[976] | 1 | |
---|
| 2 | /*! |
---|
| 3 | \file |
---|
| 4 | \brief Robust |
---|
| 5 | \author Vasek Smidl |
---|
| 6 | |
---|
| 7 | */ |
---|
| 8 | |
---|
[1337] | 9 | #include "estim/arx.h" |
---|
[976] | 10 | #include "robustlib.h" |
---|
[1216] | 11 | #include <vector> |
---|
[1284] | 12 | #include <iostream> |
---|
[1282] | 13 | #include <fstream> |
---|
[1338] | 14 | #include <itpp/itsignal.h> |
---|
[1358] | 15 | #include <windows.h> |
---|
| 16 | #include "DDEClient.h" |
---|
| 17 | #include <conio.h> |
---|
[1282] | 18 | |
---|
[1358] | 19 | |
---|
[1208] | 20 | using namespace itpp; |
---|
[1337] | 21 | using namespace bdm; |
---|
[976] | 22 | |
---|
[1275] | 23 | const int emlig_size = 2; |
---|
[1357] | 24 | const int utility_constant = 5; |
---|
[1268] | 25 | |
---|
[1272] | 26 | |
---|
[976] | 27 | int main ( int argc, char* argv[] ) { |
---|
| 28 | |
---|
[1337] | 29 | itpp::Laplace_RNG LapRNG = Laplace_RNG(); |
---|
| 30 | |
---|
[1358] | 31 | WORD wConvNo; |
---|
| 32 | char szType[] = "request"; |
---|
| 33 | char szData[21]; |
---|
| 34 | char szItem[] = "EURUSD"; |
---|
| 35 | char szService[] = "MT4"; |
---|
| 36 | char szTopic[] = "BID"; |
---|
| 37 | char szFormat[] = "CF_TEXT"; |
---|
| 38 | DWORD dwTimeout = 0; |
---|
| 39 | //char szAccess[] = "string"; |
---|
| 40 | |
---|
| 41 | if(!DCInit()) |
---|
| 42 | { |
---|
| 43 | cout << "DDE doesn't work." << endl; |
---|
| 44 | } |
---|
| 45 | else |
---|
| 46 | { |
---|
| 47 | // The following if-block shows a complete conversation with a |
---|
| 48 | // single transaction. You therefore do not need to free any memory |
---|
| 49 | // explicitly. |
---|
| 50 | |
---|
| 51 | // connect to server |
---|
| 52 | if (!DCConnect(&wConvNo,szService, szTopic)) |
---|
| 53 | { |
---|
| 54 | cout << "Couldn't connect DDE." << endl; |
---|
| 55 | } |
---|
| 56 | else |
---|
| 57 | { |
---|
| 58 | // do synchronous request transaction, wait max. 1000 ms, |
---|
| 59 | // return data as string |
---|
| 60 | if(!DCRequestString(wConvNo,szItem,100000)) |
---|
| 61 | { |
---|
| 62 | cout << "No data available." << endl; |
---|
| 63 | } |
---|
| 64 | else |
---|
| 65 | { |
---|
| 66 | if(!DCAsynchTransactionCompleted(wConvNo,DCDA[wConvNo]->dwTransID,true)) |
---|
| 67 | { |
---|
| 68 | cout << "Asynchronous transaction error." << endl; |
---|
| 69 | } |
---|
| 70 | else |
---|
| 71 | { |
---|
| 72 | // output data to console if transaction complete |
---|
| 73 | // DCDA[wConvNo]->pszData is the pointer to the data string |
---|
| 74 | cprintf(DCDA[wConvNo]->pszData); |
---|
| 75 | DCFreeDdeMem(wConvNo); |
---|
| 76 | } |
---|
| 77 | } |
---|
| 78 | // end conversation |
---|
| 79 | if(!DCDisconnect(wConvNo)) |
---|
| 80 | { |
---|
| 81 | cout << "Couldn't disconnect DDE." << endl; |
---|
| 82 | } |
---|
| 83 | } |
---|
| 84 | } |
---|
| 85 | |
---|
[1300] | 86 | /* |
---|
[1301] | 87 | // EXPERIMENT: 100 AR model generated time series of length of 30 from y_t=0.95*y_(t-1)+0.05*y_(t-2)+0.2*e_t, |
---|
| 88 | // where e_t is normally, student(4) and cauchy distributed are tested using robust AR model, to obtain the |
---|
| 89 | // variance of location parameter estimators and compare it to the classical setup. |
---|
[1282] | 90 | vector<vector<vector<string>>> string_lists; |
---|
| 91 | string_lists.push_back(vector<vector<string>>()); |
---|
| 92 | string_lists.push_back(vector<vector<string>>()); |
---|
| 93 | string_lists.push_back(vector<vector<string>>()); |
---|
[1186] | 94 | |
---|
[1282] | 95 | char* file_strings[3] = {"c:\\ar_normal.txt", "c:\\ar_student.txt", "c:\\ar_cauchy.txt"}; |
---|
[1268] | 96 | |
---|
[1282] | 97 | |
---|
| 98 | for(int i = 0;i<3;i++) |
---|
| 99 | { |
---|
| 100 | ifstream myfile(file_strings[i]); |
---|
| 101 | if (myfile.is_open()) |
---|
| 102 | { |
---|
| 103 | while ( myfile.good() ) |
---|
| 104 | { |
---|
| 105 | string line; |
---|
| 106 | getline(myfile,line); |
---|
| 107 | |
---|
| 108 | vector<string> parsed_line; |
---|
| 109 | while(line.find(',') != string::npos) |
---|
| 110 | { |
---|
| 111 | int loc = line.find(','); |
---|
| 112 | parsed_line.push_back(line.substr(0,loc)); |
---|
| 113 | line.erase(0,loc+1); |
---|
| 114 | } |
---|
| 115 | |
---|
| 116 | string_lists[i].push_back(parsed_line); |
---|
| 117 | } |
---|
| 118 | myfile.close(); |
---|
| 119 | } |
---|
| 120 | } |
---|
| 121 | |
---|
| 122 | for(int j = 0;j<string_lists.size();j++) |
---|
| 123 | { |
---|
[1301] | 124 | |
---|
[1284] | 125 | for(int i = 0;i<string_lists[j].size()-1;i++) |
---|
[1282] | 126 | { |
---|
| 127 | vector<vec> conditions; |
---|
[1301] | 128 | //emlig* emliga = new emlig(2); |
---|
| 129 | RARX* my_rarx = new RARX(2,30); |
---|
| 130 | |
---|
[1282] | 131 | for(int k = 1;k<string_lists[j][i].size();k++) |
---|
| 132 | { |
---|
| 133 | vec condition; |
---|
| 134 | //condition.ins(0,1); |
---|
| 135 | condition.ins(0,string_lists[j][i][k]); |
---|
| 136 | conditions.push_back(condition); |
---|
| 137 | |
---|
| 138 | //cout << "orig:" << condition << endl; |
---|
| 139 | |
---|
| 140 | if(conditions.size()>1) |
---|
| 141 | { |
---|
| 142 | conditions[k-2].ins(0,string_lists[j][i][k]); |
---|
| 143 | |
---|
| 144 | } |
---|
| 145 | |
---|
| 146 | if(conditions.size()>2) |
---|
| 147 | { |
---|
| 148 | conditions[k-3].ins(0,string_lists[j][i][k]); |
---|
| 149 | |
---|
| 150 | //cout << "modi:" << conditions[k-3] << endl; |
---|
| 151 | |
---|
[1301] | 152 | my_rarx->bayes(conditions[k-3]); |
---|
[1282] | 153 | |
---|
[1299] | 154 | |
---|
| 155 | //if(k>5) |
---|
| 156 | //{ |
---|
| 157 | // cout << "MaxLik coords:" << emliga->minimal_vertex->get_coordinates() << endl; |
---|
| 158 | //} |
---|
| 159 | |
---|
| 160 | } |
---|
| 161 | |
---|
[1282] | 162 | } |
---|
| 163 | |
---|
| 164 | //emliga->step_me(0); |
---|
[1301] | 165 | /* |
---|
[1284] | 166 | ofstream myfile; |
---|
| 167 | myfile.open("c:\\robust_ar1.txt",ios::app); |
---|
[1301] | 168 | myfile << my_rarx->minimal_vertex->get_coordinates()[0] << ";"; |
---|
[1284] | 169 | myfile.close(); |
---|
| 170 | |
---|
| 171 | myfile.open("c:\\robust_ar2.txt",ios::app); |
---|
| 172 | myfile << emliga->minimal_vertex->get_coordinates()[1] << ";"; |
---|
| 173 | myfile.close(); |
---|
[1301] | 174 | |
---|
[1284] | 175 | |
---|
[1282] | 176 | cout << "MaxLik coords:" << emliga->minimal_vertex->get_coordinates() << endl; |
---|
| 177 | cout << "Step: " << i << endl; |
---|
| 178 | } |
---|
| 179 | |
---|
| 180 | cout << "One experiment finished." << endl; |
---|
[1284] | 181 | |
---|
| 182 | ofstream myfile; |
---|
| 183 | myfile.open("c:\\robust_ar1.txt",ios::app); |
---|
| 184 | myfile << endl; |
---|
| 185 | myfile.close(); |
---|
| 186 | |
---|
| 187 | myfile.open("c:\\robust_ar2.txt",ios::app); |
---|
| 188 | myfile << endl; |
---|
| 189 | myfile.close(); |
---|
[1301] | 190 | }*/ |
---|
| 191 | |
---|
| 192 | |
---|
| 193 | // EXPERIMENT: A moving window estimation and prediction of RARX is tested on data generated from |
---|
| 194 | // y_t=0.95*y_(t-1)+0.05*y_(t-2)+0.2*e_t, where e_t is normally, student(4) and cauchy distributed. It |
---|
| 195 | // can be compared to the classical setup. |
---|
| 196 | |
---|
| 197 | |
---|
| 198 | vector<vector<string>> strings; |
---|
| 199 | |
---|
[1357] | 200 | char* file_strings[3] = {"c:\\dataADClosePercDiff","c:\\ar_student_single","c:\\ar_cauchy_single"}; |
---|
[1301] | 201 | |
---|
| 202 | for(int i = 0;i<3;i++) |
---|
| 203 | { |
---|
[1337] | 204 | char dfstring[80]; |
---|
| 205 | strcpy(dfstring,file_strings[i]); |
---|
| 206 | strcat(dfstring,".txt"); |
---|
| 207 | |
---|
| 208 | ifstream myfile(dfstring); |
---|
[1301] | 209 | if (myfile.is_open()) |
---|
| 210 | { |
---|
| 211 | string line; |
---|
| 212 | getline(myfile,line); |
---|
| 213 | |
---|
| 214 | vector<string> parsed_line; |
---|
| 215 | while(line.find(',') != string::npos) |
---|
| 216 | { |
---|
| 217 | int loc = line.find(','); |
---|
| 218 | parsed_line.push_back(line.substr(0,loc)); |
---|
| 219 | line.erase(0,loc+1); |
---|
| 220 | } |
---|
| 221 | |
---|
| 222 | strings.push_back(parsed_line); |
---|
| 223 | |
---|
| 224 | myfile.close(); |
---|
| 225 | } |
---|
[1282] | 226 | } |
---|
[1357] | 227 | |
---|
[1282] | 228 | |
---|
[1357] | 229 | |
---|
[1301] | 230 | for(int j = 0;j<strings.size();j++) |
---|
| 231 | { |
---|
| 232 | vector<vec> conditions; |
---|
| 233 | //emlig* emliga = new emlig(2); |
---|
[1358] | 234 | RARX* my_rarx = new RARX(2,10,false); |
---|
[1337] | 235 | |
---|
[1338] | 236 | |
---|
[1337] | 237 | mat V0 = 0.0001 * eye ( 3 ); |
---|
[1349] | 238 | ARX* my_arx = new ARX(0.85); |
---|
[1337] | 239 | my_arx->set_statistics ( 1, V0 ); //nu is default (set to have finite moments) |
---|
| 240 | my_arx->set_constant ( false ); |
---|
| 241 | my_arx->validate(); |
---|
[1338] | 242 | |
---|
[1301] | 243 | |
---|
[1338] | 244 | for(int k = 1;k<strings[j].size();k++) |
---|
[1301] | 245 | { |
---|
| 246 | vec condition; |
---|
| 247 | //condition.ins(0,1); |
---|
| 248 | condition.ins(0,strings[j][k]); |
---|
| 249 | conditions.push_back(condition); |
---|
| 250 | |
---|
| 251 | //cout << "orig:" << condition << endl; |
---|
| 252 | |
---|
| 253 | if(conditions.size()>1) |
---|
| 254 | { |
---|
| 255 | conditions[k-2].ins(0,strings[j][k]); |
---|
| 256 | |
---|
| 257 | } |
---|
| 258 | |
---|
| 259 | if(conditions.size()>2) |
---|
| 260 | { |
---|
| 261 | conditions[k-3].ins(0,strings[j][k]); |
---|
| 262 | |
---|
[1349] | 263 | // cout << "Condition:" << conditions[k-3] << endl; |
---|
[1301] | 264 | |
---|
| 265 | my_rarx->bayes(conditions[k-3]); |
---|
[1338] | 266 | //my_rarx->posterior->step_me(1); |
---|
[1337] | 267 | |
---|
| 268 | vec cond_vec; |
---|
| 269 | cond_vec.ins(0,conditions[k-3][0]); |
---|
| 270 | |
---|
[1338] | 271 | my_arx->bayes(cond_vec,conditions[k-3].right(2)); |
---|
[1301] | 272 | |
---|
| 273 | |
---|
[1346] | 274 | if(k>8) |
---|
[1301] | 275 | { |
---|
[1324] | 276 | //my_rarx->posterior->step_me(0); |
---|
| 277 | |
---|
[1346] | 278 | //mat samples = my_rarx->posterior->sample_mat(10); |
---|
[1343] | 279 | |
---|
[1346] | 280 | pair<vec,mat> imp_samples = my_rarx->posterior->importance_sample(1000); |
---|
[1343] | 281 | |
---|
[1346] | 282 | //cout << imp_samples.first << endl; |
---|
[1336] | 283 | |
---|
[1337] | 284 | vec sample_prediction; |
---|
[1358] | 285 | vec averaged_params = zeros(imp_samples.second.rows()); |
---|
[1346] | 286 | for(int t = 0;t<imp_samples.first.size();t++) |
---|
[1337] | 287 | { |
---|
| 288 | vec lap_sample = conditions[k-3].left(2); |
---|
[1346] | 289 | //lap_sample.ins(lap_sample.size(),1.0); |
---|
[1337] | 290 | |
---|
| 291 | lap_sample.ins(0,LapRNG()); |
---|
| 292 | |
---|
[1346] | 293 | sample_prediction.ins(0,lap_sample*imp_samples.second.get_col(t)); |
---|
[1358] | 294 | |
---|
| 295 | averaged_params += imp_samples.first[t]*imp_samples.second.get_col(t); |
---|
[1337] | 296 | } |
---|
| 297 | |
---|
[1358] | 298 | averaged_params = averaged_params*(1/(imp_samples.first*ones(imp_samples.first.size()))); |
---|
| 299 | |
---|
| 300 | // cout << "Averaged estimated parameters: " << averaged_params << endl; |
---|
[1338] | 301 | |
---|
[1358] | 302 | vec sample_pow = sample_prediction; |
---|
[1343] | 303 | |
---|
| 304 | // cout << sample_prediction << endl; |
---|
[1337] | 305 | vec poly_coefs; |
---|
[1346] | 306 | double prediction; |
---|
[1337] | 307 | bool stop_iteration = false; |
---|
[1343] | 308 | int en = 1; |
---|
[1337] | 309 | do |
---|
| 310 | { |
---|
[1346] | 311 | double poly_coef = imp_samples.first*sample_pow/(imp_samples.first*ones(imp_samples.first.size())); |
---|
[1337] | 312 | |
---|
[1346] | 313 | if(en==1) |
---|
| 314 | { |
---|
| 315 | prediction = poly_coef; |
---|
| 316 | } |
---|
| 317 | |
---|
[1343] | 318 | poly_coef = poly_coef*en*fact(utility_constant-2+en)/fact(utility_constant-2); |
---|
| 319 | |
---|
[1337] | 320 | if(abs(poly_coef)>numeric_limits<double>::epsilon()) |
---|
| 321 | { |
---|
| 322 | sample_pow = elem_mult(sample_pow,sample_prediction); |
---|
[1343] | 323 | poly_coefs.ins(0,pow(-1.0,en+1)*poly_coef); |
---|
[1337] | 324 | } |
---|
| 325 | else |
---|
| 326 | { |
---|
| 327 | stop_iteration = true; |
---|
| 328 | } |
---|
| 329 | |
---|
| 330 | en++; |
---|
[1343] | 331 | |
---|
| 332 | if(en>20) |
---|
| 333 | { |
---|
| 334 | stop_iteration = true; |
---|
| 335 | } |
---|
[1337] | 336 | } |
---|
| 337 | while(!stop_iteration); |
---|
| 338 | |
---|
[1343] | 339 | /* |
---|
| 340 | ofstream myfile_coef; |
---|
| 341 | |
---|
| 342 | myfile_coef.open("c:\\coefs.txt",ios::app); |
---|
| 343 | |
---|
| 344 | for(int t = 0;t<poly_coefs.size();t++) |
---|
| 345 | { |
---|
| 346 | myfile_coef << poly_coefs[t] << ","; |
---|
| 347 | } |
---|
| 348 | |
---|
| 349 | myfile_coef << endl; |
---|
| 350 | myfile_coef.close(); |
---|
| 351 | */ |
---|
| 352 | |
---|
[1349] | 353 | //cout << "Coefficients: " << poly_coefs << endl; |
---|
[1338] | 354 | |
---|
[1343] | 355 | /* |
---|
| 356 | vec bas_coef = vec("1.0 2.0 -8.0"); |
---|
| 357 | cout << "Coefs: " << bas_coef << endl; |
---|
| 358 | cvec actions2 = roots(bas_coef); |
---|
| 359 | cout << "Roots: " << actions2 << endl; |
---|
| 360 | */ |
---|
| 361 | |
---|
[1346] | 362 | |
---|
| 363 | |
---|
[1338] | 364 | cvec actions = roots(poly_coefs); |
---|
[1343] | 365 | |
---|
| 366 | |
---|
[1338] | 367 | bool is_max = false; |
---|
| 368 | for(int t = 0;t<actions.size();t++) |
---|
| 369 | { |
---|
[1343] | 370 | if(actions[t].imag() == 0) |
---|
[1338] | 371 | { |
---|
[1343] | 372 | double second_derivative = 0; |
---|
| 373 | for(int q = 1;q<poly_coefs.size();q++) |
---|
| 374 | { |
---|
| 375 | second_derivative+=poly_coefs[q]*pow(actions[t].real(),q-1)*q; |
---|
| 376 | } |
---|
| 377 | |
---|
| 378 | if(second_derivative<0) |
---|
| 379 | { |
---|
| 380 | cout << "Action:" << actions[t].real() << endl; |
---|
| 381 | |
---|
| 382 | is_max = true; |
---|
| 383 | } |
---|
[1338] | 384 | } |
---|
| 385 | } |
---|
[1301] | 386 | |
---|
[1338] | 387 | if(!is_max) |
---|
| 388 | { |
---|
| 389 | cout << "No maximum." << endl; |
---|
| 390 | } |
---|
| 391 | |
---|
| 392 | // cout << "MaxLik coords:" << my_rarx->posterior->minimal_vertex->get_coordinates() << endl; |
---|
| 393 | |
---|
[1346] | 394 | /* |
---|
[1337] | 395 | double prediction = 0; |
---|
| 396 | for(int s = 1;s<samples.rows();s++) |
---|
[1336] | 397 | { |
---|
| 398 | |
---|
[1346] | 399 | double avg_parameter = imp_samples.get_row(s)*ones(samples.cols())/samples.cols(); |
---|
[1337] | 400 | |
---|
| 401 | prediction += avg_parameter*conditions[k-3][s-1]; |
---|
| 402 | |
---|
[1336] | 403 | |
---|
[1337] | 404 | |
---|
| 405 | /* |
---|
[1336] | 406 | ofstream myfile; |
---|
| 407 | char fstring[80]; |
---|
| 408 | strcpy(fstring,file_strings[j]); |
---|
[1301] | 409 | |
---|
[1336] | 410 | char es[5]; |
---|
| 411 | strcat(fstring,itoa(s,es,10)); |
---|
| 412 | |
---|
| 413 | strcat(fstring,"_res.txt"); |
---|
| 414 | |
---|
| 415 | |
---|
| 416 | myfile.open(fstring,ios::app); |
---|
| 417 | |
---|
| 418 | //myfile << my_rarx->posterior->minimal_vertex->get_coordinates()[0]; |
---|
| 419 | myfile << avg_parameter; |
---|
| 420 | |
---|
| 421 | if(k!=strings[j].size()-1) |
---|
| 422 | { |
---|
| 423 | myfile << ","; |
---|
| 424 | } |
---|
| 425 | else |
---|
| 426 | { |
---|
| 427 | myfile << endl; |
---|
| 428 | } |
---|
| 429 | myfile.close(); |
---|
[1337] | 430 | */ |
---|
| 431 | |
---|
[1338] | 432 | |
---|
[1346] | 433 | //} |
---|
| 434 | |
---|
| 435 | // cout << "Prediction: "<< prediction << endl; |
---|
| 436 | |
---|
[1337] | 437 | enorm<ldmat>* pred_mat = my_arx->epredictor(conditions[k-3].left(2)); |
---|
| 438 | double prediction2 = pred_mat->mean()[0]; |
---|
[1338] | 439 | |
---|
[1337] | 440 | |
---|
| 441 | ofstream myfile; |
---|
| 442 | char fstring[80]; |
---|
[1338] | 443 | char f2string[80]; |
---|
[1337] | 444 | strcpy(fstring,file_strings[j]); |
---|
[1338] | 445 | strcpy(f2string,fstring); |
---|
[1337] | 446 | |
---|
| 447 | strcat(fstring,"pred.txt"); |
---|
[1338] | 448 | strcat(f2string,"2pred.txt"); |
---|
[1337] | 449 | |
---|
| 450 | |
---|
| 451 | myfile.open(fstring,ios::app); |
---|
| 452 | |
---|
[1338] | 453 | // myfile << my_rarx->posterior->minimal_vertex->get_coordinates()[0]; |
---|
[1337] | 454 | myfile << prediction; |
---|
| 455 | |
---|
| 456 | if(k!=strings[j].size()-1) |
---|
| 457 | { |
---|
| 458 | myfile << ","; |
---|
| 459 | } |
---|
| 460 | else |
---|
| 461 | { |
---|
| 462 | myfile << endl; |
---|
| 463 | } |
---|
| 464 | myfile.close(); |
---|
| 465 | |
---|
[1338] | 466 | |
---|
[1337] | 467 | myfile.open(f2string,ios::app); |
---|
| 468 | myfile << prediction2; |
---|
| 469 | |
---|
| 470 | if(k!=strings[j].size()-1) |
---|
| 471 | { |
---|
| 472 | myfile << ","; |
---|
| 473 | } |
---|
| 474 | else |
---|
| 475 | { |
---|
| 476 | myfile << endl; |
---|
| 477 | } |
---|
| 478 | myfile.close(); |
---|
[1346] | 479 | //*/ |
---|
[1337] | 480 | |
---|
[1319] | 481 | } |
---|
[1301] | 482 | } |
---|
| 483 | |
---|
| 484 | //emliga->step_me(0); |
---|
| 485 | /* |
---|
| 486 | ofstream myfile; |
---|
| 487 | myfile.open("c:\\robust_ar1.txt",ios::app); |
---|
| 488 | myfile << my_rarx->minimal_vertex->get_coordinates()[0] << ";"; |
---|
| 489 | myfile.close(); |
---|
| 490 | |
---|
| 491 | myfile.open("c:\\robust_ar2.txt",ios::app); |
---|
| 492 | myfile << emliga->minimal_vertex->get_coordinates()[1] << ";"; |
---|
| 493 | myfile.close(); |
---|
| 494 | |
---|
| 495 | |
---|
| 496 | cout << "MaxLik coords:" << emliga->minimal_vertex->get_coordinates() << endl; |
---|
| 497 | cout << "Step: " << i << endl;*/ |
---|
| 498 | } |
---|
[1337] | 499 | |
---|
| 500 | |
---|
[1301] | 501 | } |
---|
[1337] | 502 | |
---|
| 503 | |
---|
| 504 | // EXPERIMENT: One step ahead price prediction. Comparison of classical and robust model using optimal trading |
---|
| 505 | // with maximization of logarithm of one-step ahead wealth. |
---|
| 506 | |
---|
| 507 | |
---|
[1301] | 508 | |
---|
| 509 | /* |
---|
| 510 | cout << "One experiment finished." << endl; |
---|
| 511 | |
---|
| 512 | ofstream myfile; |
---|
| 513 | myfile.open("c:\\robust_ar1.txt",ios::app); |
---|
| 514 | myfile << endl; |
---|
| 515 | myfile.close(); |
---|
| 516 | |
---|
| 517 | myfile.open("c:\\robust_ar2.txt",ios::app); |
---|
| 518 | myfile << endl; |
---|
| 519 | myfile.close();*/ |
---|
[1300] | 520 | |
---|
[1301] | 521 | |
---|
| 522 | //emlig* emlig1 = new emlig(emlig_size); |
---|
| 523 | |
---|
| 524 | //emlig1->step_me(0); |
---|
| 525 | //emlig* emlig2 = new emlig(emlig_size); |
---|
[1300] | 526 | |
---|
[1267] | 527 | /* |
---|
| 528 | emlig1->set_correction_factors(4); |
---|
[1266] | 529 | |
---|
[1267] | 530 | for(int j = 0;j<emlig1->correction_factors.size();j++) |
---|
| 531 | { |
---|
| 532 | for(set<my_ivec>::iterator vec_ref = emlig1->correction_factors[j].begin();vec_ref!=emlig1->correction_factors[j].end();vec_ref++) |
---|
| 533 | { |
---|
[1268] | 534 | cout << j << " "; |
---|
| 535 | |
---|
[1267] | 536 | for(int i=0;i<(*vec_ref).size();i++) |
---|
| 537 | { |
---|
| 538 | cout << (*vec_ref)[i]; |
---|
| 539 | } |
---|
| 540 | |
---|
| 541 | cout << endl; |
---|
| 542 | } |
---|
[1268] | 543 | }*/ |
---|
| 544 | |
---|
[1301] | 545 | /* |
---|
[1300] | 546 | vec condition5 = "1.0 1.0 1.01";//"-0.3 1.7 1.5"; |
---|
| 547 | |
---|
[1299] | 548 | emlig1->add_condition(condition5); |
---|
[1301] | 549 | //emlig1->step_me(0); |
---|
| 550 | |
---|
| 551 | |
---|
| 552 | vec condition1a = "-1.0 1.02 0.5"; |
---|
[1300] | 553 | //vec condition1b = "1.0 1.0 1.01"; |
---|
[1301] | 554 | emlig1->add_condition(condition1a); |
---|
[1300] | 555 | //emlig2->add_condition(condition1b); |
---|
[1267] | 556 | |
---|
[1301] | 557 | vec condition2a = "-0.3 1.7 1.5"; |
---|
[1300] | 558 | //vec condition2b = "-1.0 1.0 1.0"; |
---|
[1301] | 559 | emlig1->add_condition(condition2a); |
---|
[1300] | 560 | //emlig2->add_condition(condition2b); |
---|
[1234] | 561 | |
---|
[1301] | 562 | vec condition3a = "0.5 -1.01 1.0"; |
---|
[1300] | 563 | //vec condition3b = "0.5 -1.01 1.0"; |
---|
[1280] | 564 | |
---|
[1301] | 565 | emlig1->add_condition(condition3a); |
---|
[1300] | 566 | //emlig2->add_condition(condition3b); |
---|
[1280] | 567 | |
---|
[1301] | 568 | vec condition4a = "-0.5 -1.0 1.0"; |
---|
[1300] | 569 | //vec condition4b = "-0.5 -1.0 1.0"; |
---|
| 570 | |
---|
[1301] | 571 | emlig1->add_condition(condition4a); |
---|
[1300] | 572 | //cout << "************************************************" << endl; |
---|
| 573 | //emlig2->add_condition(condition4b); |
---|
| 574 | //cout << "************************************************" << endl; |
---|
| 575 | |
---|
[1299] | 576 | //cout << emlig1->minimal_vertex->get_coordinates(); |
---|
[1300] | 577 | |
---|
[1301] | 578 | //emlig1->remove_condition(condition3a); |
---|
| 579 | //emlig1->step_me(0); |
---|
| 580 | //emlig1->remove_condition(condition2a); |
---|
| 581 | //emlig1->remove_condition(condition1a); |
---|
| 582 | //emlig1->remove_condition(condition5); |
---|
| 583 | |
---|
[1275] | 584 | |
---|
[1299] | 585 | //emlig1->step_me(0); |
---|
| 586 | //emlig2->step_me(0); |
---|
| 587 | |
---|
[1282] | 588 | |
---|
| 589 | // DA SE POUZIT PRO VYPIS DO SOUBORU |
---|
[1275] | 590 | // emlig1->step_me(0); |
---|
| 591 | |
---|
| 592 | //emlig1->remove_condition(condition1); |
---|
| 593 | |
---|
[1301] | 594 | |
---|
[1275] | 595 | |
---|
| 596 | |
---|
[1301] | 597 | |
---|
[1275] | 598 | /* |
---|
[1282] | 599 | for(int i = 0;i<100;i++) |
---|
[1219] | 600 | { |
---|
[1282] | 601 | cout << endl << "Step:" << i << endl; |
---|
[1208] | 602 | |
---|
[1268] | 603 | double condition[emlig_size+1]; |
---|
[1220] | 604 | |
---|
[1268] | 605 | for(int k = 0;k<=emlig_size;k++) |
---|
| 606 | { |
---|
[1272] | 607 | condition[k] = (rand()-RAND_MAX/2)/1000.0; |
---|
[1268] | 608 | } |
---|
| 609 | |
---|
[1216] | 610 | |
---|
[1268] | 611 | vec* condition_vec = new vec(condition,emlig_size+1); |
---|
[1219] | 612 | emlig1->add_condition(*condition_vec); |
---|
[1271] | 613 | |
---|
[1272] | 614 | /* |
---|
| 615 | for(polyhedron* toprow_ref = emlig1->statistic.rows[emlig_size]; toprow_ref != emlig1->statistic.end_poly; toprow_ref = toprow_ref->next_poly) |
---|
| 616 | { |
---|
| 617 | cout << ((toprow*)toprow_ref)->probability << endl; |
---|
| 618 | } |
---|
| 619 | */ |
---|
[1275] | 620 | /* |
---|
[1271] | 621 | cout << emlig1->statistic_rowsize(emlig_size) << endl << endl; |
---|
[1268] | 622 | |
---|
[1272] | 623 | /* |
---|
[1271] | 624 | if(i-emlig1->number_of_parameters >= 0) |
---|
| 625 | { |
---|
| 626 | pause(30); |
---|
| 627 | } |
---|
[1272] | 628 | */ |
---|
[1219] | 629 | |
---|
[1271] | 630 | // emlig1->step_me(i); |
---|
[1219] | 631 | |
---|
[1272] | 632 | /* |
---|
[1219] | 633 | vector<int> sizevector; |
---|
| 634 | for(int s = 0;s<=emlig1->number_of_parameters;s++) |
---|
| 635 | { |
---|
| 636 | sizevector.push_back(emlig1->statistic_rowsize(s)); |
---|
| 637 | } |
---|
[1272] | 638 | */ |
---|
[1275] | 639 | //} |
---|
| 640 | |
---|
[1219] | 641 | |
---|
| 642 | |
---|
| 643 | |
---|
| 644 | /* |
---|
| 645 | emlig1->step_me(1); |
---|
| 646 | |
---|
| 647 | vec condition = "2.0 0.0 1.0"; |
---|
| 648 | |
---|
[1208] | 649 | emlig1->add_condition(condition); |
---|
| 650 | |
---|
[1216] | 651 | vector<int> sizevector; |
---|
| 652 | for(int s = 0;s<=emlig1->number_of_parameters;s++) |
---|
| 653 | { |
---|
| 654 | sizevector.push_back(emlig1->statistic_rowsize(s)); |
---|
| 655 | } |
---|
| 656 | |
---|
[1219] | 657 | emlig1->step_me(2); |
---|
[1216] | 658 | |
---|
[1219] | 659 | condition = "2.0 1.0 0.0"; |
---|
[1216] | 660 | |
---|
| 661 | emlig1->add_condition(condition); |
---|
| 662 | |
---|
| 663 | sizevector.clear(); |
---|
| 664 | for(int s = 0;s<=emlig1->number_of_parameters;s++) |
---|
| 665 | { |
---|
| 666 | sizevector.push_back(emlig1->statistic_rowsize(s)); |
---|
| 667 | } |
---|
[1219] | 668 | */ |
---|
[1216] | 669 | |
---|
[976] | 670 | return 0; |
---|
| 671 | } |
---|
| 672 | |
---|
[1282] | 673 | |
---|