1 | |
---|
2 | /*! |
---|
3 | \file |
---|
4 | \brief Robust |
---|
5 | \author Vasek Smidl |
---|
6 | |
---|
7 | */ |
---|
8 | |
---|
9 | #include "estim/arx.h" |
---|
10 | #include "robustlib.h" |
---|
11 | #include <vector> |
---|
12 | #include <iostream> |
---|
13 | #include <fstream> |
---|
14 | #include <itpp/itsignal.h> |
---|
15 | #include "windows.h" |
---|
16 | #include "ddeml.h" |
---|
17 | #include "stdio.h" |
---|
18 | #include <time.h> |
---|
19 | |
---|
20 | //#include "DDEClient.h" |
---|
21 | //#include <conio.h> |
---|
22 | |
---|
23 | |
---|
24 | using namespace itpp; |
---|
25 | using namespace bdm; |
---|
26 | |
---|
27 | //const int emlig_size = 2; |
---|
28 | //const int utility_constant = 5; |
---|
29 | |
---|
30 | const int max_model_order = 2; |
---|
31 | const int data_count = 5; |
---|
32 | |
---|
33 | static vec avg_vec; |
---|
34 | |
---|
35 | HDDEDATA CALLBACK DdeCallback( |
---|
36 | UINT uType, // Transaction type. |
---|
37 | UINT uFmt, // Clipboard data format. |
---|
38 | HCONV hconv, // Handle to the conversation. |
---|
39 | HSZ hsz1, // Handle to a string. |
---|
40 | HSZ hsz2, // Handle to a string. |
---|
41 | HDDEDATA hdata, // Handle to a global memory object. |
---|
42 | DWORD dwData1, // Transaction-specific data. |
---|
43 | DWORD dwData2) // Transaction-specific data. |
---|
44 | { |
---|
45 | char * pData; |
---|
46 | DWORD data_len; |
---|
47 | |
---|
48 | switch (uType) |
---|
49 | { |
---|
50 | case XTYP_ADVDATA: |
---|
51 | |
---|
52 | if ( hdata == NULL ) |
---|
53 | cout << "No data in the message." << endl; |
---|
54 | else |
---|
55 | { |
---|
56 | pData = (char*)DdeAccessData( hdata, &data_len ); |
---|
57 | |
---|
58 | avg_vec.ins(0,atof(pData)); |
---|
59 | |
---|
60 | cout << pData << endl; |
---|
61 | |
---|
62 | DdeUnaccessData( hdata ); |
---|
63 | } |
---|
64 | } |
---|
65 | return (HDDEDATA) NULL; |
---|
66 | |
---|
67 | } |
---|
68 | |
---|
69 | |
---|
70 | |
---|
71 | void DDERequest(DWORD idInst, HCONV hConv, char* szItem) |
---|
72 | { |
---|
73 | HSZ hszItem = DdeCreateStringHandle(idInst, szItem, 0); |
---|
74 | HDDEDATA hData = DdeClientTransaction(NULL,0,hConv,hszItem,CF_TEXT, |
---|
75 | XTYP_ADVSTART,TIMEOUT_ASYNC , NULL); //TIMEOUT_ASYNC |
---|
76 | if (hData==NULL) |
---|
77 | { |
---|
78 | printf("Request failed: %s\n", szItem); |
---|
79 | } |
---|
80 | |
---|
81 | if (hData==0) |
---|
82 | { |
---|
83 | printf("Request failed: %s\n", szItem); |
---|
84 | } |
---|
85 | } |
---|
86 | |
---|
87 | DWORD WINAPI ThrdFunc( LPVOID n ) |
---|
88 | { |
---|
89 | return 0; |
---|
90 | } |
---|
91 | |
---|
92 | |
---|
93 | class model |
---|
94 | { |
---|
95 | public: |
---|
96 | list<pair<int,int>> ar_components; |
---|
97 | |
---|
98 | // Best thing would be to inherit the two models from a single souce, this is planned, but now structurally |
---|
99 | // problematic. |
---|
100 | RARX* my_rarx; |
---|
101 | ARXwin* my_arx; |
---|
102 | |
---|
103 | bool has_constant; |
---|
104 | int order; |
---|
105 | int window_size; |
---|
106 | int predicted_channel; |
---|
107 | int number_of_updates; |
---|
108 | double prior_lognc; |
---|
109 | vec lognc_history; |
---|
110 | mat* data_matrix; |
---|
111 | |
---|
112 | model(list<pair<int,int>> ar_components, |
---|
113 | bool robust, |
---|
114 | bool has_constant, |
---|
115 | int window_size, |
---|
116 | int predicted_channel, |
---|
117 | mat* data_matrix) |
---|
118 | { |
---|
119 | this->ar_components.insert(this->ar_components.begin(),ar_components.begin(),ar_components.end()); |
---|
120 | this->has_constant = has_constant; |
---|
121 | this->window_size = window_size; |
---|
122 | this->predicted_channel = predicted_channel; |
---|
123 | this->data_matrix = data_matrix; |
---|
124 | number_of_updates = 0; |
---|
125 | |
---|
126 | order = 0; |
---|
127 | for(list<pair<int,int>>::iterator ar_ref = ar_components.begin();ar_ref!=ar_components.end();ar_ref++) |
---|
128 | { |
---|
129 | if((*ar_ref).second > order) |
---|
130 | { |
---|
131 | order = (*ar_ref).second; |
---|
132 | } |
---|
133 | } |
---|
134 | |
---|
135 | if(robust) |
---|
136 | { |
---|
137 | if(has_constant) |
---|
138 | { |
---|
139 | my_rarx = new RARX(ar_components.size()+1,window_size,true); |
---|
140 | my_arx = NULL; |
---|
141 | } |
---|
142 | else |
---|
143 | { |
---|
144 | my_rarx = new RARX(ar_components.size(),window_size,false); |
---|
145 | my_arx = NULL; |
---|
146 | } |
---|
147 | |
---|
148 | prior_lognc = my_rarx->posterior->log_nc; |
---|
149 | } |
---|
150 | else |
---|
151 | { |
---|
152 | my_rarx = NULL; |
---|
153 | my_arx = new ARXwin(); |
---|
154 | mat V0; |
---|
155 | |
---|
156 | if(has_constant) |
---|
157 | { |
---|
158 | V0 = 0.001 * eye(ar_components.size()+2); |
---|
159 | V0(0,0) = 1; |
---|
160 | my_arx->set_constant(true); |
---|
161 | |
---|
162 | } |
---|
163 | else |
---|
164 | { |
---|
165 | |
---|
166 | V0 = 0.001 * eye(ar_components.size()+1); |
---|
167 | V0(0,0) = 1; |
---|
168 | my_arx->set_constant(false); |
---|
169 | |
---|
170 | } |
---|
171 | |
---|
172 | my_arx->set_statistics(1, V0); |
---|
173 | my_arx->set_parameters(window_size); |
---|
174 | my_arx->validate(); |
---|
175 | |
---|
176 | prior_lognc = my_arx->posterior().lognc(); |
---|
177 | } |
---|
178 | } |
---|
179 | |
---|
180 | void data_update(int time) |
---|
181 | { |
---|
182 | if(time > order) |
---|
183 | { |
---|
184 | vec data_vector; |
---|
185 | for(list<pair<int,int>>::iterator ar_iterator = ar_components.begin();ar_iterator!=ar_components.end();ar_iterator++) |
---|
186 | { |
---|
187 | data_vector.ins(data_vector.size(),(*data_matrix).get(ar_iterator->first,time-ar_iterator->second)); |
---|
188 | } |
---|
189 | |
---|
190 | // cout << "Update cond: " << data_vector << endl; |
---|
191 | |
---|
192 | double cur_lognc; |
---|
193 | if(my_rarx!=NULL) |
---|
194 | { |
---|
195 | data_vector.ins(0,(*data_matrix).get(predicted_channel,time)); |
---|
196 | my_rarx->bayes(data_vector); |
---|
197 | cur_lognc = my_rarx->posterior->log_nc; |
---|
198 | } |
---|
199 | else |
---|
200 | { |
---|
201 | vec pred_vec; |
---|
202 | pred_vec.ins(0,(*data_matrix).get(predicted_channel,time)); |
---|
203 | my_arx->bayes(pred_vec,data_vector); |
---|
204 | cur_lognc = my_arx->posterior().lognc(); |
---|
205 | } |
---|
206 | |
---|
207 | number_of_updates++; |
---|
208 | |
---|
209 | if(number_of_updates>window_size) |
---|
210 | { |
---|
211 | lognc_history.ins(lognc_history.size(),cur_lognc-prior_lognc); |
---|
212 | } |
---|
213 | } |
---|
214 | else |
---|
215 | { |
---|
216 | lognc_history.ins(lognc_history.size(),0); |
---|
217 | } |
---|
218 | } |
---|
219 | |
---|
220 | pair<vec,vec> predict(int sample_size, int time, itpp::Laplace_RNG* LapRNG) |
---|
221 | { |
---|
222 | if(time > order) |
---|
223 | { |
---|
224 | vec condition_vector; |
---|
225 | for(list<pair<int,int>>::iterator ar_iterator = ar_components.begin();ar_iterator!=ar_components.end();ar_iterator++) |
---|
226 | { |
---|
227 | condition_vector.ins(condition_vector.size(),(*data_matrix).get(ar_iterator->first,time-ar_iterator->second+1)); |
---|
228 | } |
---|
229 | |
---|
230 | // cout << "Prediction cond: " << condition_vector << endl; |
---|
231 | |
---|
232 | if(my_rarx!=NULL) |
---|
233 | { |
---|
234 | pair<vec,mat> imp_samples = my_rarx->posterior->importance_sample(sample_size); |
---|
235 | |
---|
236 | //cout << "Point estimate: " << (imp_samples.second*imp_samples.first)/(imp_samples.first*ones(imp_samples.first.size())) << endl; |
---|
237 | |
---|
238 | vec sample_prediction; |
---|
239 | for(int t = 0;t<sample_size;t++) |
---|
240 | { |
---|
241 | vec lap_sample = condition_vector; |
---|
242 | |
---|
243 | if(has_constant) |
---|
244 | { |
---|
245 | lap_sample.ins(lap_sample.size(),1.0); |
---|
246 | } |
---|
247 | |
---|
248 | lap_sample.ins(0,(*LapRNG)()); |
---|
249 | |
---|
250 | sample_prediction.ins(0,lap_sample*imp_samples.second.get_col(t)); |
---|
251 | } |
---|
252 | |
---|
253 | return pair<vec,vec>(imp_samples.first,sample_prediction); |
---|
254 | } |
---|
255 | else |
---|
256 | { |
---|
257 | mat samples = my_arx->posterior().sample_mat(sample_size); |
---|
258 | |
---|
259 | //cout << "Point estimate: " << (samples*ones(samples.cols()))/samples.cols() << endl; |
---|
260 | |
---|
261 | // cout << samples.get_col(1) << endl; |
---|
262 | |
---|
263 | vec sample_prediction; |
---|
264 | for(int t = 0;t<sample_size;t++) |
---|
265 | { |
---|
266 | vec gau_sample = condition_vector; |
---|
267 | |
---|
268 | if(has_constant) |
---|
269 | { |
---|
270 | gau_sample.ins(gau_sample.size(),1.0); |
---|
271 | } |
---|
272 | |
---|
273 | gau_sample.ins(gau_sample.size(),randn()); |
---|
274 | |
---|
275 | sample_prediction.ins(0,gau_sample*samples.get_col(t)); |
---|
276 | } |
---|
277 | |
---|
278 | return pair<vec,vec>(ones(sample_prediction.size()),sample_prediction); |
---|
279 | } |
---|
280 | } |
---|
281 | else |
---|
282 | { |
---|
283 | |
---|
284 | return pair<vec,vec>(zeros(1),ones(1)); |
---|
285 | } |
---|
286 | |
---|
287 | } |
---|
288 | |
---|
289 | |
---|
290 | static list<list<pair<int,int>>> possible_models_recurse(int max_order,int number_of_channels) |
---|
291 | { |
---|
292 | list<list<pair<int,int>>> created_model_types; |
---|
293 | |
---|
294 | if(max_order == 1) |
---|
295 | { |
---|
296 | for(int channel = 0;channel<number_of_channels;channel++) |
---|
297 | { |
---|
298 | list<pair<int,int>> returned_type; |
---|
299 | returned_type.push_back(pair<int,int>(channel,1)); |
---|
300 | created_model_types.push_back(returned_type); |
---|
301 | } |
---|
302 | |
---|
303 | return created_model_types; |
---|
304 | } |
---|
305 | else |
---|
306 | { |
---|
307 | created_model_types = possible_models_recurse(max_order-1,number_of_channels); |
---|
308 | list<list<pair<int,int>>> returned_types; |
---|
309 | |
---|
310 | for(list<list<pair<int,int>>>::iterator model_ref = created_model_types.begin();model_ref!=created_model_types.end();model_ref++) |
---|
311 | { |
---|
312 | |
---|
313 | for(int order = 1; order<=max_order; order++) |
---|
314 | { |
---|
315 | for(int channel = 0;channel<number_of_channels;channel++) |
---|
316 | { |
---|
317 | list<pair<int,int>> returned_type; |
---|
318 | pair<int,int> new_pair = pair<int,int>(channel,order); |
---|
319 | if(find((*model_ref).begin(),(*model_ref).end(),new_pair)==(*model_ref).end()) |
---|
320 | { |
---|
321 | returned_type.insert(returned_type.begin(),(*model_ref).begin(),(*model_ref).end()); |
---|
322 | returned_type.push_back(new_pair); |
---|
323 | returned_types.push_back(returned_type); |
---|
324 | } |
---|
325 | } |
---|
326 | } |
---|
327 | } |
---|
328 | |
---|
329 | created_model_types.insert(created_model_types.end(),returned_types.begin(),returned_types.end()); |
---|
330 | |
---|
331 | return created_model_types; |
---|
332 | } |
---|
333 | } |
---|
334 | }; |
---|
335 | |
---|
336 | |
---|
337 | |
---|
338 | |
---|
339 | |
---|
340 | |
---|
341 | |
---|
342 | int main ( int argc, char* argv[] ) { |
---|
343 | |
---|
344 | vec data_vec; |
---|
345 | mat data_matrix; |
---|
346 | DWORD Id; |
---|
347 | |
---|
348 | char szApp[] = "MT4"; |
---|
349 | char szTopic[] = "BID"; |
---|
350 | char szItem[] = "EURUSD"; |
---|
351 | char* itRef = &szItem[0]; |
---|
352 | |
---|
353 | char* file_string = "c:\\rtdata"; |
---|
354 | |
---|
355 | ofstream myfile; |
---|
356 | char fstring[80]; |
---|
357 | strcpy(fstring,file_string); |
---|
358 | strcat(fstring,itRef); |
---|
359 | strcat(fstring,"lognc.txt"); |
---|
360 | |
---|
361 | list<list<pair<int,int>>> model_types = model::possible_models_recurse(max_model_order,1); |
---|
362 | |
---|
363 | int max_window = 50; |
---|
364 | int min_window = 1; |
---|
365 | |
---|
366 | list<model*> models; |
---|
367 | for(list<list<pair<int,int>>>::iterator model_type = model_types.begin();model_type!=model_types.end();model_type++) |
---|
368 | { |
---|
369 | for(int window_size = min_window;window_size < max_window;window_size++) |
---|
370 | { |
---|
371 | //models.push_back(new model((*model_type),true,true,window_size,0,&data_matrix)); |
---|
372 | models.push_back(new model((*model_type),false,true,window_size,0,&data_matrix)); |
---|
373 | //models.push_back(new model((*model_type),true,false,window_size,0,&data_matrix)); |
---|
374 | //models.push_back(new model((*model_type),false,false,window_size,0,&data_matrix)); |
---|
375 | } |
---|
376 | } |
---|
377 | |
---|
378 | mat result_lognc; |
---|
379 | mat result_preds; |
---|
380 | |
---|
381 | /* |
---|
382 | HANDLE hThrd = CreateThread( NULL, 0, (LPTHREAD_START_ROUTINE)ThrdFunc, (LPVOID)1, 0, &Id); |
---|
383 | if ( !hThrd ) |
---|
384 | { |
---|
385 | cout<<"Error Creating Threads,,,,.exiting"<<endl; |
---|
386 | return -1; |
---|
387 | } |
---|
388 | Sleep ( 100 ); |
---|
389 | */ |
---|
390 | |
---|
391 | |
---|
392 | |
---|
393 | //DDE Initialization |
---|
394 | DWORD idInst = 0; |
---|
395 | UINT iReturn; |
---|
396 | iReturn = DdeInitialize(&idInst, (PFNCALLBACK)DdeCallback, |
---|
397 | APPCLASS_STANDARD | APPCMD_CLIENTONLY, 0 ); |
---|
398 | if (iReturn!=DMLERR_NO_ERROR) |
---|
399 | { |
---|
400 | printf("DDE Initialization Failed: 0x%04x\n", iReturn); |
---|
401 | Sleep(1500); |
---|
402 | return 0; |
---|
403 | } |
---|
404 | |
---|
405 | //DDE Connect to Server using given AppName and topic. |
---|
406 | HSZ hszApp, hszTopic; |
---|
407 | HCONV hConv; |
---|
408 | hszApp = DdeCreateStringHandle(idInst, szApp, 0); |
---|
409 | hszTopic = DdeCreateStringHandle(idInst, szTopic, 0); |
---|
410 | hConv = DdeConnect(idInst, hszApp, hszTopic, NULL); |
---|
411 | //DdeFreeStringHandle(idInst, hszApp); |
---|
412 | //DdeFreeStringHandle(idInst, hszTopic); |
---|
413 | if (hConv == NULL) |
---|
414 | { |
---|
415 | printf("DDE Connection Failed.\n"); |
---|
416 | Sleep(1500); DdeUninitialize(idInst); |
---|
417 | return 0; |
---|
418 | } |
---|
419 | |
---|
420 | //Execute commands/requests specific to the DDE Server. |
---|
421 | |
---|
422 | DDERequest(idInst, hConv, szItem); |
---|
423 | |
---|
424 | itpp::Laplace_RNG LapRNG = Laplace_RNG(); |
---|
425 | |
---|
426 | // time_t current_time = time(0); |
---|
427 | |
---|
428 | while(1) |
---|
429 | { |
---|
430 | while(avg_vec.size() < data_count) |
---|
431 | { |
---|
432 | MSG msg; |
---|
433 | BOOL MsgReturn = GetMessage ( &msg , NULL , 0 , 0 ); |
---|
434 | |
---|
435 | if(MsgReturn) |
---|
436 | { |
---|
437 | TranslateMessage(&msg); |
---|
438 | DispatchMessage(&msg); |
---|
439 | } |
---|
440 | Sleep(500); |
---|
441 | } |
---|
442 | |
---|
443 | |
---|
444 | data_vec.ins(data_vec.size(),avg_vec*ones(avg_vec.size())/avg_vec.size()); |
---|
445 | data_matrix = mat(data_vec).T(); |
---|
446 | avg_vec.del(0,avg_vec.size()-1); |
---|
447 | |
---|
448 | vector<double> test_lognc; |
---|
449 | vec preds; |
---|
450 | |
---|
451 | for(list<model*>::iterator model_ref = models.begin();model_ref!=models.end();model_ref++) |
---|
452 | { |
---|
453 | (*model_ref)->data_update(data_vec.size()-1); |
---|
454 | |
---|
455 | if((*model_ref)->lognc_history.size()==0) |
---|
456 | { |
---|
457 | test_lognc.push_back(0); |
---|
458 | } |
---|
459 | else |
---|
460 | { |
---|
461 | test_lognc.push_back((ones((*model_ref)->lognc_history.size())*(*model_ref)->lognc_history)/(*model_ref)->lognc_history.size()*(max_window/(*model_ref)->window_size)); |
---|
462 | } |
---|
463 | |
---|
464 | pair<vec,vec> predictions = (*model_ref)->predict(500,data_vec.size()-1,&LapRNG); |
---|
465 | |
---|
466 | preds.ins(preds.size(),(predictions.first*predictions.second)/(predictions.first*ones(predictions.first.size()))); |
---|
467 | |
---|
468 | } |
---|
469 | |
---|
470 | //preds.ins(0,data_matrix.get(0,data_vec.size())); |
---|
471 | |
---|
472 | result_preds.ins_col(result_preds.cols(),preds); |
---|
473 | |
---|
474 | myfile.open(fstring,ios::app); |
---|
475 | |
---|
476 | // myfile << my_rarx->posterior->minimal_vertex->get_coordinates()[0]; |
---|
477 | |
---|
478 | for(int i = 0;i<test_lognc.size();i++) |
---|
479 | { |
---|
480 | myfile << test_lognc[i] << ','; |
---|
481 | } |
---|
482 | |
---|
483 | myfile << endl; |
---|
484 | |
---|
485 | myfile.close(); |
---|
486 | |
---|
487 | } |
---|
488 | |
---|
489 | //DDE Disconnect and Uninitialize. |
---|
490 | DdeDisconnect(hConv); |
---|
491 | DdeUninitialize(idInst); |
---|
492 | |
---|
493 | return 0; |
---|
494 | } |
---|
495 | |
---|
496 | /* |
---|
497 | // EXPERIMENT: A moving window estimation and prediction of RARX is tested on data generated from |
---|
498 | // y_t=0.95*y_(t-1)+0.05*y_(t-2)+0.2*e_t, where e_t is normally, student(4) and cauchy distributed. It |
---|
499 | // can be compared to the classical setup. |
---|
500 | |
---|
501 | vector<vector<string>> strings; |
---|
502 | |
---|
503 | char* file_string = "c:\\dataGCClosePercDiff"; |
---|
504 | |
---|
505 | char dfstring[80]; |
---|
506 | strcpy(dfstring,file_string); |
---|
507 | strcat(dfstring,".txt"); |
---|
508 | |
---|
509 | |
---|
510 | mat data_matrix; |
---|
511 | ifstream myfile(dfstring); |
---|
512 | if (myfile.is_open()) |
---|
513 | { |
---|
514 | string line; |
---|
515 | while(getline(myfile,line)) |
---|
516 | { |
---|
517 | vec data_vector; |
---|
518 | while(line.find(',') != string::npos) |
---|
519 | { |
---|
520 | int loc2 = line.find('\n'); |
---|
521 | int loc = line.find(','); |
---|
522 | data_vector.ins(data_vector.size(),atof(line.substr(0,loc).c_str())); |
---|
523 | line.erase(0,loc+1); |
---|
524 | } |
---|
525 | |
---|
526 | data_matrix.ins_row(data_matrix.rows(),data_vector); |
---|
527 | } |
---|
528 | |
---|
529 | myfile.close(); |
---|
530 | } |
---|
531 | else |
---|
532 | { |
---|
533 | cout << "Can't open data file!" << endl; |
---|
534 | } |
---|
535 | */ |
---|
536 | |
---|
537 | |
---|
538 | // cout << "Updated." << endl; |
---|
539 | |
---|
540 | /* |
---|
541 | // EXPERIMENT: 100 AR model generated time series of length of 30 from y_t=0.95*y_(t-1)+0.05*y_(t-2)+0.2*e_t, |
---|
542 | // where e_t is normally, student(4) and cauchy distributed are tested using robust AR model, to obtain the |
---|
543 | // variance of location parameter estimators and compare it to the classical setup. |
---|
544 | vector<vector<vector<string>>> string_lists; |
---|
545 | string_lists.push_back(vector<vector<string>>()); |
---|
546 | string_lists.push_back(vector<vector<string>>()); |
---|
547 | string_lists.push_back(vector<vector<string>>()); |
---|
548 | |
---|
549 | char* file_strings[3] = {"c:\\ar_normal.txt", "c:\\ar_student.txt", "c:\\ar_cauchy.txt"}; |
---|
550 | |
---|
551 | |
---|
552 | for(int i = 0;i<3;i++) |
---|
553 | { |
---|
554 | ifstream myfile(file_strings[i]); |
---|
555 | if (myfile.is_open()) |
---|
556 | { |
---|
557 | while ( myfile.good() ) |
---|
558 | { |
---|
559 | string line; |
---|
560 | getline(myfile,line); |
---|
561 | |
---|
562 | vector<string> parsed_line; |
---|
563 | while(line.find(',') != string::npos) |
---|
564 | { |
---|
565 | int loc = line.find(','); |
---|
566 | parsed_line.push_back(line.substr(0,loc)); |
---|
567 | line.erase(0,loc+1); |
---|
568 | } |
---|
569 | |
---|
570 | string_lists[i].push_back(parsed_line); |
---|
571 | } |
---|
572 | myfile.close(); |
---|
573 | } |
---|
574 | } |
---|
575 | |
---|
576 | for(int j = 0;j<string_lists.size();j++) |
---|
577 | { |
---|
578 | |
---|
579 | for(int i = 0;i<string_lists[j].size()-1;i++) |
---|
580 | { |
---|
581 | vector<vec> conditions; |
---|
582 | //emlig* emliga = new emlig(2); |
---|
583 | RARX* my_rarx = new RARX(2,30); |
---|
584 | |
---|
585 | for(int k = 1;k<string_lists[j][i].size();k++) |
---|
586 | { |
---|
587 | vec condition; |
---|
588 | //condition.ins(0,1); |
---|
589 | condition.ins(0,string_lists[j][i][k]); |
---|
590 | conditions.push_back(condition); |
---|
591 | |
---|
592 | //cout << "orig:" << condition << endl; |
---|
593 | |
---|
594 | if(conditions.size()>1) |
---|
595 | { |
---|
596 | conditions[k-2].ins(0,string_lists[j][i][k]); |
---|
597 | |
---|
598 | } |
---|
599 | |
---|
600 | if(conditions.size()>2) |
---|
601 | { |
---|
602 | conditions[k-3].ins(0,string_lists[j][i][k]); |
---|
603 | |
---|
604 | //cout << "modi:" << conditions[k-3] << endl; |
---|
605 | |
---|
606 | my_rarx->bayes(conditions[k-3]); |
---|
607 | |
---|
608 | |
---|
609 | //if(k>5) |
---|
610 | //{ |
---|
611 | // cout << "MaxLik coords:" << emliga->minimal_vertex->get_coordinates() << endl; |
---|
612 | //} |
---|
613 | |
---|
614 | } |
---|
615 | |
---|
616 | } |
---|
617 | |
---|
618 | //emliga->step_me(0); |
---|
619 | /* |
---|
620 | ofstream myfile; |
---|
621 | myfile.open("c:\\robust_ar1.txt",ios::app); |
---|
622 | myfile << my_rarx->minimal_vertex->get_coordinates()[0] << ";"; |
---|
623 | myfile.close(); |
---|
624 | |
---|
625 | myfile.open("c:\\robust_ar2.txt",ios::app); |
---|
626 | myfile << emliga->minimal_vertex->get_coordinates()[1] << ";"; |
---|
627 | myfile.close(); |
---|
628 | |
---|
629 | |
---|
630 | cout << "MaxLik coords:" << emliga->minimal_vertex->get_coordinates() << endl; |
---|
631 | cout << "Step: " << i << endl; |
---|
632 | } |
---|
633 | |
---|
634 | cout << "One experiment finished." << endl; |
---|
635 | |
---|
636 | ofstream myfile; |
---|
637 | myfile.open("c:\\robust_ar1.txt",ios::app); |
---|
638 | myfile << endl; |
---|
639 | myfile.close(); |
---|
640 | |
---|
641 | myfile.open("c:\\robust_ar2.txt",ios::app); |
---|
642 | myfile << endl; |
---|
643 | myfile.close(); |
---|
644 | }*/ |
---|
645 | |
---|
646 | /* |
---|
647 | vector<vec> conditions; |
---|
648 | //emlig* emliga = new emlig(2); |
---|
649 | RARX* my_rarx = new RARX(2,10,false); |
---|
650 | |
---|
651 | |
---|
652 | mat V0 = 0.0001 * eye ( 3 ); |
---|
653 | ARX* my_arx = new ARX(0.85); |
---|
654 | my_arx->set_statistics ( 1, V0 ); //nu is default (set to have finite moments) |
---|
655 | my_arx->set_constant ( false ); |
---|
656 | my_arx->validate(); |
---|
657 | |
---|
658 | |
---|
659 | for(int k = 1;k<strings[j].size();k++) |
---|
660 | { |
---|
661 | vec condition; |
---|
662 | //condition.ins(0,1); |
---|
663 | condition.ins(0,strings[j][k]); |
---|
664 | conditions.push_back(condition); |
---|
665 | |
---|
666 | //cout << "orig:" << condition << endl; |
---|
667 | |
---|
668 | if(conditions.size()>1) |
---|
669 | { |
---|
670 | conditions[k-2].ins(0,strings[j][k]); |
---|
671 | |
---|
672 | } |
---|
673 | |
---|
674 | if(conditions.size()>2) |
---|
675 | { |
---|
676 | conditions[k-3].ins(0,strings[j][k]); |
---|
677 | |
---|
678 | // cout << "Condition:" << conditions[k-3] << endl; |
---|
679 | |
---|
680 | my_rarx->bayes(conditions[k-3]); |
---|
681 | //my_rarx->posterior->step_me(1); |
---|
682 | |
---|
683 | vec cond_vec; |
---|
684 | cond_vec.ins(0,conditions[k-3][0]); |
---|
685 | |
---|
686 | my_arx->bayes(cond_vec,conditions[k-3].right(2)); |
---|
687 | |
---|
688 | /* |
---|
689 | if(k>8) |
---|
690 | { |
---|
691 | //my_rarx->posterior->step_me(0); |
---|
692 | |
---|
693 | //mat samples = my_rarx->posterior->sample_mat(10); |
---|
694 | |
---|
695 | pair<vec,mat> imp_samples = my_rarx->posterior->importance_sample(1000); |
---|
696 | |
---|
697 | //cout << imp_samples.first << endl; |
---|
698 | |
---|
699 | vec sample_prediction; |
---|
700 | vec averaged_params = zeros(imp_samples.second.rows()); |
---|
701 | for(int t = 0;t<imp_samples.first.size();t++) |
---|
702 | { |
---|
703 | vec lap_sample = conditions[k-3].left(2); |
---|
704 | //lap_sample.ins(lap_sample.size(),1.0); |
---|
705 | |
---|
706 | lap_sample.ins(0,LapRNG()); |
---|
707 | |
---|
708 | sample_prediction.ins(0,lap_sample*imp_samples.second.get_col(t)); |
---|
709 | |
---|
710 | averaged_params += imp_samples.first[t]*imp_samples.second.get_col(t); |
---|
711 | } |
---|
712 | |
---|
713 | averaged_params = averaged_params*(1/(imp_samples.first*ones(imp_samples.first.size()))); |
---|
714 | |
---|
715 | // cout << "Averaged estimated parameters: " << averaged_params << endl; |
---|
716 | |
---|
717 | vec sample_pow = sample_prediction; |
---|
718 | |
---|
719 | // cout << sample_prediction << endl; |
---|
720 | vec poly_coefs; |
---|
721 | double prediction; |
---|
722 | bool stop_iteration = false; |
---|
723 | int en = 1; |
---|
724 | do |
---|
725 | { |
---|
726 | double poly_coef = imp_samples.first*sample_pow/(imp_samples.first*ones(imp_samples.first.size())); |
---|
727 | |
---|
728 | if(en==1) |
---|
729 | { |
---|
730 | prediction = poly_coef; |
---|
731 | } |
---|
732 | |
---|
733 | poly_coef = poly_coef*en*fact(utility_constant-2+en)/fact(utility_constant-2); |
---|
734 | |
---|
735 | if(abs(poly_coef)>numeric_limits<double>::epsilon()) |
---|
736 | { |
---|
737 | sample_pow = elem_mult(sample_pow,sample_prediction); |
---|
738 | poly_coefs.ins(0,pow(-1.0,en+1)*poly_coef); |
---|
739 | } |
---|
740 | else |
---|
741 | { |
---|
742 | stop_iteration = true; |
---|
743 | } |
---|
744 | |
---|
745 | en++; |
---|
746 | |
---|
747 | if(en>20) |
---|
748 | { |
---|
749 | stop_iteration = true; |
---|
750 | } |
---|
751 | } |
---|
752 | while(!stop_iteration); |
---|
753 | |
---|
754 | /* |
---|
755 | ofstream myfile_coef; |
---|
756 | |
---|
757 | myfile_coef.open("c:\\coefs.txt",ios::app); |
---|
758 | |
---|
759 | for(int t = 0;t<poly_coefs.size();t++) |
---|
760 | { |
---|
761 | myfile_coef << poly_coefs[t] << ","; |
---|
762 | } |
---|
763 | |
---|
764 | myfile_coef << endl; |
---|
765 | myfile_coef.close(); |
---|
766 | */ |
---|
767 | |
---|
768 | //cout << "Coefficients: " << poly_coefs << endl; |
---|
769 | |
---|
770 | /* |
---|
771 | vec bas_coef = vec("1.0 2.0 -8.0"); |
---|
772 | cout << "Coefs: " << bas_coef << endl; |
---|
773 | cvec actions2 = roots(bas_coef); |
---|
774 | cout << "Roots: " << actions2 << endl; |
---|
775 | */ |
---|
776 | |
---|
777 | /* |
---|
778 | |
---|
779 | cvec actions = roots(poly_coefs); |
---|
780 | |
---|
781 | |
---|
782 | bool is_max = false; |
---|
783 | for(int t = 0;t<actions.size();t++) |
---|
784 | { |
---|
785 | if(actions[t].imag() == 0) |
---|
786 | { |
---|
787 | double second_derivative = 0; |
---|
788 | for(int q = 1;q<poly_coefs.size();q++) |
---|
789 | { |
---|
790 | second_derivative+=poly_coefs[q]*pow(actions[t].real(),q-1)*q; |
---|
791 | } |
---|
792 | |
---|
793 | if(second_derivative<0) |
---|
794 | { |
---|
795 | cout << "Action:" << actions[t].real() << endl; |
---|
796 | |
---|
797 | is_max = true; |
---|
798 | } |
---|
799 | } |
---|
800 | } |
---|
801 | |
---|
802 | if(!is_max) |
---|
803 | { |
---|
804 | cout << "No maximum." << endl; |
---|
805 | } |
---|
806 | |
---|
807 | // cout << "MaxLik coords:" << my_rarx->posterior->minimal_vertex->get_coordinates() << endl; |
---|
808 | |
---|
809 | /* |
---|
810 | double prediction = 0; |
---|
811 | for(int s = 1;s<samples.rows();s++) |
---|
812 | { |
---|
813 | |
---|
814 | double avg_parameter = imp_samples.get_row(s)*ones(samples.cols())/samples.cols(); |
---|
815 | |
---|
816 | prediction += avg_parameter*conditions[k-3][s-1]; |
---|
817 | |
---|
818 | |
---|
819 | |
---|
820 | /* |
---|
821 | ofstream myfile; |
---|
822 | char fstring[80]; |
---|
823 | strcpy(fstring,file_strings[j]); |
---|
824 | |
---|
825 | char es[5]; |
---|
826 | strcat(fstring,itoa(s,es,10)); |
---|
827 | |
---|
828 | strcat(fstring,"_res.txt"); |
---|
829 | |
---|
830 | |
---|
831 | myfile.open(fstring,ios::app); |
---|
832 | |
---|
833 | //myfile << my_rarx->posterior->minimal_vertex->get_coordinates()[0]; |
---|
834 | myfile << avg_parameter; |
---|
835 | |
---|
836 | if(k!=strings[j].size()-1) |
---|
837 | { |
---|
838 | myfile << ","; |
---|
839 | } |
---|
840 | else |
---|
841 | { |
---|
842 | myfile << endl; |
---|
843 | } |
---|
844 | myfile.close(); |
---|
845 | */ |
---|
846 | |
---|
847 | |
---|
848 | //} |
---|
849 | |
---|
850 | // cout << "Prediction: "<< prediction << endl; |
---|
851 | /* |
---|
852 | enorm<ldmat>* pred_mat = my_arx->epredictor(conditions[k-3].left(2)); |
---|
853 | double prediction2 = pred_mat->mean()[0]; |
---|
854 | */ |
---|
855 | |
---|
856 | |
---|
857 | |
---|
858 | /* |
---|
859 | myfile.open(f2string,ios::app); |
---|
860 | myfile << prediction2; |
---|
861 | |
---|
862 | if(k!=strings[j].size()-1) |
---|
863 | { |
---|
864 | myfile << ","; |
---|
865 | } |
---|
866 | else |
---|
867 | { |
---|
868 | myfile << endl; |
---|
869 | } |
---|
870 | myfile.close(); |
---|
871 | //*//* |
---|
872 | |
---|
873 | } |
---|
874 | } */ |
---|
875 | |
---|
876 | //emliga->step_me(0); |
---|
877 | /* |
---|
878 | ofstream myfile; |
---|
879 | myfile.open("c:\\robust_ar1.txt",ios::app); |
---|
880 | myfile << my_rarx->minimal_vertex->get_coordinates()[0] << ";"; |
---|
881 | myfile.close(); |
---|
882 | |
---|
883 | myfile.open("c:\\robust_ar2.txt",ios::app); |
---|
884 | myfile << emliga->minimal_vertex->get_coordinates()[1] << ";"; |
---|
885 | myfile.close(); |
---|
886 | |
---|
887 | |
---|
888 | cout << "MaxLik coords:" << emliga->minimal_vertex->get_coordinates() << endl; |
---|
889 | cout << "Step: " << i << endl;*/ |
---|
890 | //} |
---|
891 | |
---|
892 | |
---|
893 | //} |
---|
894 | |
---|
895 | |
---|
896 | // EXPERIMENT: One step ahead price prediction. Comparison of classical and robust model using optimal trading |
---|
897 | // with maximization of logarithm of one-step ahead wealth. |
---|
898 | |
---|
899 | |
---|
900 | |
---|
901 | /* |
---|
902 | cout << "One experiment finished." << endl; |
---|
903 | |
---|
904 | ofstream myfile; |
---|
905 | myfile.open("c:\\robust_ar1.txt",ios::app); |
---|
906 | myfile << endl; |
---|
907 | myfile.close(); |
---|
908 | |
---|
909 | myfile.open("c:\\robust_ar2.txt",ios::app); |
---|
910 | myfile << endl; |
---|
911 | myfile.close();*/ |
---|
912 | |
---|
913 | |
---|
914 | //emlig* emlig1 = new emlig(emlig_size); |
---|
915 | |
---|
916 | //emlig1->step_me(0); |
---|
917 | //emlig* emlig2 = new emlig(emlig_size); |
---|
918 | |
---|
919 | /* |
---|
920 | emlig1->set_correction_factors(4); |
---|
921 | |
---|
922 | for(int j = 0;j<emlig1->correction_factors.size();j++) |
---|
923 | { |
---|
924 | for(set<my_ivec>::iterator vec_ref = emlig1->correction_factors[j].begin();vec_ref!=emlig1->correction_factors[j].end();vec_ref++) |
---|
925 | { |
---|
926 | cout << j << " "; |
---|
927 | |
---|
928 | for(int i=0;i<(*vec_ref).size();i++) |
---|
929 | { |
---|
930 | cout << (*vec_ref)[i]; |
---|
931 | } |
---|
932 | |
---|
933 | cout << endl; |
---|
934 | } |
---|
935 | }*/ |
---|
936 | |
---|
937 | /* |
---|
938 | vec condition5 = "1.0 1.0 1.01";//"-0.3 1.7 1.5"; |
---|
939 | |
---|
940 | emlig1->add_condition(condition5); |
---|
941 | //emlig1->step_me(0); |
---|
942 | |
---|
943 | |
---|
944 | vec condition1a = "-1.0 1.02 0.5"; |
---|
945 | //vec condition1b = "1.0 1.0 1.01"; |
---|
946 | emlig1->add_condition(condition1a); |
---|
947 | //emlig2->add_condition(condition1b); |
---|
948 | |
---|
949 | vec condition2a = "-0.3 1.7 1.5"; |
---|
950 | //vec condition2b = "-1.0 1.0 1.0"; |
---|
951 | emlig1->add_condition(condition2a); |
---|
952 | //emlig2->add_condition(condition2b); |
---|
953 | |
---|
954 | vec condition3a = "0.5 -1.01 1.0"; |
---|
955 | //vec condition3b = "0.5 -1.01 1.0"; |
---|
956 | |
---|
957 | emlig1->add_condition(condition3a); |
---|
958 | //emlig2->add_condition(condition3b); |
---|
959 | |
---|
960 | vec condition4a = "-0.5 -1.0 1.0"; |
---|
961 | //vec condition4b = "-0.5 -1.0 1.0"; |
---|
962 | |
---|
963 | emlig1->add_condition(condition4a); |
---|
964 | //cout << "************************************************" << endl; |
---|
965 | //emlig2->add_condition(condition4b); |
---|
966 | //cout << "************************************************" << endl; |
---|
967 | |
---|
968 | //cout << emlig1->minimal_vertex->get_coordinates(); |
---|
969 | |
---|
970 | //emlig1->remove_condition(condition3a); |
---|
971 | //emlig1->step_me(0); |
---|
972 | //emlig1->remove_condition(condition2a); |
---|
973 | //emlig1->remove_condition(condition1a); |
---|
974 | //emlig1->remove_condition(condition5); |
---|
975 | |
---|
976 | |
---|
977 | //emlig1->step_me(0); |
---|
978 | //emlig2->step_me(0); |
---|
979 | |
---|
980 | |
---|
981 | // DA SE POUZIT PRO VYPIS DO SOUBORU |
---|
982 | // emlig1->step_me(0); |
---|
983 | |
---|
984 | //emlig1->remove_condition(condition1); |
---|
985 | |
---|
986 | |
---|
987 | |
---|
988 | |
---|
989 | |
---|
990 | /* |
---|
991 | for(int i = 0;i<100;i++) |
---|
992 | { |
---|
993 | cout << endl << "Step:" << i << endl; |
---|
994 | |
---|
995 | double condition[emlig_size+1]; |
---|
996 | |
---|
997 | for(int k = 0;k<=emlig_size;k++) |
---|
998 | { |
---|
999 | condition[k] = (rand()-RAND_MAX/2)/1000.0; |
---|
1000 | } |
---|
1001 | |
---|
1002 | |
---|
1003 | vec* condition_vec = new vec(condition,emlig_size+1); |
---|
1004 | emlig1->add_condition(*condition_vec); |
---|
1005 | |
---|
1006 | /* |
---|
1007 | for(polyhedron* toprow_ref = emlig1->statistic.rows[emlig_size]; toprow_ref != emlig1->statistic.end_poly; toprow_ref = toprow_ref->next_poly) |
---|
1008 | { |
---|
1009 | cout << ((toprow*)toprow_ref)->probability << endl; |
---|
1010 | } |
---|
1011 | */ |
---|
1012 | /* |
---|
1013 | cout << emlig1->statistic_rowsize(emlig_size) << endl << endl; |
---|
1014 | |
---|
1015 | /* |
---|
1016 | if(i-emlig1->number_of_parameters >= 0) |
---|
1017 | { |
---|
1018 | pause(30); |
---|
1019 | } |
---|
1020 | */ |
---|
1021 | |
---|
1022 | // emlig1->step_me(i); |
---|
1023 | |
---|
1024 | /* |
---|
1025 | vector<int> sizevector; |
---|
1026 | for(int s = 0;s<=emlig1->number_of_parameters;s++) |
---|
1027 | { |
---|
1028 | sizevector.push_back(emlig1->statistic_rowsize(s)); |
---|
1029 | } |
---|
1030 | */ |
---|
1031 | //} |
---|
1032 | |
---|
1033 | |
---|
1034 | |
---|
1035 | |
---|
1036 | /* |
---|
1037 | emlig1->step_me(1); |
---|
1038 | |
---|
1039 | vec condition = "2.0 0.0 1.0"; |
---|
1040 | |
---|
1041 | emlig1->add_condition(condition); |
---|
1042 | |
---|
1043 | vector<int> sizevector; |
---|
1044 | for(int s = 0;s<=emlig1->number_of_parameters;s++) |
---|
1045 | { |
---|
1046 | sizevector.push_back(emlig1->statistic_rowsize(s)); |
---|
1047 | } |
---|
1048 | |
---|
1049 | emlig1->step_me(2); |
---|
1050 | |
---|
1051 | condition = "2.0 1.0 0.0"; |
---|
1052 | |
---|
1053 | emlig1->add_condition(condition); |
---|
1054 | |
---|
1055 | sizevector.clear(); |
---|
1056 | for(int s = 0;s<=emlig1->number_of_parameters;s++) |
---|
1057 | { |
---|
1058 | sizevector.push_back(emlig1->statistic_rowsize(s)); |
---|
1059 | } |
---|
1060 | */ |
---|
1061 | |
---|
1062 | |
---|
1063 | |
---|