/* Simulator of Vector Controlled PMSM Drive This module is background for PMSM drive object design and introduces basic functions ... set_parameters() and eval(). Z. Peroutka Rev. 25.4.2009 */ #define _USE_MATH_DEFINES #include #include #include //na linuxu je abs v stdlib #include "regulace.h" #include "simulator.h" #define REZIM_REGULACE 1 // 0...reg. momentu, 1...reg.rychlosti, 2... Isqw=sqrt(Imax^2-Id^2) - max. moment void pmsmsim_set_parameters(double Rs0, double Ls0, double Fmag0, double Bf0, double p0, double kp0, double J0, double Uc0, double DT0, double dt0); void pmsmsim_step(double Ww); // local functions static void pwm(unsigned int mod); static double ubytek(double I); static void pmsm_model(unsigned int mod); // simulator properties /////////////////////// static double Rs,Ls,Fmag,Bf,p,kp,J; // parameters of PMSM model static double Ucn,Uc,DT,U_modulace; // dc-link voltage and dead-time static double Urm_max; // field weakening static double h,h_reg,h_reg_real; // simulation step and sampling of employed loops unsigned int h_reg_counter,h_reg_counter_mez; // emulation of DSP operation static double va_char[16]={0,10,50,100,200,300,500,1000, 0,1,1.8,2.4,3.2,3.8,4.8,6.8}; // ubytky static unsigned int pocet=8; // velikost VA-charky // system state static double x[9]; // (isx,isy,wme,theta_e,M,Fsd,Isd,Isq,Mz) // internal variables of PWM module static int smer, smer2, citac, citac2, citac_PR, modulace; // internal variables of PMSM model static double dIsx,dIsx1,dIsx2,dIsx3,dIsy,dIsy1,dIsy2,dIsy3; static double dTheta,dTheta1,dTheta2,dTheta3; static double dw,dw1,dw2,dw3; // system measures static double Isx, Isy, theta, speed; // control static double u[2]={0.,0.}; // format u={Um, beta} static double us[2]={0.,0.}; // format us={us_alfa, us_beta} // variables for calculation of mean values of stator voltage components static double usx_av=0., usy_av=0.,sum_usx_av=0.,sum_usy_av=0.; // variables for calculation of mean values of stator current components - (alfa, beta) static double isx_av=0., isy_av=0.,sum_isx_av=0.,sum_isy_av=0.; // stator voltage components filtering static double usxf=0.,usyf=0.,Tf=0.01; static unsigned int start_filter=1; // output for EKF (voltages and measured currents, which are fed to KalmanObs) static double KalmanObs[10]={0.,0.,0.,0.,0.,0.,0.,0.,0.,0.}; // usx, usy, Isx, Isy, usx_av, usy_av // real-time static double t=0.; //VS removed static due to clash with export in .h // stator voltage components in alfa beta (inluding impact of the real dc-link voltage) static double ualfa=0., ubeta=0.; // PWM - improvement of dead-time effect emulation static unsigned int start_pwm=1; static int uact[3]={1,1,1}; static int ureq[3]={1,1,1}; static unsigned int DT_counter[3]={0,0,0}; static unsigned int DT_counter_mez; // debug static double debug_pwm; FILE *fdebug; /////////////////// POMOCNE FUNKCE ////////////////////////////////// double uhel(double x, double y) { double th; if (x==0) if (y==0) th=0.; else if (y>0) th=M_PI/2.; else th=-M_PI/2.; else th=atan(y/x); if (x<0) th+=M_PI; return th; } ///////////////////////////////////////////////////////////////////// void pmsmsim_set_parameters(double Rs0, double Ls0, double Fmag0, double Bf0, double p0, double kp0, double J0, double Uc0, double DT0, double dt0) { int tmp_i; // simulator parameters setup Rs=Rs0; Ls=Ls0; Fmag=Fmag0; Bf=Bf0; p=p0; kp=kp0; J=J0; Ucn=600.; Uc=Uc0; DT=DT0; // control setup Urm_max=0.95; // simulator sampling - fixed setup h=dt0; h_reg=125e-6; // fpwm = 4kHz h_reg_counter_mez=(int)(h_reg/h); // emulation of operation of DSP timer //h_reg_counter=h_reg_counter_mez; h_reg_counter=1; h_reg_real=h_reg_counter_mez*h; // real sampling period // reset of the system state variables for (tmp_i=0;tmp_i<9;tmp_i++) x[tmp_i]=0.; // emulation of the first measure Isx=0.;Isy=0.;theta=x[3];speed=x[2]; // === init of particular modules of simulator === // PWM init smer=-1; smer2=-1; citac=0; citac2=abs(0-(int)(DT/h)); //VS: oprava, je to spravne? citac_PR=h_reg_counter_mez; DT_counter_mez = (int)(DT/h); // first interrupt occur after first period match => add 1 to both counter registers citac++;smer=1; citac2--; modulace=0; // THIPWM if (modulace==1) U_modulace=Ucn/sqrt(3.); else U_modulace=Ucn/2.; // PMSM model init dIsx=0;dIsx1=0;dIsx2=0;dIsx3=0;dIsy=0;dIsy1=0;dIsy2=0;dIsy3=0; dTheta=0;dTheta1=0;dTheta2=0;dTheta3=0; dw=0;dw1=0;dw2=0;dw3=0; init_regulace(Ls,Fmag,kp,p,h_reg_real); // !!d!! // fdebug=fopen("data_debug.txt","w"); } static void pwm(unsigned int mod) // mod ... mod=0 - sinusoidal PWM; mod=1 - PWM with injected 3rd harmonic { unsigned int i; double iabc[3], ur[3],ustr[3],ua,ub,uc; double dtr[3],dd[3]; double Um, beta; double U3; double up, up2; Um=*u; beta=*(u+1); // emulation of carrier - timer up=((double)citac/citac_PR-0.5)*Ucn; iabc[0]=*x; iabc[1]=(-*x+sqrt(3.)**(x+1))/2.; iabc[2]=(-*x-sqrt(3.)**(x+1))/2.; if (mod==0) // sin. PWM { ur[0]=Um*cos(beta); ur[1]=Um*cos(beta-2./3.*M_PI); ur[2]=Um*cos(beta+2./3.*M_PI); } else // PWM with injected 3rd harmonic { U3=0.17*cos(3.*beta); ur[0]=Um*(cos(beta)-U3); ur[1]=Um*(cos(beta-2./3.*M_PI)-U3); ur[2]=Um*(cos(beta+2./3.*M_PI)-U3); } for (i=0;i<3;i++) { dtr[i]=ubytek(fabs(iabc[i])); dd[i]=dtr[i]*.73; } // mitigation of the voltage drops /* for (i=0;i<3;i++) { dtr[i]=0.; dd[i]=0.; } /**/ // PWM compare emulation for (i=0;i<3;i++) if (ur[i]>up) ureq[i]=1; else ureq[i]=-1; // First entrace into PWM - actual switching combination is initiated with required switching state if (start_pwm == 1) { for (i=0;i<3;i++) uact[i]=ureq[i]; start_pwm=0; } // Dead-time effect has no impact on switching combination, when switching from transistor to diode for (i=0;i<3;i++) { if ((iabc[i]>0.5) && (uact[i]==1)) uact[i]=ureq[i]; if ((iabc[i]<-0.5) && (uact[i]==-1)) uact[i]=ureq[i]; } /**/ /* for (i=0;i<3;i++) uact[i]=ureq[i];*/ // Dead-time effect emulation for (i=0;i<3;i++) if ((uact[i]!=ureq[i]) && (DT_counter[i]0) if (uact[i]==1) ustr[i]-=dtr[i]; else ustr[i]-=dd[i]; else if (uact[i]==-1) ustr[i]+=dtr[i]; else ustr[i]+=dd[i]; /**/ // phase voltages ua=(2.*ustr[0]-ustr[1]-ustr[2])/3.; ub=(2.*ustr[1]-ustr[0]-ustr[2])/3.; uc=(2.*ustr[2]-ustr[0]-ustr[1])/3.; // voltage vector in stationary reference frame (x,y) *us=(2.*ua-ub-uc)/3.; *(us+1)=(ub-uc)/sqrt(3.); // sinusoidal inverter!!!! // *us=ur[0]; // *(us+1)=(ur[1]-ur[2])/sqrt(3.); // emulation of DSP timers if ((citac==citac_PR)||(citac==0)) { smer*=-1; // calculation of stator voltage components mean values usx_av=h/h_reg*sum_usx_av; usy_av=h/h_reg*sum_usy_av; // reset of sum accumulators sum_usx_av=0.; sum_usy_av=0.; // stator current components mean values - reference frame (alfa, beta) isx_av=h/h_reg*sum_isx_av; isy_av=h/h_reg*sum_isy_av; // reset of sum accumulators sum_isx_av=0.; sum_isy_av=0.; } if ((citac2==citac_PR)||(citac2==0)) smer2*=-1; citac+=smer; citac2+=smer2; // calculation of stator voltage components mean values - sum sum_usx_av+=*us; sum_usy_av+=*(us+1); // stator voltage components filtering //if (start_filter==1) usxf+=(*us-usxf)*h/h_reg; usyf+=(*(us+1)-usyf)*h/h_reg; // stator current components mean values - reference frame (alfa, beta) sum_isx_av+=*x; sum_isy_av+=*(x+1); debug_pwm = ur[0]; // !!!! // !!d!! // fprintf(fdebug,"%f %f %f \n",ustr[0],*us,x[0]); } static double ubytek(double I) { unsigned int ii; double delta_u; ii=0; while ((*(va_char+ii)4 ... Adams of 4th order { double usx, usy; usx=*us; usy=*(us+1); dIsx=-Rs/Ls*x[0]+Fmag/Ls*x[2]*sin(x[3])+usx/Ls; dIsy=-Rs/Ls*x[1]-Fmag/Ls*x[2]*cos(x[3])+usy/Ls; dTheta=x[2]; if (J>0) dw=kp*p*p*Fmag/J*(x[1]*cos(x[3])-x[0]*sin(x[3]))-Bf/J*x[2]-p/J*x[8]; else dw=0; // integration if (mod<5) // Euler { x[0]+=dIsx*h; x[1]+=dIsy*h; x[2]+=dw*h; x[3]+=dTheta*h; } else // Adams (4th order) { x[0]+=h/24.*(55.*dIsx-59.*dIsx1+37.*dIsx2-9.*dIsx3); x[1]+=h/24.*(55.*dIsy-59.*dIsy1+37.*dIsy2-9.*dIsy3); x[2]+=h/24.*(55.*dw-59.*dw1+37.*dw2-9.*dw3); x[3]+=h/24.*(55.*dTheta-59.*dTheta1+37.*dTheta2-9.*dTheta3); } // saturation of theta to (-pi,pi) if (x[3]>M_PI) x[3]-=(2*M_PI); if (x[3]<-M_PI) x[3]+=(2*M_PI); // diff. shift - Adams dIsx3=dIsx2;dIsx2=dIsx1;dIsx1=dIsx; dIsy3=dIsy2;dIsy2=dIsy1;dIsy1=dIsy; dTheta3=dTheta2;dTheta2=dTheta1;dTheta1=dTheta; dw3=dw2;dw2=dw1;dw1=dw; // calculation of Isd, Isq x[6]=x[0]*cos(x[3])+x[1]*sin(x[3]); // Isd x[7]=x[1]*cos(x[3])-x[0]*sin(x[3]); // Isq // Fsd ... d-component of stator flux x[5]=Ls*x[6]+Fmag; // Torque x[4]=kp*p*Fmag*(x[1]*cos(x[3])-x[0]*sin(x[3])); } ////////////////////////////////////////////////////////////////////////////////////////////////////// void pmsmsim_step(double Ww, double Mz) // you must link array KalmanObs[] to EKF modul { double Umk, ub, uc; // while (t<=t_end) { pwm(modulace); // *us=KalmanObs[0]; *(us+1)=KalmanObs[1]; // *us=ualfa; *(us+1)=ubeta; //Mz x[8]= Mz; pmsm_model(5); if (h_reg_counter>=h_reg_counter_mez) // pocatek ISR { // voltages and measured currents for EKF // Umk=*u*Uc/Ucn; // ualfa=Umk*cos(*(u+1)); // ub=Umk*cos(*(u+1)-2./3.*M_PI); KalmanObs[0]=ualfa; //debug_pwm; // usx //KalmanObs[1]=(ualfa+2.*ub)/sqrt(3.); // usy KalmanObs[1]=ubeta; // usy // real sampling - considered transport delay equal to the sampling period /* KalmanObs[2]=Isx; KalmanObs[3]=Isy;*/ // ideal sampling KalmanObs[2]=x[0]; KalmanObs[3]=x[1]; // diagnostic - mean values of stator voltage components - pwm() KalmanObs[4]=usx_av; KalmanObs[5]=usy_av; KalmanObs[6]=usxf; KalmanObs[7]=usyf; KalmanObs[8]=isx_av; KalmanObs[9]=isy_av; vektor_regulace(0,0,Urm_max,Ww,u,Isx,Isy,theta,speed,U_modulace,Uc,Ucn,REZIM_REGULACE); // rezim=1 ... reg. rychlosti, rezim=0 ... reg. momentu // rezim=2 ... Iqw=sqrt(Imax^2-Idw^2) /* *u=2*15.0; *(u+1)+=2*0.00157;*/ // emulation of the real sampling of A/D converter Isx=x[0];Isy=x[1];speed=x[2];theta=x[3]; // include ideal commanded stator voltage Umk=*u*Uc/Ucn;// !!!! ualfa=Umk*cos(*(u+1)); // usx = usa ub=Umk*cos(*(u+1)-2./3.*M_PI); ubeta=(ualfa+2.*ub)/sqrt(3.); // usy // uc=-ualfa-ub; // ubeta=(ub-uc)/sqrt(3.); h_reg_counter=0; } t+=h; h_reg_counter++; } } void pmsmsim_noreg_step(double ua, double ub) // you must link array KalmanObs[] to EKF modul { double kor_Uc; *u=sqrt(ua*ua+ub*ub); *(u+1)=uhel(ua,ub); /* *u=5.0; *(u+1)+=0.00157;*/ // uprava velikosti vzhledem k Uc!=Ucn // kor_Uc=Ucn/230.; // *u*=kor_Uc; /**/ pwm(modulace); // *us=*u*cos(*(u+1)); // *(us+1)=*u*sin(*(u+1));; pmsm_model(5); // TODO - check ZP double Umk=*u*Uc/Ucn;// !!!! ualfa=Umk*cos(*(u+1)); // usx = usa ub=Umk*cos(*(u+1)-2./3.*M_PI); ubeta=(ualfa+2.*ub)/sqrt(3.); // usy // KalmanObs[0]=Umk*cos(*(u+1)); // usx = usa // KalmanObs[1]=(KalmanObs[0]+2.*ub)/sqrt(3.); // usy KalmanObs[0]=ualfa;//Umk*cos(*(u+1)); // usx = usa KalmanObs[1]=ubeta;//(KalmanObs[0]+2.*Umk*cos(*(u+1)-2./3.*M_PI))/sqrt(3.); // usy KalmanObs[2]=x[0]; KalmanObs[3]=x[1]; // diagnostic - mean values of stator voltage components - pwm() KalmanObs[4]=usx_av; KalmanObs[5]=usy_av; KalmanObs[6]=usxf; KalmanObs[7]=usyf; t+=h; } ////////////////////////////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////////////////////////////// // for mexfile void pmsmsim_fill_parameters(double x_out[10]){ x_out[0]= Rs; x_out[1]= Ls; x_out[2]= Fmag; x_out[3]= Bf; x_out[4]= p; x_out[5]= kp; x_out[6]= J; x_out[7]= Uc; x_out[8]= DT; x_out[9]= h; } void pmsmsim_fill_xy(double xout[9], double yout[6]){ for (int i=0;i<9;i++){ xout[i]=x[i]; } for (int i=0;i<6;i++){ yout[i]=KalmanObs[i]; } } double pmsmsim_get_t() { return t; }