1 | /************************************ |
---|
2 | Extended Kalman Filter |
---|
3 | Matrix operations |
---|
4 | |
---|
5 | V. Smidl |
---|
6 | |
---|
7 | Rev. 30.8.2010 |
---|
8 | |
---|
9 | 30.8.2010 Prvni verze |
---|
10 | |
---|
11 | *************************************/ |
---|
12 | #include "fixed.h" |
---|
13 | #include "stdio.h" |
---|
14 | #include <math.h> |
---|
15 | |
---|
16 | #include "matrix_vs.h" |
---|
17 | |
---|
18 | /* Matrix multiply Full matrix by upper diagonal matrix; */ |
---|
19 | void mmultAU(int *m1, int *up, int *result, unsigned int rows, unsigned int columns) { |
---|
20 | unsigned int i, j, k; |
---|
21 | long tmp_sum=0L; |
---|
22 | int *m2pom; |
---|
23 | int *m1pom=m1; |
---|
24 | int *respom=result; |
---|
25 | |
---|
26 | for (i=0; i<rows; i++) //rows of result |
---|
27 | { |
---|
28 | for (j=0; j<columns; j++) //columns of result |
---|
29 | { |
---|
30 | m2pom=up+j;//?? |
---|
31 | |
---|
32 | for (k=0; k<j; k++) //inner loop up to "j" - U(j,j)==1; |
---|
33 | { |
---|
34 | tmp_sum+=(long)(*(m1pom++))**m2pom; |
---|
35 | m2pom+=columns; |
---|
36 | } |
---|
37 | // add the missing A(i,j) |
---|
38 | tmp_sum +=(long)(*m1pom)<<15; // no need to shift |
---|
39 | m1pom-=(j); // shift back to first element |
---|
40 | |
---|
41 | // saturation effect |
---|
42 | tmp_sum=tmp_sum>>(30-qAU); |
---|
43 | if (tmp_sum>32767) { |
---|
44 | //tmp_sum=32767; |
---|
45 | } |
---|
46 | if (tmp_sum<-32768) { |
---|
47 | //tmp_sum=-32768; |
---|
48 | } |
---|
49 | // printf("Au - saturated\n"); |
---|
50 | |
---|
51 | *respom++=tmp_sum; |
---|
52 | |
---|
53 | tmp_sum=0; |
---|
54 | } |
---|
55 | m1pom+=(columns); |
---|
56 | } |
---|
57 | }; |
---|
58 | |
---|
59 | /* Matrix multiply Full matrix by upper diagonal matrix; */ |
---|
60 | void mmultACh(int *m1, int *up, int *result, unsigned int rows, unsigned int columns) { |
---|
61 | unsigned int i, j, k; |
---|
62 | long tmp_sum=0L; |
---|
63 | int *m2pom; |
---|
64 | int *m1pom=m1; |
---|
65 | int *respom=result; |
---|
66 | |
---|
67 | for (i=0; i<rows; i++) //rows of result |
---|
68 | { |
---|
69 | for (j=0; j<columns; j++) //columns of result |
---|
70 | { |
---|
71 | m2pom=up+j;//?? |
---|
72 | |
---|
73 | for (k=0; k<=j; k++) //inner loop up to "j" - U(j,j)==1; |
---|
74 | { |
---|
75 | tmp_sum+=(long)(*(m1pom++))**m2pom; |
---|
76 | m2pom+=columns; |
---|
77 | } |
---|
78 | m1pom-=(j+1); // shift back to first element |
---|
79 | |
---|
80 | // saturation effect |
---|
81 | tmp_sum=tmp_sum>>15; |
---|
82 | if (tmp_sum>32767) { |
---|
83 | if (i!=3) tmp_sum=32767; |
---|
84 | } |
---|
85 | if (tmp_sum<-32768) { |
---|
86 | tmp_sum=-32768; |
---|
87 | } |
---|
88 | // printf("Au - saturated\n"); |
---|
89 | |
---|
90 | *respom++=tmp_sum; |
---|
91 | |
---|
92 | tmp_sum=0; |
---|
93 | } |
---|
94 | m1pom+=(columns); |
---|
95 | } |
---|
96 | }; |
---|
97 | |
---|
98 | bool DBG=true; |
---|
99 | |
---|
100 | void show(const char name[10], int *I, int n) { |
---|
101 | if (!DBG) return; |
---|
102 | |
---|
103 | printf("%s: ",name); |
---|
104 | for (int i=0;i<n;i++) { |
---|
105 | printf("%d ",*(I+i)); |
---|
106 | } |
---|
107 | printf("\n"); |
---|
108 | } |
---|
109 | |
---|
110 | // Thorton procedure - Kalman predictive variance in UD |
---|
111 | void thorton(int *U, int *D, int *PSIU, int *Q, int *G, int *Dold, unsigned int rows) { |
---|
112 | unsigned int i,j,k; |
---|
113 | // copy D to Dold |
---|
114 | int *Dold_pom=Dold; |
---|
115 | for (i=0;i<rows;i++) { |
---|
116 | *Dold_pom++=*D++; |
---|
117 | } |
---|
118 | D-=rows; // back to first D |
---|
119 | |
---|
120 | // initialize G = eye() |
---|
121 | int *G_pom = G; |
---|
122 | *G_pom++=1<<14; |
---|
123 | for (i=0;i<rows-1;i++) { |
---|
124 | // clean elem before diag |
---|
125 | for (j=0; j<rows; j++) { |
---|
126 | *G_pom++=0.0; |
---|
127 | } |
---|
128 | *G_pom++=1<<14; |
---|
129 | } |
---|
130 | // eye created |
---|
131 | |
---|
132 | long sigma; // in q30!!!!!! |
---|
133 | for (i=rows-1; true;i--) { // check i==0 at the END! |
---|
134 | sigma = 0; |
---|
135 | |
---|
136 | for (j=0;j<rows; j++) { |
---|
137 | //long s1=(((long)PSIU[i+j*rows]*PSIU[i+j*rows])>>15)*(Dold[i]); |
---|
138 | long s2=((((long)PSIU[i*rows+j]*Dold[j])>>qAU)*PSIU[i*rows+j])<<(15-qAU); |
---|
139 | // printf("%d - %d\n",s1,s2); |
---|
140 | sigma += s2; |
---|
141 | } |
---|
142 | sigma += Q[i*rows+i]<<15; |
---|
143 | for (j=i+1;j<rows; j++) { |
---|
144 | sigma += (((long)G[i*rows+j]*G[i*rows+j])>>13)*Q[j*rows+j]; |
---|
145 | // sigma += (((long)G[i+j*rows]*G[i+j*rows])>>13)*Q[j+j*rows]; |
---|
146 | } |
---|
147 | |
---|
148 | //if (sigma>16384<<15) sigma = 16384<<15; |
---|
149 | *(D+i)=sigma>>15; |
---|
150 | if (D[i]==0) D[i]=1; |
---|
151 | //show("D",D,5); |
---|
152 | |
---|
153 | for (j=0;j<i;j++) { |
---|
154 | // printf("\n%d,%d\n",i,j); |
---|
155 | sigma =0; |
---|
156 | for (k=0;k<rows;k++) { |
---|
157 | sigma += (((long(PSIU[i*rows+k])*Dold[k])>>qAU)*PSIU[j*rows+k])<<(15-qAU); |
---|
158 | } |
---|
159 | for (k=0;k<rows;k++) { |
---|
160 | sigma += ((((long)G[i*rows+k])*G[j*rows+k])>>13)*Q[k*rows+k]; |
---|
161 | } |
---|
162 | long z=sigma/D[i]; // shift by 15 |
---|
163 | if (z>32767) z=32767; |
---|
164 | if (z<-32768) z=-32768; |
---|
165 | |
---|
166 | U[j*rows+i] = (int)z; |
---|
167 | |
---|
168 | |
---|
169 | for (k=0;k<rows;k++) { |
---|
170 | PSIU[j*rows+k] -= ((long)U[j*rows+i]*PSIU[i*rows+k])>>15; //qAU*q15/q15=qAU |
---|
171 | } |
---|
172 | |
---|
173 | for (k=0;k<rows;k++) { |
---|
174 | G[j*rows+k] -= ((long)U[j*rows+i]*G[i*rows+k])>>15; |
---|
175 | } |
---|
176 | |
---|
177 | } |
---|
178 | //show("U",U,25); |
---|
179 | //show("G",G,25); |
---|
180 | if (i==0) return; |
---|
181 | } |
---|
182 | } |
---|
183 | |
---|
184 | void bierman_fast(int *difz, int *xp, int *U, int *D, int *R, unsigned int dimy, unsigned int dimx ) { |
---|
185 | int alpha; |
---|
186 | int beta,lambda; |
---|
187 | int b[5]; // ok even for 4-dim state |
---|
188 | int *a; // in [0,1] -> q15 |
---|
189 | unsigned int iy,j,i; |
---|
190 | |
---|
191 | int *b_j,*b_i; |
---|
192 | int *a_j; |
---|
193 | int *D_j; |
---|
194 | int *U_ij; |
---|
195 | int *x_i; |
---|
196 | a = U; // iyth row of U |
---|
197 | for (iy=0; iy<dimy; iy++, a+=dimx) { |
---|
198 | // a is a row |
---|
199 | for (j=0,a_j=a,b_j=b,D_j=D; j<dimx; j++,b_j++,D_j++,a_j++) |
---|
200 | *b_j=((long)(*D_j)*(*a_j))>>15; |
---|
201 | |
---|
202 | alpha = (long)R[iy]; //\alpha = R+vDv = R+a*b |
---|
203 | // R in q15, a in q15, b=q15 |
---|
204 | // gamma = (1<<15)/alpha; //(in q15) |
---|
205 | //min alpha = R[iy] = 164 |
---|
206 | //max gamma = 0.0061 => gamma_ref = q7 |
---|
207 | for (j=0,a_j=a,b_j=b,D_j=D; j<dimx; j++,a_j++,b_j++,D_j++) { |
---|
208 | beta = alpha; |
---|
209 | lambda = -((long)(*a_j)<<15)/beta; |
---|
210 | alpha += ((long)(*a_j)*(*b_j))>>15; |
---|
211 | D[j] = ((((long)beta<<15)/alpha)*(*D_j))>>15; //gamma is long |
---|
212 | if (*D_j==0) *D_j=1; |
---|
213 | |
---|
214 | for (i=0,b_i=b,U_ij=U+j; i<j; i++, b_i++,U_ij+=dimx) { |
---|
215 | beta = *U_ij; |
---|
216 | *U_ij += ((long)lambda*(*b_i))>>15; |
---|
217 | *b_i += ((long)beta*(*b_j))>>15; |
---|
218 | } |
---|
219 | } |
---|
220 | int dzs = (((long)difz[iy])<<15)/alpha; // apply scaling to innovations |
---|
221 | // no shift due to gamma |
---|
222 | for (i=0,x_i=xp,b_i=b; i<dimx; i++,x_i++,b_i++) { |
---|
223 | *x_i += ((long)dzs*(*b_i))>>15; // multiply by unscaled Kalman gain |
---|
224 | } |
---|
225 | |
---|
226 | //cout << "Ub: " << U << endl; |
---|
227 | //cout << "Db: " << D << endl <<endl; |
---|
228 | |
---|
229 | } |
---|
230 | |
---|
231 | } |
---|
232 | |
---|
233 | // Thorton procedure - Kalman predictive variance in UD |
---|
234 | void thorton_fast(int *U, int *D, int *PSIU, int *Q, int *G, int *Dold, unsigned int rows) { |
---|
235 | unsigned int i,j,k; |
---|
236 | // copy D to Dold |
---|
237 | int *Dold_i,*Dold_k; |
---|
238 | int *D_i; |
---|
239 | int *PSIU_ij,*PSIU_ik,*PSIU_jk; |
---|
240 | int *Q_jj,*Q_ii,*Q_kk; |
---|
241 | int *U_ji; |
---|
242 | int *G_ik,*G_jk; |
---|
243 | int irows,jrows; |
---|
244 | long sigma; // in q30!! |
---|
245 | |
---|
246 | for (i=0,Dold_i=Dold,D_i=D;i<rows;i++,Dold_i++,D_i++) { |
---|
247 | *Dold_i=*D_i; |
---|
248 | } |
---|
249 | |
---|
250 | // initialize G = eye() |
---|
251 | G_ik= G; |
---|
252 | *G_ik++=1<<14; |
---|
253 | for (i=0;i<rows-1;i++) { |
---|
254 | // clean elem before diag |
---|
255 | for (k=0; k<rows; k++) { |
---|
256 | *G_ik++=0; |
---|
257 | } |
---|
258 | *G_ik++=1<<14; |
---|
259 | } |
---|
260 | // eye created |
---|
261 | |
---|
262 | for (i=rows-1, Dold_i=Dold+i, D_i=D+i; |
---|
263 | true; i--, Dold_i--,D_i--) { // stop if i==0 at the END! |
---|
264 | irows=i*rows; |
---|
265 | sigma = 0; |
---|
266 | for (k=0, PSIU_ik=PSIU+irows,Dold_k=Dold; |
---|
267 | k<rows; k++, PSIU_ik++,Dold_k++) {//Dold_i= |
---|
268 | sigma += (((long)(*PSIU_ik)**PSIU_ik)>>(qAU*qAU-15))*(*Dold_k); |
---|
269 | } |
---|
270 | sigma += *(Q+i+irows)<<15; |
---|
271 | for (j=i+1, G_ik=G+irows+i+1; j<rows; j++,G_ik++) { |
---|
272 | sigma += (((long)(*G_ik)**G_ik)>>13)**(Q+j+j*rows); |
---|
273 | |
---|
274 | } |
---|
275 | |
---|
276 | *D_i=sigma>>15; |
---|
277 | if (*D_i==0) *D_i=1; |
---|
278 | |
---|
279 | |
---|
280 | for (j=0;j<i;j++) { |
---|
281 | jrows = j*rows; |
---|
282 | |
---|
283 | sigma =0; |
---|
284 | for (k=0, PSIU_ik=PSIU+irows, PSIU_jk=PSIU+jrows, Dold_k=Dold; |
---|
285 | k<rows; k++, PSIU_ik++, PSIU_jk++, Dold_k++) { |
---|
286 | |
---|
287 | sigma += ((((long)*PSIU_ik)**PSIU_jk)>>(qAU*qAU-15))**Dold_k; |
---|
288 | } |
---|
289 | |
---|
290 | for (k=i,G_ik=G+irows+i,G_jk=G+jrows+i,Q_kk=Q+k*rows+k; |
---|
291 | k<rows;k++,G_ik++,G_jk++,Q_kk+=rows+1) { |
---|
292 | sigma += ((((long)*G_ik)**G_jk)>>13)**Q_kk; |
---|
293 | } |
---|
294 | |
---|
295 | long z=sigma/(*D_i); // shift by 15 |
---|
296 | if (z>32767) z=32767; |
---|
297 | if (z<-32768) z=-32768; |
---|
298 | |
---|
299 | U_ji=U+jrows+i; |
---|
300 | *U_ji = (int)z; |
---|
301 | |
---|
302 | |
---|
303 | for (k=0,PSIU_ik=PSIU+irows,PSIU_jk=PSIU+jrows; |
---|
304 | k<rows;k++,PSIU_ik++,PSIU_jk++) { |
---|
305 | *PSIU_jk -= ((long)*U_ji**PSIU_ik)>>15; |
---|
306 | } |
---|
307 | |
---|
308 | for (k=0,G_jk=G+jrows,G_ik=G+irows; |
---|
309 | k<rows;k++, G_jk++, G_ik++) { |
---|
310 | *G_jk -= ((long)*U_ji**G_ik)>>15; |
---|
311 | } |
---|
312 | |
---|
313 | } |
---|
314 | if (i==0) return; |
---|
315 | } |
---|
316 | } |
---|
317 | |
---|
318 | void bierman(int *difz, int *xp, int *U, int *D, int *R, unsigned int dimy, unsigned int dimx ) { |
---|
319 | long alpha; |
---|
320 | long gamma,beta,lambda; |
---|
321 | int b[5]; // ok even for 4-dim state |
---|
322 | int *a; // in [0,1] -> q15 |
---|
323 | unsigned int iy,j,i; |
---|
324 | |
---|
325 | for (iy=0; iy<dimy; iy++) { |
---|
326 | // a is a row |
---|
327 | a = U+iy*dimx; // iyth row of U |
---|
328 | for (j=0;j<dimx;j++) { |
---|
329 | (j<iy)? b[j]=0: (j==iy)? b[j]=D[j] : b[j]=((long)D[j]*a[j])>>15; |
---|
330 | } |
---|
331 | |
---|
332 | alpha = (long)R[iy]; //\alpha = R+vDv = R+a*b |
---|
333 | // R in q15, a in q15, b=q15 |
---|
334 | // gamma = (1<<15)/alpha; //(in q15) |
---|
335 | //min alpha = R[iy] = 164 |
---|
336 | //max gamma = 0.0061 => gamma_ref = q7 |
---|
337 | for (j=0;j<dimx;j++) { |
---|
338 | beta = alpha; |
---|
339 | lambda = -(((long)a[j])<<15)/beta; |
---|
340 | alpha += (((long)(a[j])*b[j])>>15); |
---|
341 | D[j] = (((((long)beta)<<15)/alpha)*D[j])>>15; //gamma is long |
---|
342 | if (D[j]==0) D[j]=1; |
---|
343 | |
---|
344 | // cout << "a: " << alpha << "g: " << gamma << endl; |
---|
345 | for (i=0;i<j;i++) { |
---|
346 | beta = U[i*dimx+j]; |
---|
347 | U[i*dimx+j] += (lambda*b[i])>>15; |
---|
348 | b[i] += (beta*b[j])>>15; |
---|
349 | } |
---|
350 | } |
---|
351 | int dzs = (((long)difz[iy])<<15)/alpha; // apply scaling to innovations |
---|
352 | // no shift due to gamma |
---|
353 | for (i=0; i<dimx; i++) { |
---|
354 | xp[i] += ((long)dzs*b[i])>>15; // multiply by unscaled Kalman gain |
---|
355 | } |
---|
356 | |
---|
357 | //cout << "Ub: " << U << endl; |
---|
358 | //cout << "Db: " << D << endl <<endl; |
---|
359 | |
---|
360 | } |
---|
361 | |
---|
362 | } |
---|
363 | |
---|
364 | /* square root of 0<a<1 using taylor at 0.5 in q15*/ |
---|
365 | int int_sqrt(int x) { |
---|
366 | //sqrt(x) == 1/2*2^(1/2)+1/2*2^(1/2)*(x-1/2)-1/4*2^(1/2)*(x-1/2)^2 |
---|
367 | // = k1 + k1*(x-0.5) - k2*(x-0.5)(x-0.5); |
---|
368 | #define k1 23170 //0.5*sqrt(2)*32768 |
---|
369 | #define k2 11585 //0.25*sqrt(2)*32768 |
---|
370 | |
---|
371 | int tmp; |
---|
372 | if (x>6554) { |
---|
373 | int xm05=x-16384; |
---|
374 | tmp = ((long)k1*xm05)>>15; |
---|
375 | tmp-=(((long(k2)*xm05)>>15)*xm05)>>15; |
---|
376 | tmp +=k1; |
---|
377 | } else { |
---|
378 | tmp = 4*x; |
---|
379 | tmp-=long(8*x)*x>>15; |
---|
380 | } |
---|
381 | return tmp; |
---|
382 | } |
---|
383 | |
---|
384 | void householder(int *Ch /*= int *PSICh*/, int *Q, unsigned int dimx) { |
---|
385 | int k,j,i; |
---|
386 | int sigma,alpha,beta; |
---|
387 | int B[25];//beware |
---|
388 | int w[5]; |
---|
389 | int v[5]; |
---|
390 | |
---|
391 | // copy Q to B |
---|
392 | for (i=0;i<dimx*dimx;i++) { |
---|
393 | B[i]=Q[i]; |
---|
394 | } |
---|
395 | |
---|
396 | for (k=dimx-1; k>=0; k--) { |
---|
397 | sigma=0; |
---|
398 | for (j=0;j<dimx;j++) { |
---|
399 | sigma+=(long(B[k*dimx+j])*B[k*dimx+j])>>15; |
---|
400 | } |
---|
401 | for (j=0;j<=k;j++) { |
---|
402 | sigma+=(long(Ch[k*dimx+j])*Ch[k*dimx+j])>>15; |
---|
403 | } |
---|
404 | /* double sigf=double(sigma)/(1<<15); |
---|
405 | double alpf = sqrt(sigf);*/ |
---|
406 | alpha=int_sqrt(sigma); |
---|
407 | // alpha = alpf*(1<<15); |
---|
408 | // |
---|
409 | sigma=0; |
---|
410 | for (j=0;j<dimx;j++) { |
---|
411 | w[j]=B[k*dimx+j]; |
---|
412 | sigma+=(long(w[j])*w[j])>>15; |
---|
413 | } |
---|
414 | for (j=0; j<=k;j++) { |
---|
415 | if (j==k) { |
---|
416 | v[j]=Ch[k*dimx+j]-alpha; |
---|
417 | } else { |
---|
418 | v[j]=Ch[k*dimx+j]; |
---|
419 | } |
---|
420 | sigma+=(long(v[j])*v[j])>>15; |
---|
421 | } |
---|
422 | alpha=sigma>>1; |
---|
423 | for (i=0;i<=k;i++) { |
---|
424 | sigma=0; |
---|
425 | for (j=0;j<dimx;j++) { |
---|
426 | sigma+=(long(B[i*dimx+j])*w[j])>>15; |
---|
427 | } |
---|
428 | for (j=0;j<=k;j++) { |
---|
429 | sigma+=(long(Ch[i*dimx+j])*v[j])>>15; |
---|
430 | } |
---|
431 | for (j=0;j<dimx;j++) { |
---|
432 | B[i*dimx+j]-=(long(sigma)*w[j]/alpha); |
---|
433 | }; |
---|
434 | for (j=0;j<=k;j++) { |
---|
435 | Ch[i*dimx+j]-=(long(sigma)*v[j]/alpha); |
---|
436 | } |
---|
437 | } |
---|
438 | } |
---|
439 | |
---|
440 | } |
---|
441 | |
---|
442 | void carlson(int *difz, int *xp, int *Ch, int *R, unsigned int dimy, unsigned int dimx ) { |
---|
443 | int alpha,beta,gamma; |
---|
444 | int delta, eta,epsilon,zeta,sigma,tau; |
---|
445 | int i,j,iy; |
---|
446 | int w[5]; |
---|
447 | |
---|
448 | for (iy=0; iy<dimy; iy++) { |
---|
449 | alpha=R[iy]; |
---|
450 | delta = difz[iy]; |
---|
451 | |
---|
452 | for (j=0;j<dimx;j++) { |
---|
453 | sigma=Ch[iy*dimx+j]; |
---|
454 | beta=alpha; |
---|
455 | alpha+=(long(sigma)*sigma)>>15; |
---|
456 | // double ab=(double)alpha*beta/32768./32768.; |
---|
457 | // double s_ab=sqrt(ab); |
---|
458 | gamma=int_sqrt(((long)alpha*beta)>>15); |
---|
459 | //gamma = round(s_ab*(1<<15)); |
---|
460 | eta=(long (beta)<<15) / gamma; |
---|
461 | //zeta=(long(sigma)<<15)/ gamma; |
---|
462 | w[j]=0; |
---|
463 | for (i=0;i<=j;i++) { |
---|
464 | tau=Ch[i*dimx+j]; |
---|
465 | Ch[i*dimx+j]=((long(eta)*Ch[i*dimx+j])>>15) -(long(sigma)*w[i])/gamma; |
---|
466 | w[i]+=(long(tau)*sigma)>>15; |
---|
467 | } |
---|
468 | } |
---|
469 | |
---|
470 | //epsilon=(long(difz)<<15) / (alpha); // q15*q13/q13 = q15 |
---|
471 | for (i=0;i<dimx;i++) { |
---|
472 | xp[i]+=(long(w[i])*delta)/alpha; |
---|
473 | } |
---|
474 | } |
---|
475 | } |
---|