; |
|---|
| 191 | //void from_setting(); |
|---|
| 192 | }; |
|---|
| 193 | |
|---|
| 194 | UIREGISTER(EKFfixedUD); |
|---|
| 195 | |
|---|
| 196 | /*! |
|---|
| 197 | * \brief Extended Kalman Filter with UD matrices in fixed point16 arithmetic |
|---|
| 198 | * |
|---|
| 199 | * An approximation of the exact Bayesian filter with Gaussian noices and non-linear evolutions of their mean. |
|---|
| 200 | */ |
|---|
| 201 | class EKFfixedUD2 : public BM { |
|---|
| 202 | public: |
|---|
| 203 | LOG_LEVEL(EKFfixedUD2,logU, logG, logD, logA, logC, logP); |
|---|
| 204 | |
|---|
| 205 | void init_ekf2(double Tv); |
|---|
| 206 | void ekf2(double ux, double uy, double isxd, double isyd); |
|---|
| 207 | |
|---|
| 208 | /* Constants - definovat jako konstanty ?? ?kde je vyhodnejsi aby v pameti byli?*/ |
|---|
| 209 | int16 Q[4]; /* matrix [4,4] */ |
|---|
| 210 | int16 R[4]; /* matrix [2,2] */ |
|---|
| 211 | |
|---|
| 212 | int16 x_est[2]; /* estimate and prediction */ |
|---|
| 213 | int16 y_est[2]; /* estimate and prediction */ |
|---|
| 214 | int16 y_old[2]; /* estimate and prediction */ |
|---|
| 215 | |
|---|
| 216 | int16 PSI[4]; /* matrix [4,4] */ |
|---|
| 217 | int16 PSIU[4]; /* matrix PIS*U, [4,4] */ |
|---|
| 218 | int16 C[4]; /* matrix [4,4] */ |
|---|
| 219 | |
|---|
| 220 | int16 Uf[4]; // upper triangular of covariance (inplace) |
|---|
| 221 | int16 Df[2]; // diagonal covariance |
|---|
| 222 | int16 Dfold[2]; // temp of D |
|---|
| 223 | int16 G[4]; // temp for bierman |
|---|
| 224 | |
|---|
| 225 | int16 cA, cB, cC, cG, cH; // cD, cE, cF, cI ... nepouzivane |
|---|
| 226 | |
|---|
| 227 | enorm<fsqmat> E; |
|---|
| 228 | mat Ry; |
|---|
| 229 | |
|---|
| 230 | public: |
|---|
| 231 | //! Default constructor |
|---|
| 232 | EKFfixedUD2 ():BM(),E(),Ry(2,2){ |
|---|
| 233 | int16 i; |
|---|
| 234 | for(i=0;i<4;i++){Q[i]=0;} |
|---|
| 235 | for(i=0;i<4;i++){R[i]=0;} |
|---|
| 236 | |
|---|
| 237 | for(i=0;i<2;i++){x_est[i]=0;} |
|---|
| 238 | for(i=0;i<2;i++){y_est[i]=0;} |
|---|
| 239 | for(i=0;i<2;i++){y_old[i]=0;} |
|---|
| 240 | for(i=0;i<4;i++){Uf[i]=0;} |
|---|
| 241 | for(i=0;i<2;i++){Df[i]=0;} |
|---|
| 242 | for(i=0;i<4;i++){G[i]=0;} |
|---|
| 243 | for(i=0;i<2;i++){Dfold[i]=0;} |
|---|
| 244 | |
|---|
| 245 | for(i=0;i<4;i++){PSI[i]=0;} |
|---|
| 246 | for(i=0;i<4;i++){C[i]=0;} |
|---|
| 247 | |
|---|
| 248 | set_dim(2); |
|---|
| 249 | dimc = 2; |
|---|
| 250 | dimy = 2; |
|---|
| 251 | E._mu()=zeros(2); |
|---|
| 252 | E._R()=zeros(2,2); |
|---|
| 253 | init_ekf2(0.000125); |
|---|
| 254 | }; |
|---|
| 255 | //! Here dt = [yt;ut] of appropriate dimensions |
|---|
| 256 | void bayes ( const vec &yt, const vec &ut ); |
|---|
| 257 | //!dummy! |
|---|
| 258 | const epdf& posterior() const {return E;}; |
|---|
| 259 | void log_register(logger &L, const string &prefix){ |
|---|
| 260 | BM::log_register ( L, prefix ); |
|---|
| 261 | |
|---|
| 262 | L.add_vector ( log_level, logG, RV("G2",4), prefix ); |
|---|
| 263 | L.add_vector ( log_level, logU, RV ("U2", 4 ), prefix ); |
|---|
| 264 | L.add_vector ( log_level, logD, RV ("D2", 2 ), prefix ); |
|---|
| 265 | L.add_vector ( log_level, logA, RV ("A2", 4 ), prefix ); |
|---|
| 266 | L.add_vector ( log_level, logC, RV ("C2", 4 ), prefix ); |
|---|
| 267 | L.add_vector ( log_level, logP, RV ("P2", 4 ), prefix ); |
|---|
| 268 | |
|---|
| 269 | }; |
|---|
| 270 | //void from_setting(); |
|---|
| 271 | }; |
|---|
| 272 | |
|---|
| 273 | UIREGISTER(EKFfixedUD2); |
|---|
| 274 | |
|---|
| 275 | /*! |
|---|
| 276 | * \brief Extended Kalman Filter with UD matrices in fixed point16 arithmetic |
|---|
| 277 | * |
|---|
| 278 | * An approximation of the exact Bayesian filter with Gaussian noices and non-linear evolutions of their mean. |
|---|
| 279 | */ |
|---|
| 280 | class EKFfixedUD3 : public BM { |
|---|
| 281 | public: |
|---|
| 282 | LOG_LEVEL(EKFfixedUD3,logU, logG, logD, logA, logC, logP); |
|---|
| 283 | |
|---|
| 284 | void init_ekf3(double Tv); |
|---|
| 285 | void ekf3(double ux, double uy, double isxd, double isyd); |
|---|
| 286 | |
|---|
| 287 | /* Constants - definovat jako konstanty ?? ?kde je vyhodnejsi aby v pameti byli?*/ |
|---|
| 288 | int16 Q[9]; /* matrix [4,4] */ |
|---|
| 289 | int16 R[4]; /* matrix [2,2] */ |
|---|
| 290 | |
|---|
| 291 | int16 x_est[3]; /* estimate and prediction */ |
|---|
| 292 | int16 y_est[2]; /* estimate and prediction */ |
|---|
| 293 | int16 y_old[2]; /* estimate and prediction */ |
|---|
| 294 | |
|---|
| 295 | int16 PSI[9]; /* matrix [4,4] */ |
|---|
| 296 | int16 PSIU[9]; /* matrix PIS*U, [4,4] */ |
|---|
| 297 | int16 C[6]; /* matrix [4,4] */ |
|---|
| 298 | |
|---|
| 299 | int16 Uf[9]; // upper triangular of covariance (inplace) |
|---|
| 300 | int16 Df[3]; // diagonal covariance |
|---|
| 301 | int16 Dfold[3]; // temp of D |
|---|
| 302 | int16 G[9]; // temp for bierman |
|---|
| 303 | |
|---|
| 304 | int16 cA, cB, cC, cG, cF, cH; // cD, cE, cF, cI ... nepouzivane |
|---|
| 305 | |
|---|
| 306 | enorm<fsqmat> E; |
|---|
| 307 | mat Ry; |
|---|
| 308 | |
|---|
| 309 | public: |
|---|
| 310 | //! Default constructor |
|---|
| 311 | EKFfixedUD3 ():BM(),E(),Ry(2,2){ |
|---|
| 312 | int16 i; |
|---|
| 313 | for(i=0;i<9;i++){Q[i]=0;} |
|---|
| 314 | for(i=0;i<4;i++){R[i]=0;} |
|---|
| 315 | |
|---|
| 316 | for(i=0;i<3;i++){x_est[i]=0;} |
|---|
| 317 | for(i=0;i<2;i++){y_est[i]=0;} |
|---|
| 318 | for(i=0;i<2;i++){y_old[i]=0;} |
|---|
| 319 | for(i=0;i<9;i++){Uf[i]=0;} |
|---|
| 320 | for(i=0;i<3;i++){Df[i]=0;} |
|---|
| 321 | for(i=0;i<4;i++){G[i]=0;} |
|---|
| 322 | for(i=0;i<3;i++){Dfold[i]=0;} |
|---|
| 323 | |
|---|
| 324 | for(i=0;i<9;i++){PSI[i]=0;} |
|---|
| 325 | for(i=0;i<6;i++){C[i]=0;} |
|---|
| 326 | |
|---|
| 327 | set_dim(3); |
|---|
| 328 | dimc = 2; |
|---|
| 329 | dimy = 2; |
|---|
| 330 | E._mu()=zeros(3); |
|---|
| 331 | E._R()=zeros(3,3); |
|---|
| 332 | init_ekf3(0.000125); |
|---|
| 333 | }; |
|---|
| 334 | //! Here dt = [yt;ut] of appropriate dimensions |
|---|
| 335 | void bayes ( const vec &yt, const vec &ut ); |
|---|
| 336 | //!dummy! |
|---|
| 337 | const epdf& posterior() const {return E;}; |
|---|
| 338 | void log_register(logger &L, const string &prefix){ |
|---|
| 339 | BM::log_register ( L, prefix ); |
|---|
| 340 | }; |
|---|
| 341 | //void from_setting(); |
|---|
| 342 | }; |
|---|
| 343 | |
|---|
| 344 | UIREGISTER(EKFfixedUD3); |
|---|
| 345 | |
|---|
| 346 | /*! |
|---|
| 347 | * \brief Extended Kalman Filter with Chol matrices in fixed point16 arithmetic |
|---|
| 348 | * |
|---|
| 349 | * An approximation of the exact Bayesian filter with Gaussian noices and non-linear evolutions of their mean. |
|---|
| 350 | */ |
|---|
| 351 | class EKFfixedCh : public BM { |
|---|
| 352 | public: |
|---|
| 353 | LOG_LEVEL(EKFfixedCh,logCh, logA, logP); |
|---|
| 354 | |
|---|
| 355 | void init_ekf(double Tv); |
|---|
| 356 | void ekf(double ux, double uy, double isxd, double isyd); |
|---|
| 357 | |
|---|
| 358 | /* Constants - definovat jako konstanty ?? ?kde je vyhodnejsi aby v pameti byli?*/ |
|---|
| 359 | int16 Q[16]; /* matrix [4,4] */ |
|---|
| 360 | int16 R[4]; /* matrix [2,2] */ |
|---|
| 361 | |
|---|
| 362 | int16 x_est[4]; /* estimate and prediction */ |
|---|
| 363 | |
|---|
| 364 | int16 PSI[16]; /* matrix [4,4] */ |
|---|
| 365 | int16 PSICh[16]; /* matrix PIS*U, [4,4] */ |
|---|
| 366 | |
|---|
| 367 | int16 Chf[16]; // upper triangular of covariance (inplace) |
|---|
| 368 | |
|---|
| 369 | int16 cA, cB, cC, cG, cH; // cD, cE, cF, cI ... nepouzivane |
|---|
| 370 | |
|---|
| 371 | enorm<chmat> E; |
|---|
| 372 | mat Ry; |
|---|
| 373 | |
|---|
| 374 | public: |
|---|
| 375 | //! Default constructor |
|---|
| 376 | EKFfixedCh ():BM(),E(),Ry(2,2){ |
|---|
| 377 | int16 i; |
|---|
| 378 | for(i=0;i<16;i++){Q[i]=0;} |
|---|
| 379 | for(i=0;i<4;i++){R[i]=0;} |
|---|
| 380 | |
|---|
| 381 | for(i=0;i<4;i++){x_est[i]=0;} |
|---|
| 382 | for(i=0;i<16;i++){Chf[i]=0;} |
|---|
| 383 | |
|---|
| 384 | for(i=0;i<16;i++){PSI[i]=0;} |
|---|
| 385 | |
|---|
| 386 | set_dim(4); |
|---|
| 387 | dimc = 2; |
|---|
| 388 | dimy =2; |
|---|
| 389 | E._mu()=zeros(4); |
|---|
| 390 | E._R()=zeros(4,4); |
|---|
| 391 | init_ekf(0.000125); |
|---|
| 392 | }; |
|---|
| 393 | //! Here dt = [yt;ut] of appropriate dimensions |
|---|
| 394 | void bayes ( const vec &yt, const vec &ut ); |
|---|
| 395 | //!dummy! |
|---|
| 396 | const epdf& posterior() const {return E;}; |
|---|
| 397 | void log_register(logger &L, const string &prefix){ |
|---|
| 398 | BM::log_register ( L, prefix ); |
|---|
| 399 | |
|---|
| 400 | L.add_vector ( log_level, logCh, RV ("Ch", 16 ), prefix ); |
|---|
| 401 | L.add_vector ( log_level, logA, RV ("A", 16 ), prefix ); |
|---|
| 402 | L.add_vector ( log_level, logP, RV ("P", 16 ), prefix ); |
|---|
| 403 | |
|---|
| 404 | }; |
|---|
| 405 | //void from_setting(); |
|---|
| 406 | }; |
|---|
| 407 | |
|---|
| 408 | UIREGISTER(EKFfixedCh); |
|---|
| 409 | |
|---|
| 410 | /*! |
|---|
| 411 | * \brief Extended Kalman Filter with UD matrices in fixed point16 arithmetic |
|---|
| 412 | * |
|---|
| 413 | * An approximation of the exact Bayesian filter with Gaussian noices and non-linear evolutions of their mean. |
|---|
| 414 | */ |
|---|
| 415 | class EKFfixedCh2 : public BM { |
|---|
| 416 | public: |
|---|
| 417 | LOG_LEVEL(EKFfixedCh2,logCh, logA, logC, logP, logDet, logRem); |
|---|
| 418 | |
|---|
| 419 | void init_ekf2(double Tv); |
|---|
| 420 | void ekf2(double ux, double uy, double isxd, double isyd); |
|---|
| 421 | |
|---|
| 422 | /* Constants - definovat jako konstanty ?? ?kde je vyhodnejsi aby v pameti byli?*/ |
|---|
| 423 | int16 Q[4]; /* matrix [4,4] */ |
|---|
| 424 | int16 R[4]; /* matrix [2,2] */ |
|---|
| 425 | |
|---|
| 426 | int16 x_est[2]; /* estimate and prediction */ |
|---|
| 427 | int16 y_est[2]; /* estimate and prediction */ |
|---|
| 428 | int16 y_old[2]; /* estimate and prediction */ |
|---|
| 429 | |
|---|
| 430 | int16 PSI[4]; /* matrix [4,4] */ |
|---|
| 431 | int16 PSICh[4]; /* matrix PIS*U, [4,4] */ |
|---|
| 432 | int16 C[4]; /* matrix [4,4] */ |
|---|
| 433 | |
|---|
| 434 | int16 Chf[4]; // upper triangular of covariance (inplace) |
|---|
| 435 | |
|---|
| 436 | int16 cA, cB, cC, cG, cH; // cD, cE, cF, cI ... nepouzivane |
|---|
| 437 | |
|---|
| 438 | enorm<fsqmat> E; |
|---|
| 439 | mat Ry; |
|---|
| 440 | |
|---|
| 441 | public: |
|---|
| 442 | //! Default constructor |
|---|
| 443 | EKFfixedCh2 ():BM(),E(),Ry(2,2){ |
|---|
| 444 | int16 i; |
|---|
| 445 | for(i=0;i<4;i++){Q[i]=0;} |
|---|
| 446 | for(i=0;i<4;i++){R[i]=0;} |
|---|
| 447 | |
|---|
| 448 | for(i=0;i<2;i++){x_est[i]=0;} |
|---|
| 449 | for(i=0;i<2;i++){y_est[i]=0;} |
|---|
| 450 | for(i=0;i<2;i++){y_old[i]=0;} |
|---|
| 451 | for(i=0;i<4;i++){Chf[i]=0;} |
|---|
| 452 | |
|---|
| 453 | for(i=0;i<4;i++){PSI[i]=0;} |
|---|
| 454 | for(i=0;i<4;i++){C[i]=0;} |
|---|
| 455 | |
|---|
| 456 | set_dim(2); |
|---|
| 457 | dimc = 2; |
|---|
| 458 | dimy = 2; |
|---|
| 459 | E._mu()=zeros(2); |
|---|
| 460 | E._R()=zeros(2,2); |
|---|
| 461 | init_ekf2(0.000125); |
|---|
| 462 | }; |
|---|
| 463 | //! Here dt = [yt;ut] of appropriate dimensions |
|---|
| 464 | void bayes ( const vec &yt, const vec &ut ); |
|---|
| 465 | //!dummy! |
|---|
| 466 | const epdf& posterior() const {return E;}; |
|---|
| 467 | void log_register(logger &L, const string &prefix){ |
|---|
| 468 | BM::log_register ( L, prefix ); |
|---|
| 469 | |
|---|
| 470 | L.add_vector ( log_level, logCh, RV ("Ch2", 4 ), prefix ); |
|---|
| 471 | L.add_vector ( log_level, logA, RV ("A2", 4 ), prefix ); |
|---|
| 472 | L.add_vector ( log_level, logC, RV ("C2", 4 ), prefix ); |
|---|
| 473 | L.add_vector ( log_level, logP, RV ("P2", 4 ), prefix ); |
|---|
| 474 | L.add_vector ( log_level, logDet, RV ("Det", 1 ), prefix ); |
|---|
| 475 | L.add_vector ( log_level, logRem, RV ("Rem", 1 ), prefix ); |
|---|
| 476 | |
|---|
| 477 | }; |
|---|
| 478 | void from_setting ( const Setting &set ){ |
|---|
| 479 | BM::from_setting(set); |
|---|
| 480 | vec dQ,dR; |
|---|
| 481 | UI::get ( dQ, set, "dQ", UI::optional ); |
|---|
| 482 | UI::get ( dQ, set, "dR", UI::optional ); |
|---|
| 483 | if (dQ.length()==2){ |
|---|
| 484 | Q[0]=prevod(dQ[0],15); // 1e-3 |
|---|
| 485 | Q[3]=prevod(dQ[1],15); // 1e-3 |
|---|
| 486 | } |
|---|
| 487 | if (dR.length()==2){ |
|---|
| 488 | R[0]=prevod(dR[0],15); // 1e-3 |
|---|
| 489 | R[3]=prevod(dR[1],15); // 1e-3 |
|---|
| 490 | } |
|---|
| 491 | } |
|---|
| 492 | }; |
|---|
| 493 | |
|---|
| 494 | UIREGISTER(EKFfixedCh2); |
|---|
| 495 | |
|---|
| 496 | |
|---|
| 497 | //! EKF for comparison of EKF_UD with its fixed-point16 implementation |
|---|
| 498 | class EKF_UDfix : public BM { |
|---|
| 499 | protected: |
|---|
| 500 | //! logger |
|---|
| 501 | LOG_LEVEL(EKF_UDfix,logU, logG); |
|---|
| 502 | //! Internal Model f(x,u) |
|---|
| 503 | shared_ptr<diffbifn> pfxu; |
|---|
| 504 | |
|---|
| 505 | //! Observation Model h(x,u) |
|---|
| 506 | shared_ptr<diffbifn> phxu; |
|---|
| 507 | |
|---|
| 508 | //! U part |
|---|
| 509 | mat U; |
|---|
| 510 | //! D part |
|---|
| 511 | vec D; |
|---|
| 512 | |
|---|
| 513 | mat A; |
|---|
| 514 | mat C; |
|---|
| 515 | mat Q; |
|---|
| 516 | vec R; |
|---|
| 517 | |
|---|
| 518 | enorm<ldmat> est; |
|---|
| 519 | |
|---|
| 520 | |
|---|
| 521 | public: |
|---|
| 522 | |
|---|
| 523 | //! copy constructor duplicated |
|---|
| 524 | EKF_UDfix* _copy() const { |
|---|
| 525 | return new EKF_UDfix(*this); |
|---|
| 526 | } |
|---|
| 527 | |
|---|
| 528 | const enorm<ldmat>& posterior()const{return est;}; |
|---|
| 529 | |
|---|
| 530 | enorm<ldmat>& prior() { |
|---|
| 531 | return const_cast<enorm<ldmat>&>(posterior()); |
|---|
| 532 | } |
|---|
| 533 | |
|---|
| 534 | EKF_UDfix(){} |
|---|
| 535 | |
|---|
| 536 | |
|---|
| 537 | EKF_UDfix(const EKF_UDfix &E0): pfxu(E0.pfxu),phxu(E0.phxu), U(E0.U), D(E0.D){} |
|---|
| 538 | |
|---|
| 539 | //! Set nonlinear functions for mean values and covariance matrices. |
|---|
| 540 | void set_parameters ( const shared_ptr<diffbifn> &pfxu, const shared_ptr<diffbifn> &phxu, const mat Q0, const vec R0 ); |
|---|
| 541 | |
|---|
| 542 | //! Here dt = [yt;ut] of appropriate dimensions |
|---|
| 543 | void bayes ( const vec &yt, const vec &cond = empty_vec ); |
|---|
| 544 | |
|---|
| 545 | void log_register ( bdm::logger& L, const string& prefix ){ |
|---|
| 546 | BM::log_register ( L, prefix ); |
|---|
| 547 | |
|---|
| 548 | if ( log_level[logU] ) |
|---|
| 549 | L.add_vector ( log_level, logU, RV ( dimension()*dimension() ), prefix ); |
|---|
| 550 | if ( log_level[logG] ) |
|---|
| 551 | L.add_vector ( log_level, logG, RV ( dimension()*dimension() ), prefix ); |
|---|
| 552 | |
|---|
| 553 | } |
|---|
| 554 | /*! Create object from the following structure |
|---|
| 555 | |
|---|
| 556 | \code |
|---|
| 557 | class = 'EKF_UD'; |
|---|
| 558 | OM = configuration of bdm::diffbifn; % any offspring of diffbifn, bdm::diffbifn::from_setting |
|---|
| 559 | IM = configuration of bdm::diffbifn; % any offspring of diffbifn, bdm::diffbifn::from_setting |
|---|
| 560 | dQ = [...]; % vector containing diagonal of Q |
|---|
| 561 | dR = [...]; % vector containing diagonal of R |
|---|
| 562 | --- optional fields --- |
|---|
| 563 | mu0 = [...]; % vector of statistics mu0 |
|---|
| 564 | dP0 = [...]; % vector containing diagonal of P0 |
|---|
| 565 | -- or -- |
|---|
| 566 | P0 = [...]; % full matrix P0 |
|---|
| 567 | --- inherited fields --- |
|---|
| 568 | bdm::BM::from_setting |
|---|
| 569 | \endcode |
|---|
| 570 | If the optional fields are not given, they will be filled as follows: |
|---|
| 571 | \code |
|---|
| 572 | mu0 = [0,0,0,....]; % empty statistics |
|---|
| 573 | P0 = eye( dim ); |
|---|
| 574 | \endcode |
|---|
| 575 | */ |
|---|
| 576 | void from_setting ( const Setting &set ); |
|---|
| 577 | |
|---|
| 578 | void validate() {}; |
|---|
| 579 | // TODO dodelat void to_setting( Setting &set ) const; |
|---|
| 580 | |
|---|
| 581 | }; |
|---|
| 582 | UIREGISTER(EKF_UDfix); |
|---|
| 583 | |
|---|
| 584 | |
|---|
| 585 | class MPF_pmsm_red:public BM{ |
|---|
| 586 | double qom, qth, r; |
|---|
| 587 | |
|---|
| 588 | |
|---|
| 589 | public: |
|---|
| 590 | MPF_pmsm_red(){ |
|---|
| 591 | dimy=2; |
|---|
| 592 | dimc=2; |
|---|
| 593 | qom=1e-1; |
|---|
| 594 | qth=1e-6; |
|---|
| 595 | r=1e-1; |
|---|
| 596 | }; |
|---|
| 597 | void bayes ( const vec &val, const vec &cond ) { |
|---|
| 598 | /* const double &isa = val(0); |
|---|
| 599 | const double &isb = val(1); |
|---|
| 600 | const double &usa = cond(0); |
|---|
| 601 | const double &usb = cond(1);*/ |
|---|
| 602 | mpf_bayes((floatx)val(0),(floatx)val(1),(floatx)cond(0), (floatx)cond(1));//isa,isb,usa,usb); |
|---|
| 603 | } |
|---|
| 604 | |
|---|
| 605 | class mp:public epdf{ |
|---|
| 606 | LOG_LEVEL(mp,logth); |
|---|
| 607 | public: |
|---|
| 608 | mp():epdf(){set_dim(3); log_level[logth]=true; |
|---|
| 609 | } |
|---|
| 610 | vec sample() const {return zeros(3);} |
|---|
| 611 | double evallog(const vec &v) const {return 0.0;} |
|---|
| 612 | vec mean() const {vec tmp(3); |
|---|
| 613 | floatx es,ec,eo; |
|---|
| 614 | mpf_mean(&es, &ec, &eo); |
|---|
| 615 | tmp(0)=es;tmp(1)=ec;tmp(2)=eo; |
|---|
| 616 | return tmp; |
|---|
| 617 | } |
|---|
| 618 | vec variance() const {return zeros(3);} |
|---|
| 619 | void log_register ( bdm::logger& L, const string& prefix ) { |
|---|
| 620 | epdf::log_register ( L, prefix ); |
|---|
| 621 | if ( log_level[logth] ) { |
|---|
| 622 | int th_dim = N; // dimension - dimension of cov |
|---|
| 623 | L.add_vector( log_level, logth, RV ( th_dim ), prefix ); |
|---|
| 624 | } |
|---|
| 625 | } |
|---|
| 626 | void log_write() const { |
|---|
| 627 | epdf::log_write(); |
|---|
| 628 | if ( log_level[logth] ) { |
|---|
| 629 | floatx Th[N]; |
|---|
| 630 | mpf_th(Th); |
|---|
| 631 | vec th(N); |
|---|
| 632 | for(int i=0;i<N;i++){th(i)=Th[i];} |
|---|
| 633 | log_level.store( logth, th ); |
|---|
| 634 | } |
|---|
| 635 | } |
|---|
| 636 | }; |
|---|
| 637 | |
|---|
| 638 | mp mypdf; |
|---|
| 639 | const mp& posterior() const {return mypdf;} |
|---|
| 640 | |
|---|
| 641 | void from_setting(const Setting &set){ |
|---|
| 642 | BM::from_setting(set); |
|---|
| 643 | UI::get ( log_level, set, "log_level", UI::optional ); |
|---|
| 644 | |
|---|
| 645 | UI::get(qom,set,"qom",UI::optional); |
|---|
| 646 | UI::get(qth,set,"qth",UI::optional); |
|---|
| 647 | UI::get(r,set,"r",UI::optional); |
|---|
| 648 | } |
|---|
| 649 | void validate(){ |
|---|
| 650 | mpf_init((floatx)qom,(floatx)qth,(floatx)r); |
|---|
| 651 | |
|---|
| 652 | } |
|---|
| 653 | }; |
|---|
| 654 | UIREGISTER(MPF_pmsm_red); |
|---|
| 655 | |
|---|
| 656 | //! EKF with covariance R estimated by the VB method |
|---|
| 657 | class EKFvbR: public EKFfull{ |
|---|
| 658 | LOG_LEVEL(EKFvbR,logR,logQ); |
|---|
| 659 | |
|---|
| 660 | //! Statistics of the R estimator |
|---|
| 661 | mat PsiR; |
|---|
| 662 | //! Statistics of the Q estimator |
|---|
| 663 | mat PsiQ; |
|---|
| 664 | //! forgetting factor |
|---|
| 665 | double phi; |
|---|
| 666 | //! number of VB iterations |
|---|
| 667 | int niter; |
|---|
| 668 | //! degrees of freedom |
|---|
| 669 | double nu; |
|---|
| 670 | //! stabilizing element |
|---|
| 671 | mat PsiR0; |
|---|
| 672 | //! stabilizing element |
|---|
| 673 | mat PsiQ0; |
|---|
| 674 | |
|---|
| 675 | void from_setting(const Setting &set){ |
|---|
| 676 | EKFfull::from_setting(set); |
|---|
| 677 | if (!UI::get(phi,set,"phi",UI::optional)){ |
|---|
| 678 | phi = 0.99; |
|---|
| 679 | } |
|---|
| 680 | if (!UI::get(niter,set,"niter",UI::optional)){ |
|---|
| 681 | niter = 3; |
|---|
| 682 | } |
|---|
| 683 | PsiQ = Q; |
|---|
| 684 | PsiQ0 = Q; |
|---|
| 685 | PsiR = R; |
|---|
| 686 | PsiR0 = R; |
|---|
| 687 | nu = 3; |
|---|
| 688 | } |
|---|
| 689 | void log_register ( logger &L, const string &prefix ) { |
|---|
| 690 | EKFfull::log_register(L,prefix); |
|---|
| 691 | L.add_vector(log_level, logR, RV("{R }",vec_1<int>(4)), prefix); |
|---|
| 692 | L.add_vector(log_level, logQ, RV("{Q }",vec_1<int>(4)), prefix); |
|---|
| 693 | } |
|---|
| 694 | void bayes ( const vec &val, const vec &cond ) { |
|---|
| 695 | vec diffx, diffy; |
|---|
| 696 | mat Psi_vbQ; |
|---|
| 697 | mat Psi_vbR; |
|---|
| 698 | nu = phi*nu + (1-phi)*2 + 1.0; |
|---|
| 699 | |
|---|
| 700 | //save initial values of posterior |
|---|
| 701 | vec mu0=est._mu(); |
|---|
| 702 | fsqmat P0=est._R(); |
|---|
| 703 | vec xpred = pfxu->eval(mu0,cond); |
|---|
| 704 | |
|---|
| 705 | for (int i=0; i<niter; i++){ |
|---|
| 706 | est._mu() = mu0; |
|---|
| 707 | est._R() = P0; |
|---|
| 708 | |
|---|
| 709 | EKFfull::bayes(val,cond); |
|---|
| 710 | |
|---|
| 711 | diffy = val - fy._mu(); |
|---|
| 712 | Psi_vbR = phi*PsiR + (1-phi)*PsiR0+ outer_product(diffy,diffy)/*+C*mat(est._R())*C.T()*/; |
|---|
| 713 | R = Psi_vbR/(nu-2); |
|---|
| 714 | |
|---|
| 715 | diffx = est._mu() - xpred; |
|---|
| 716 | Psi_vbQ = phi*PsiQ + (1-phi)*PsiQ0+ outer_product(diffx,diffx) /*+mat(est._R()) /*+ A*mat(P0)*A.T()*/; |
|---|
| 717 | Q = Psi_vbQ/(nu-2); |
|---|
| 718 | } |
|---|
| 719 | PsiQ = Psi_vbQ; |
|---|
| 720 | PsiR = Psi_vbR; |
|---|
| 721 | // cout <<"==" << endl << Psi << endl << diff << endl << P0 << endl << ":" << Q; |
|---|
| 722 | log_level.store(logQ, vec(Q._M()._data(),4)); |
|---|
| 723 | log_level.store(logR, vec(R._M()._data(),4)); |
|---|
| 724 | |
|---|
| 725 | } |
|---|
| 726 | }; |
|---|
| 727 | UIREGISTER(EKFvbR); |
|---|
| 728 | |
|---|
| 729 | |
|---|
| 730 | class ekfChfix: public BM{ |
|---|
| 731 | |
|---|
| 732 | ekf_data E; |
|---|
| 733 | public: |
|---|
| 734 | ekfChfix(){ |
|---|
| 735 | init_ekfCh2(&E,0.000125);set_dim(2); dimc = 2; |
|---|
| 736 | dimy = 2; |
|---|
| 737 | } |
|---|
| 738 | void bayes ( const vec &val, const vec &cond ) { |
|---|
| 739 | int16 ux,uy; |
|---|
| 740 | ux=prevod(cond[0]/Uref,15); |
|---|
| 741 | uy=prevod(cond[1]/Uref,15); |
|---|
| 742 | |
|---|
| 743 | int16 yx,yy; |
|---|
| 744 | // zadani mereni |
|---|
| 745 | yx=prevod(val[0]/Iref,15); |
|---|
| 746 | yy=prevod(val[1]/Iref,15); |
|---|
| 747 | |
|---|
| 748 | int16 detS, rem; |
|---|
| 749 | ekfCh2(&E, ux,uy,yx,yy, &detS, &rem); |
|---|
| 750 | |
|---|
| 751 | Est._mu()=vec_2(E.x_est[0]*Uref/32768., E.x_est[1]*Uref/32768.); |
|---|
| 752 | |
|---|
| 753 | ll = -0.5*qlog(detS)-0.5*rem; |
|---|
| 754 | } |
|---|
| 755 | const epdf& posterior() const {return Est;}; |
|---|
| 756 | void from_setting ( const Setting &set ){ |
|---|
| 757 | BM::from_setting(set); |
|---|
| 758 | vec dQ,dR; |
|---|
| 759 | UI::get ( dQ, set, "dQ", UI::optional ); |
|---|
| 760 | UI::get ( dQ, set, "dR", UI::optional ); |
|---|
| 761 | if (dQ.length()==2){ |
|---|
| 762 | E.Q[0]=prevod(dQ[0],15); // 1e-3 |
|---|
| 763 | E.Q[3]=prevod(dQ[1],15); // 1e-3 |
|---|
| 764 | } |
|---|
| 765 | if (dR.length()==2){ |
|---|
| 766 | E.dR[0]=prevod(dR[0],15); // 1e-3 |
|---|
| 767 | E.dR[1]=prevod(dR[1],15); // 1e-3 |
|---|
| 768 | } |
|---|
| 769 | } |
|---|
| 770 | |
|---|
| 771 | enorm<fsqmat> Est; |
|---|
| 772 | mat Ry; |
|---|
| 773 | }; |
|---|
| 774 | UIREGISTER(ekfChfix); |
|---|
| 775 | |
|---|
| 776 | #endif // KF_H |
|---|
| 777 | |
|---|