1 | |
---|
2 | /*! |
---|
3 | \file |
---|
4 | \brief Robust |
---|
5 | \author Vasek Smidl |
---|
6 | |
---|
7 | */ |
---|
8 | |
---|
9 | #include "estim/arx.h" |
---|
10 | #include "robustlib.h" |
---|
11 | #include <vector> |
---|
12 | #include <iostream> |
---|
13 | #include <fstream> |
---|
14 | //#include <itpp/itsignal.h> |
---|
15 | #include "windows.h" |
---|
16 | #include "ddeml.h" |
---|
17 | #include "stdio.h" |
---|
18 | |
---|
19 | //#include "DDEClient.h" |
---|
20 | //#include <conio.h> |
---|
21 | |
---|
22 | |
---|
23 | using namespace itpp; |
---|
24 | using namespace bdm; |
---|
25 | |
---|
26 | //const int emlig_size = 2; |
---|
27 | //const int utility_constant = 5; |
---|
28 | |
---|
29 | const int max_model_order = 2; |
---|
30 | const double apriorno=0.005; |
---|
31 | |
---|
32 | /* |
---|
33 | HDDEDATA CALLBACK DdeCallback( |
---|
34 | UINT uType, // Transaction type. |
---|
35 | UINT uFmt, // Clipboard data format. |
---|
36 | HCONV hconv, // Handle to the conversation. |
---|
37 | HSZ hsz1, // Handle to a string. |
---|
38 | HSZ hsz2, // Handle to a string. |
---|
39 | HDDEDATA hdata, // Handle to a global memory object. |
---|
40 | DWORD dwData1, // Transaction-specific data. |
---|
41 | DWORD dwData2) // Transaction-specific data. |
---|
42 | { |
---|
43 | return 0; |
---|
44 | } |
---|
45 | |
---|
46 | void DDERequest(DWORD idInst, HCONV hConv, char* szItem) |
---|
47 | { |
---|
48 | HSZ hszItem = DdeCreateStringHandle(idInst, szItem, 0); |
---|
49 | HDDEDATA hData = DdeClientTransaction(NULL,0,hConv,hszItem,CF_TEXT, |
---|
50 | XTYP_ADVSTART,TIMEOUT_ASYNC , NULL); //TIMEOUT_ASYNC |
---|
51 | if (hData==NULL) |
---|
52 | { |
---|
53 | printf("Request failed: %s\n", szItem); |
---|
54 | } |
---|
55 | |
---|
56 | if (hData==0) |
---|
57 | { |
---|
58 | printf("Request failed: %s\n", szItem); |
---|
59 | } |
---|
60 | } |
---|
61 | |
---|
62 | DWORD WINAPI ThrdFunc( LPVOID n ) |
---|
63 | { |
---|
64 | return 0; |
---|
65 | } |
---|
66 | */ |
---|
67 | |
---|
68 | class model |
---|
69 | { |
---|
70 | public: |
---|
71 | set<pair<int,int>> ar_components; |
---|
72 | |
---|
73 | // Best thing would be to inherit the two models from a single souce, this is planned, but now structurally |
---|
74 | // problematic. |
---|
75 | RARX* my_rarx; //vzmenovane parametre pre triedu model |
---|
76 | ARXwin* my_arx; |
---|
77 | |
---|
78 | bool has_constant; |
---|
79 | int window_size; //musi byt vacsia ako pocet krokov ak to nema ovplyvnit |
---|
80 | int predicted_channel; |
---|
81 | mat* data_matrix; |
---|
82 | |
---|
83 | model(set<pair<int,int>> ar_components, //funkcie treidz model-konstruktor |
---|
84 | bool robust, |
---|
85 | bool has_constant, |
---|
86 | int window_size, |
---|
87 | int predicted_channel, |
---|
88 | mat* data_matrix) |
---|
89 | { |
---|
90 | this->ar_components.insert(ar_components.begin(),ar_components.end()); |
---|
91 | this->has_constant = has_constant; |
---|
92 | this->window_size = window_size; |
---|
93 | this->predicted_channel = predicted_channel; |
---|
94 | this->data_matrix = data_matrix; |
---|
95 | |
---|
96 | if(robust) |
---|
97 | { |
---|
98 | if(has_constant) |
---|
99 | { |
---|
100 | my_rarx = new RARX(ar_components.size()+1,window_size,true); |
---|
101 | my_arx = NULL; |
---|
102 | } |
---|
103 | else |
---|
104 | { |
---|
105 | my_rarx = new RARX(ar_components.size(),window_size,false); |
---|
106 | my_arx = NULL; |
---|
107 | } |
---|
108 | } |
---|
109 | else |
---|
110 | { |
---|
111 | my_rarx = NULL; |
---|
112 | my_arx = new ARXwin(); |
---|
113 | mat V0; |
---|
114 | |
---|
115 | if(has_constant) |
---|
116 | { |
---|
117 | V0 = apriorno * eye(ar_components.size()+2); //aj tu konst |
---|
118 | V0(0,0) = 1; |
---|
119 | my_arx->set_constant(true); |
---|
120 | } |
---|
121 | else |
---|
122 | { |
---|
123 | |
---|
124 | V0 = apriorno * eye(ar_components.size()+1);//menit konstantu |
---|
125 | V0(0,0) = 1; |
---|
126 | my_arx->set_constant(false); |
---|
127 | |
---|
128 | } |
---|
129 | |
---|
130 | my_arx->set_statistics(1, V0, V0.rows()+1); |
---|
131 | my_arx->set_parameters(window_size); |
---|
132 | my_arx->validate(); |
---|
133 | } |
---|
134 | } |
---|
135 | |
---|
136 | void data_update(int time) //vlozime cas a ono vlozi do data_vector podmineky(conditions) a predikce, ktore pouzije do bayes |
---|
137 | { |
---|
138 | vec data_vector; |
---|
139 | for(set<pair<int,int>>::iterator ar_iterator = ar_components.begin();ar_iterator!=ar_components.end();ar_iterator++) |
---|
140 | { //ar?iterator ide len od 1 pod 2, alebo niekedy len 1 |
---|
141 | data_vector.ins(data_vector.size(),(*data_matrix).get(ar_iterator->first,time-ar_iterator->second)); |
---|
142 | // do data vector vlozi pre dany typ regresoru prislusne cisla z data_matrix. Ale ako? preco time-ar_iterator->second? |
---|
143 | } |
---|
144 | if(my_rarx!=NULL) |
---|
145 | { //pre robusr priradi az tu do data_vector aj rpedikciu |
---|
146 | data_vector.ins(0,(*data_matrix).get(predicted_channel,time)); |
---|
147 | my_rarx->bayes(data_vector); |
---|
148 | } |
---|
149 | else |
---|
150 | { |
---|
151 | vec pred_vec;//tu sa predikcia zadava zvlast |
---|
152 | pred_vec.ins(0,(*data_matrix).get(predicted_channel,time)); |
---|
153 | my_arx->bayes(pred_vec,data_vector); |
---|
154 | } |
---|
155 | } |
---|
156 | |
---|
157 | pair<vec,vec> predict(int sample_size, int time, itpp::Laplace_RNG* LapRNG) //nerozumiem, ale vraj to netreba, nepouziva to |
---|
158 | { |
---|
159 | vec condition_vector; |
---|
160 | for(set<pair<int,int>>::iterator ar_iterator = ar_components.begin();ar_iterator!=ar_components.end();ar_iterator++) |
---|
161 | { |
---|
162 | condition_vector.ins(condition_vector.size(),(*data_matrix).get(ar_iterator->first,time-ar_iterator->second+1)); |
---|
163 | } |
---|
164 | |
---|
165 | if(my_rarx!=NULL) |
---|
166 | { |
---|
167 | pair<vec,mat> imp_samples = my_rarx->posterior->importance_sample(sample_size); |
---|
168 | |
---|
169 | //cout << imp_samples.first << endl; |
---|
170 | |
---|
171 | vec sample_prediction; |
---|
172 | for(int t = 0;t<sample_size;t++) |
---|
173 | { |
---|
174 | vec lap_sample = condition_vector; |
---|
175 | |
---|
176 | if(has_constant) |
---|
177 | { |
---|
178 | lap_sample.ins(lap_sample.size(),1.0); |
---|
179 | } |
---|
180 | |
---|
181 | lap_sample.ins(0,(*LapRNG)()); |
---|
182 | |
---|
183 | sample_prediction.ins(0,lap_sample*imp_samples.second.get_col(t)); |
---|
184 | } |
---|
185 | |
---|
186 | return pair<vec,vec>(imp_samples.first,sample_prediction); |
---|
187 | } |
---|
188 | else |
---|
189 | { |
---|
190 | mat samples = my_arx->posterior().sample_mat(sample_size); |
---|
191 | |
---|
192 | vec sample_prediction; |
---|
193 | for(int t = 0;t<sample_size;t++) |
---|
194 | { |
---|
195 | vec gau_sample = condition_vector; |
---|
196 | |
---|
197 | if(has_constant) |
---|
198 | { |
---|
199 | gau_sample.ins(gau_sample.size(),1.0); |
---|
200 | } |
---|
201 | |
---|
202 | gau_sample.ins(0,randn()); |
---|
203 | |
---|
204 | sample_prediction.ins(0,gau_sample*samples.get_col(t)); |
---|
205 | } |
---|
206 | |
---|
207 | return pair<vec,vec>(ones(sample_prediction.size()),sample_prediction); |
---|
208 | } |
---|
209 | |
---|
210 | } |
---|
211 | |
---|
212 | |
---|
213 | static set<set<pair<int,int>>> possible_models_recurse(int max_order,int number_of_channels) |
---|
214 | { |
---|
215 | set<set<pair<int,int>>> created_model_types; |
---|
216 | |
---|
217 | if(max_order == 1)//ukoncovacia vetva |
---|
218 | { |
---|
219 | for(int channel = 0;channel<number_of_channels;channel++)//pre AR 1 model vytvori kombinace kanalov v prvom kroku poyadu |
---|
220 | { |
---|
221 | set<pair<int,int>> returned_type; |
---|
222 | returned_type.insert(pair<int,int>(channel,1)); //?? |
---|
223 | created_model_types.insert(returned_type); |
---|
224 | } |
---|
225 | |
---|
226 | return created_model_types; |
---|
227 | } |
---|
228 | else |
---|
229 | { |
---|
230 | created_model_types = possible_models_recurse(max_order-1,number_of_channels);//tu uz mame ulozene kombinace o jeden krok dozadu //rekuryivne volanie |
---|
231 | set<set<pair<int,int>>> returned_types; |
---|
232 | |
---|
233 | for(set<set<pair<int,int>>>::iterator model_ref = created_model_types.begin();model_ref!=created_model_types.end();model_ref++) |
---|
234 | { |
---|
235 | |
---|
236 | for(int order = 1; order<=max_order; order++) |
---|
237 | { |
---|
238 | for(int channel = 0;channel<number_of_channels;channel++) |
---|
239 | { |
---|
240 | set<pair<int,int>> returned_type; |
---|
241 | pair<int,int> new_pair = pair<int,int>(channel,order);//?? |
---|
242 | if(find((*model_ref).begin(),(*model_ref).end(),new_pair)==(*model_ref).end()) //?? |
---|
243 | { |
---|
244 | returned_type.insert((*model_ref).begin(),(*model_ref).end()); //co vlozi na zaciatok retuned_type? |
---|
245 | returned_type.insert(new_pair); |
---|
246 | |
---|
247 | |
---|
248 | returned_types.insert(returned_type); |
---|
249 | } |
---|
250 | } |
---|
251 | } |
---|
252 | } |
---|
253 | |
---|
254 | created_model_types.insert(returned_types.begin(),returned_types.end()); |
---|
255 | |
---|
256 | return created_model_types; |
---|
257 | } |
---|
258 | } |
---|
259 | }; |
---|
260 | |
---|
261 | |
---|
262 | |
---|
263 | |
---|
264 | int main ( int argc, char* argv[] ) { |
---|
265 | |
---|
266 | /* |
---|
267 | DWORD Id; |
---|
268 | HANDLE hThrd = CreateThread( NULL, 0, (LPTHREAD_START_ROUTINE)ThrdFunc, (LPVOID)1, 0, &Id); |
---|
269 | |
---|
270 | if ( !hThrd ) |
---|
271 | { |
---|
272 | cout<<"Error Creating Threads,,,,.exiting"<<endl; |
---|
273 | return -1; |
---|
274 | } |
---|
275 | Sleep ( 100 ); |
---|
276 | |
---|
277 | |
---|
278 | char szApp[] = "MT4"; |
---|
279 | char szTopic[] = "QUOTE"; |
---|
280 | char szItem1[] = "EURUSD"; |
---|
281 | |
---|
282 | //DDE Initialization |
---|
283 | DWORD idInst=0; |
---|
284 | UINT iReturn; |
---|
285 | iReturn = DdeInitialize(&idInst, (PFNCALLBACK)DdeCallback, |
---|
286 | APPCLASS_STANDARD | APPCMD_CLIENTONLY, 0 ); |
---|
287 | if (iReturn!=DMLERR_NO_ERROR) |
---|
288 | { |
---|
289 | printf("DDE Initialization Failed: 0x%04x\n", iReturn); |
---|
290 | Sleep(1500); |
---|
291 | return 0; |
---|
292 | } |
---|
293 | |
---|
294 | //DDE Connect to Server using given AppName and topic. |
---|
295 | HSZ hszApp, hszTopic; |
---|
296 | HCONV hConv; |
---|
297 | hszApp = DdeCreateStringHandle(idInst, szApp, 0); |
---|
298 | hszTopic = DdeCreateStringHandle(idInst, szTopic, 0); |
---|
299 | hConv = DdeConnect(idInst, hszApp, hszTopic, NULL); |
---|
300 | //DdeFreeStringHandle(idInst, hszApp); |
---|
301 | //DdeFreeStringHandle(idInst, hszTopic); |
---|
302 | if (hConv == NULL) |
---|
303 | { |
---|
304 | printf("DDE Connection Failed.\n"); |
---|
305 | Sleep(1500); DdeUninitialize(idInst); |
---|
306 | return 0; |
---|
307 | } |
---|
308 | |
---|
309 | //Execute commands/requests specific to the DDE Server. |
---|
310 | |
---|
311 | DDERequest(idInst, hConv, szItem1); |
---|
312 | |
---|
313 | while(1) |
---|
314 | { |
---|
315 | MSG msg; |
---|
316 | BOOL MsgReturn = GetMessage ( &msg , NULL , 0 , 0 ); |
---|
317 | |
---|
318 | if(MsgReturn) |
---|
319 | { |
---|
320 | TranslateMessage(&msg); |
---|
321 | DispatchMessage(&msg); |
---|
322 | } |
---|
323 | } |
---|
324 | |
---|
325 | //DDE Disconnect and Uninitialize. |
---|
326 | DdeDisconnect(hConv); |
---|
327 | DdeUninitialize(idInst); |
---|
328 | */ |
---|
329 | |
---|
330 | |
---|
331 | |
---|
332 | /* |
---|
333 | // EXPERIMENT: 100 AR model generated time series of length of 30 from y_t=0.95*y_(t-1)+0.05*y_(t-2)+0.2*e_t, |
---|
334 | // where e_t is normally, student(4) and cauchy distributed are tested using robust AR model, to obtain the |
---|
335 | // variance of location parameter estimators and compare it to the classical setup. |
---|
336 | vector<vector<vector<string>>> string_lists; |
---|
337 | string_lists.push_back(vector<vector<string>>()); |
---|
338 | string_lists.push_back(vector<vector<string>>()); |
---|
339 | string_lists.push_back(vector<vector<string>>()); |
---|
340 | |
---|
341 | char* file_strings[3] = {"c:\\ar_normal.txt", "c:\\ar_student.txt", "c:\\ar_cauchy.txt"}; |
---|
342 | |
---|
343 | |
---|
344 | for(int i = 0;i<3;i++) |
---|
345 | { |
---|
346 | ifstream myfile(file_strings[i]); |
---|
347 | if (myfile.is_open()) |
---|
348 | { |
---|
349 | while ( myfile.good() ) |
---|
350 | { |
---|
351 | string line; |
---|
352 | getline(myfile,line); |
---|
353 | |
---|
354 | vector<string> parsed_line; |
---|
355 | while(line.find(',') != string::npos) |
---|
356 | { |
---|
357 | int loc = line.find(','); |
---|
358 | parsed_line.push_back(line.substr(0,loc)); |
---|
359 | line.erase(0,loc+1); |
---|
360 | } |
---|
361 | |
---|
362 | string_lists[i].push_back(parsed_line); |
---|
363 | } |
---|
364 | myfile.close(); |
---|
365 | } |
---|
366 | } |
---|
367 | |
---|
368 | for(int j = 0;j<string_lists.size();j++) |
---|
369 | { |
---|
370 | |
---|
371 | for(int i = 0;i<string_lists[j].size()-1;i++) |
---|
372 | { |
---|
373 | vector<vec> conditions; |
---|
374 | //emlig* emliga = new emlig(2); |
---|
375 | RARX* my_rarx = new RARX(2,30); |
---|
376 | |
---|
377 | for(int k = 1;k<string_lists[j][i].size();k++) |
---|
378 | { |
---|
379 | vec condition; |
---|
380 | //condition.ins(0,1); |
---|
381 | condition.ins(0,string_lists[j][i][k]); |
---|
382 | conditions.push_back(condition); |
---|
383 | |
---|
384 | //cout << "orig:" << condition << endl; |
---|
385 | |
---|
386 | if(conditions.size()>1) |
---|
387 | { |
---|
388 | conditions[k-2].ins(0,string_lists[j][i][k]); |
---|
389 | |
---|
390 | } |
---|
391 | |
---|
392 | if(conditions.size()>2) |
---|
393 | { |
---|
394 | conditions[k-3].ins(0,string_lists[j][i][k]); |
---|
395 | |
---|
396 | //cout << "modi:" << conditions[k-3] << endl; |
---|
397 | |
---|
398 | my_rarx->bayes(conditions[k-3]); |
---|
399 | |
---|
400 | |
---|
401 | //if(k>5) |
---|
402 | //{ |
---|
403 | // cout << "MaxLik coords:" << emliga->minimal_vertex->get_coordinates() << endl; |
---|
404 | //} |
---|
405 | |
---|
406 | } |
---|
407 | |
---|
408 | } |
---|
409 | |
---|
410 | //emliga->step_me(0); |
---|
411 | /* |
---|
412 | ofstream myfile; |
---|
413 | myfile.open("c:\\robust_ar1.txt",ios::app); |
---|
414 | myfile << my_rarx->minimal_vertex->get_coordinates()[0] << ";"; |
---|
415 | myfile.close(); |
---|
416 | |
---|
417 | myfile.open("c:\\robust_ar2.txt",ios::app); |
---|
418 | myfile << emliga->minimal_vertex->get_coordinates()[1] << ";"; |
---|
419 | myfile.close(); |
---|
420 | |
---|
421 | |
---|
422 | cout << "MaxLik coords:" << emliga->minimal_vertex->get_coordinates() << endl; |
---|
423 | cout << "Step: " << i << endl; |
---|
424 | } |
---|
425 | |
---|
426 | cout << "One experiment finished." << endl; |
---|
427 | |
---|
428 | ofstream myfile; |
---|
429 | myfile.open("c:\\robust_ar1.txt",ios::app); |
---|
430 | myfile << endl; |
---|
431 | myfile.close(); |
---|
432 | |
---|
433 | myfile.open("c:\\robust_ar2.txt",ios::app); |
---|
434 | myfile << endl; |
---|
435 | myfile.close(); |
---|
436 | }*/ |
---|
437 | |
---|
438 | // EXPERIMENT: A moving window estimation and prediction of RARX is tested on data generated from |
---|
439 | // y_t=0.95*y_(t-1)+0.05*y_(t-2)+0.2*e_t, where e_t is normally, student(4) and cauchy distributed. It |
---|
440 | // can be compared to the classical setup. |
---|
441 | |
---|
442 | itpp::Laplace_RNG LapRNG = Laplace_RNG(); |
---|
443 | |
---|
444 | vector<vector<string>> strings; |
---|
445 | |
---|
446 | char* file_string = "c:\\ar_normal_single"; // "c:\\dataTYClosePercDiff"; // |
---|
447 | |
---|
448 | char dfstring[80]; |
---|
449 | strcpy(dfstring,file_string); |
---|
450 | strcat(dfstring,".txt"); |
---|
451 | |
---|
452 | |
---|
453 | mat data_matrix; |
---|
454 | ifstream myfile(dfstring); |
---|
455 | if (myfile.is_open()) |
---|
456 | { |
---|
457 | string line; |
---|
458 | while(getline(myfile,line)) |
---|
459 | { |
---|
460 | vec data_vector; |
---|
461 | while(line.find(',') != string::npos) //zmenil som ciarku za medzeru |
---|
462 | { |
---|
463 | line.erase(0,1); // toto som sem pridal |
---|
464 | int loc2 = line.find('\n'); |
---|
465 | int loc = line.find(','); |
---|
466 | data_vector.ins(data_vector.size(),atof(line.substr(0,loc).c_str())); |
---|
467 | line.erase(0,loc+1); |
---|
468 | } |
---|
469 | |
---|
470 | data_matrix.ins_row(data_matrix.rows(),data_vector); |
---|
471 | } |
---|
472 | |
---|
473 | myfile.close(); |
---|
474 | } |
---|
475 | else |
---|
476 | { |
---|
477 | cout << "Can't open data file!" << endl; |
---|
478 | } |
---|
479 | |
---|
480 | //konec nacitavania dat |
---|
481 | set<set<pair<int,int>>> model_types = model::possible_models_recurse(max_model_order,data_matrix.rows()); //volanie funkce kde robi kombinace modelov |
---|
482 | //to priradime do model_types, data_matrix.row urcuje pocet kanalov dat |
---|
483 | vector<model*> models; |
---|
484 | for(set<set<pair<int,int>>>::iterator model_type = model_types.begin();model_type!=model_types.end();model_type++) |
---|
485 | {// prechadza rozne typy kanalov, a poctu regresorov |
---|
486 | for(int window_size = 15;window_size < 16;window_size++) |
---|
487 | { |
---|
488 | models.push_back(new model((*model_type),true,true,window_size,0,&data_matrix)); // to su len konstruktory, len inicializujeme rozne typy |
---|
489 | models.push_back(new model((*model_type),false,true,window_size,0,&data_matrix)); |
---|
490 | models.push_back(new model((*model_type),true,false,window_size,0,&data_matrix)); |
---|
491 | models.push_back(new model((*model_type),false,false,window_size,0,&data_matrix)); |
---|
492 | } |
---|
493 | |
---|
494 | //set<pair<int,int>> empty_list; |
---|
495 | //models.push_back(new model(empty_list,false,true,100,0,&data_matrix)); |
---|
496 | } |
---|
497 | |
---|
498 | mat result_lognc; |
---|
499 | // mat result_preds; |
---|
500 | |
---|
501 | for(int time = max_model_order;time<data_matrix.cols();time++) //time<data_matrix.cols() |
---|
502 | { //pocet stlpcov data_matrix je pocet casovych krokov |
---|
503 | vec cur_res_lognc; |
---|
504 | // vec preds; |
---|
505 | vector<string> nazvy; |
---|
506 | for(vector<model*>::iterator model_ref = models.begin();model_ref!=models.end();model_ref++) |
---|
507 | {//posuvam s apo models, co je pole modelov urobene o cyklus vyssie. Teda som v case time a robim to tam pre vsetky typy modelov, kombinace regresorov |
---|
508 | (*model_ref)->data_update(time); //pozret sa preco je toto tu nutne |
---|
509 | |
---|
510 | cout << "Updated." << endl; |
---|
511 | //if (time = max_model_order) nazvy.push_back(models.model_ref]);// ako by som mohol dostat nazov modelu? |
---|
512 | |
---|
513 | if((*model_ref)->my_rarx!=NULL) //vklada normalizacnz faktor do cur_res_lognc |
---|
514 | { |
---|
515 | cur_res_lognc.ins(cur_res_lognc.size(),(*model_ref)->my_rarx->posterior->log_nc); |
---|
516 | } |
---|
517 | else |
---|
518 | { |
---|
519 | cur_res_lognc.ins(cur_res_lognc.size(),(*model_ref)->my_arx->posterior().lognc()); |
---|
520 | } |
---|
521 | |
---|
522 | // pair<vec,vec> predictions = (*model_ref)->predict(200,time,&LapRNG); |
---|
523 | |
---|
524 | // preds.ins(preds.size(),(predictions.first*predictions.second)/(predictions.first*ones(predictions.first.size()))); |
---|
525 | // preds.ins(0,data_matrix.get(0,time+1)); |
---|
526 | |
---|
527 | } |
---|
528 | |
---|
529 | result_lognc.ins_col(result_lognc.cols(),cur_res_lognc); |
---|
530 | // result_preds.ins_col(result_preds.cols(),preds); |
---|
531 | |
---|
532 | // cout << "Updated." << endl; |
---|
533 | |
---|
534 | /* |
---|
535 | vector<vec> conditions; |
---|
536 | //emlig* emliga = new emlig(2); |
---|
537 | RARX* my_rarx = new RARX(2,10,false); |
---|
538 | |
---|
539 | |
---|
540 | mat V0 = 0.0001 * eye ( 3 ); |
---|
541 | ARX* my_arx = new ARX(0.85); |
---|
542 | my_arx->set_statistics ( 1, V0 ); //nu is default (set to have finite moments) |
---|
543 | my_arx->set_constant ( false ); |
---|
544 | my_arx->validate(); |
---|
545 | |
---|
546 | |
---|
547 | for(int k = 1;k<strings[j].size();k++) |
---|
548 | { |
---|
549 | vec condition; |
---|
550 | //condition.ins(0,1); |
---|
551 | condition.ins(0,strings[j][k]); |
---|
552 | conditions.push_back(condition); |
---|
553 | |
---|
554 | //cout << "orig:" << condition << endl; |
---|
555 | |
---|
556 | if(conditions.size()>1) |
---|
557 | { |
---|
558 | conditions[k-2].ins(0,strings[j][k]); |
---|
559 | |
---|
560 | } |
---|
561 | |
---|
562 | if(conditions.size()>2) |
---|
563 | { |
---|
564 | conditions[k-3].ins(0,strings[j][k]); |
---|
565 | |
---|
566 | // cout << "Condition:" << conditions[k-3] << endl; |
---|
567 | |
---|
568 | my_rarx->bayes(conditions[k-3]); |
---|
569 | //my_rarx->posterior->step_me(1); |
---|
570 | |
---|
571 | vec cond_vec; |
---|
572 | cond_vec.ins(0,conditions[k-3][0]); |
---|
573 | |
---|
574 | my_arx->bayes(cond_vec,conditions[k-3].right(2)); |
---|
575 | |
---|
576 | /* |
---|
577 | if(k>8) |
---|
578 | { |
---|
579 | //my_rarx->posterior->step_me(0); |
---|
580 | |
---|
581 | //mat samples = my_rarx->posterior->sample_mat(10); |
---|
582 | |
---|
583 | pair<vec,mat> imp_samples = my_rarx->posterior->importance_sample(1000); |
---|
584 | |
---|
585 | //cout << imp_samples.first << endl; |
---|
586 | |
---|
587 | vec sample_prediction; |
---|
588 | vec averaged_params = zeros(imp_samples.second.rows()); |
---|
589 | for(int t = 0;t<imp_samples.first.size();t++) |
---|
590 | { |
---|
591 | vec lap_sample = conditions[k-3].left(2); |
---|
592 | //lap_sample.ins(lap_sample.size(),1.0); |
---|
593 | |
---|
594 | lap_sample.ins(0,LapRNG()); |
---|
595 | |
---|
596 | sample_prediction.ins(0,lap_sample*imp_samples.second.get_col(t)); |
---|
597 | |
---|
598 | averaged_params += imp_samples.first[t]*imp_samples.second.get_col(t); |
---|
599 | } |
---|
600 | |
---|
601 | averaged_params = averaged_params*(1/(imp_samples.first*ones(imp_samples.first.size()))); |
---|
602 | |
---|
603 | // cout << "Averaged estimated parameters: " << averaged_params << endl; |
---|
604 | |
---|
605 | vec sample_pow = sample_prediction; |
---|
606 | |
---|
607 | // cout << sample_prediction << endl; |
---|
608 | vec poly_coefs; |
---|
609 | double prediction; |
---|
610 | bool stop_iteration = false; |
---|
611 | int en = 1; |
---|
612 | do |
---|
613 | { |
---|
614 | double poly_coef = imp_samples.first*sample_pow/(imp_samples.first*ones(imp_samples.first.size())); |
---|
615 | |
---|
616 | if(en==1) |
---|
617 | { |
---|
618 | prediction = poly_coef; |
---|
619 | } |
---|
620 | |
---|
621 | poly_coef = poly_coef*en*fact(utility_constant-2+en)/fact(utility_constant-2); |
---|
622 | |
---|
623 | if(abs(poly_coef)>numeric_limits<double>::epsilon()) |
---|
624 | { |
---|
625 | sample_pow = elem_mult(sample_pow,sample_prediction); |
---|
626 | poly_coefs.ins(0,pow(-1.0,en+1)*poly_coef); |
---|
627 | } |
---|
628 | else |
---|
629 | { |
---|
630 | stop_iteration = true; |
---|
631 | } |
---|
632 | |
---|
633 | en++; |
---|
634 | |
---|
635 | if(en>20) |
---|
636 | { |
---|
637 | stop_iteration = true; |
---|
638 | } |
---|
639 | } |
---|
640 | while(!stop_iteration); |
---|
641 | |
---|
642 | /* |
---|
643 | ofstream myfile_coef; |
---|
644 | |
---|
645 | myfile_coef.open("c:\\coefs.txt",ios::app); |
---|
646 | |
---|
647 | for(int t = 0;t<poly_coefs.size();t++) |
---|
648 | { |
---|
649 | myfile_coef << poly_coefs[t] << ","; |
---|
650 | } |
---|
651 | |
---|
652 | myfile_coef << endl; |
---|
653 | myfile_coef.close(); |
---|
654 | */ |
---|
655 | |
---|
656 | //cout << "Coefficients: " << poly_coefs << endl; |
---|
657 | |
---|
658 | /* |
---|
659 | vec bas_coef = vec("1.0 2.0 -8.0"); |
---|
660 | cout << "Coefs: " << bas_coef << endl; |
---|
661 | cvec actions2 = roots(bas_coef); |
---|
662 | cout << "Roots: " << actions2 << endl; |
---|
663 | */ |
---|
664 | |
---|
665 | /* |
---|
666 | |
---|
667 | cvec actions = roots(poly_coefs); |
---|
668 | |
---|
669 | |
---|
670 | bool is_max = false; |
---|
671 | for(int t = 0;t<actions.size();t++) |
---|
672 | { |
---|
673 | if(actions[t].imag() == 0) |
---|
674 | { |
---|
675 | double second_derivative = 0; |
---|
676 | for(int q = 1;q<poly_coefs.size();q++) |
---|
677 | { |
---|
678 | second_derivative+=poly_coefs[q]*pow(actions[t].real(),q-1)*q; |
---|
679 | } |
---|
680 | |
---|
681 | if(second_derivative<0) |
---|
682 | { |
---|
683 | cout << "Action:" << actions[t].real() << endl; |
---|
684 | |
---|
685 | is_max = true; |
---|
686 | } |
---|
687 | } |
---|
688 | } |
---|
689 | |
---|
690 | if(!is_max) |
---|
691 | { |
---|
692 | cout << "No maximum." << endl; |
---|
693 | } |
---|
694 | |
---|
695 | // cout << "MaxLik coords:" << my_rarx->posterior->minimal_vertex->get_coordinates() << endl; |
---|
696 | |
---|
697 | /* |
---|
698 | double prediction = 0; |
---|
699 | for(int s = 1;s<samples.rows();s++) |
---|
700 | { |
---|
701 | |
---|
702 | double avg_parameter = imp_samples.get_row(s)*ones(samples.cols())/samples.cols(); |
---|
703 | |
---|
704 | prediction += avg_parameter*conditions[k-3][s-1]; |
---|
705 | |
---|
706 | |
---|
707 | |
---|
708 | /* |
---|
709 | ofstream myfile; |
---|
710 | char fstring[80]; |
---|
711 | strcpy(fstring,file_strings[j]); |
---|
712 | |
---|
713 | char es[5]; |
---|
714 | strcat(fstring,itoa(s,es,10)); |
---|
715 | |
---|
716 | strcat(fstring,"_res.txt"); |
---|
717 | |
---|
718 | |
---|
719 | myfile.open(fstring,ios::app); |
---|
720 | |
---|
721 | //myfile << my_rarx->posterior->minimal_vertex->get_coordinates()[0]; |
---|
722 | myfile << avg_parameter; |
---|
723 | |
---|
724 | if(k!=strings[j].size()-1) |
---|
725 | { |
---|
726 | myfile << ","; |
---|
727 | } |
---|
728 | else |
---|
729 | { |
---|
730 | myfile << endl; |
---|
731 | } |
---|
732 | myfile.close(); |
---|
733 | */ |
---|
734 | |
---|
735 | |
---|
736 | //} |
---|
737 | |
---|
738 | // cout << "Prediction: "<< prediction << endl; |
---|
739 | /* |
---|
740 | enorm<ldmat>* pred_mat = my_arx->epredictor(conditions[k-3].left(2)); |
---|
741 | double prediction2 = pred_mat->mean()[0]; |
---|
742 | */ |
---|
743 | |
---|
744 | |
---|
745 | ofstream myfile; |
---|
746 | char fstring[80]; |
---|
747 | strcpy(fstring,file_string); |
---|
748 | |
---|
749 | strcat(fstring,"lognc.txt"); |
---|
750 | |
---|
751 | myfile.open(fstring,ios::app); |
---|
752 | |
---|
753 | // myfile << my_rarx->posterior->minimal_vertex->get_coordinates()[0]; |
---|
754 | |
---|
755 | if(time == max_model_order) |
---|
756 | { |
---|
757 | for(int i = 0;i<cur_res_lognc.size();i++) |
---|
758 | { |
---|
759 | for(set<pair<int,int>>::iterator ar_ref = models[i]->ar_components.begin();ar_ref != models[i]->ar_components.end();ar_ref++) |
---|
760 | { |
---|
761 | myfile << (*ar_ref).second << (*ar_ref).first; |
---|
762 | } |
---|
763 | |
---|
764 | myfile << "."; |
---|
765 | |
---|
766 | if(models[i]->my_arx == NULL) |
---|
767 | { |
---|
768 | myfile << "1"; |
---|
769 | } |
---|
770 | else |
---|
771 | { |
---|
772 | myfile << "0"; |
---|
773 | } |
---|
774 | |
---|
775 | if(models[i]->has_constant) |
---|
776 | { |
---|
777 | myfile << "1"; |
---|
778 | } |
---|
779 | else |
---|
780 | { |
---|
781 | myfile << "0"; |
---|
782 | } |
---|
783 | |
---|
784 | myfile << ","; |
---|
785 | } |
---|
786 | |
---|
787 | myfile << endl; |
---|
788 | } |
---|
789 | |
---|
790 | for(int i = 0;i<cur_res_lognc.size();i++) |
---|
791 | { |
---|
792 | myfile << cur_res_lognc[i] << ' ';//zmenil som ciarku ze medzeru |
---|
793 | } |
---|
794 | |
---|
795 | myfile << endl; |
---|
796 | |
---|
797 | myfile.close(); |
---|
798 | } |
---|
799 | /* |
---|
800 | myfile.open(f2string,ios::app); |
---|
801 | myfile << prediction2; |
---|
802 | |
---|
803 | if(k!=strings[j].size()-1) |
---|
804 | { |
---|
805 | myfile << ","; |
---|
806 | } |
---|
807 | else |
---|
808 | { |
---|
809 | myfile << endl; |
---|
810 | } |
---|
811 | myfile.close(); |
---|
812 | //*//* |
---|
813 | |
---|
814 | } |
---|
815 | } */ |
---|
816 | |
---|
817 | //emliga->step_me(0); |
---|
818 | /* |
---|
819 | ofstream myfile; |
---|
820 | myfile.open("c:\\robust_ar1.txt",ios::app); |
---|
821 | myfile << my_rarx->minimal_vertex->get_coordinates()[0] << ";"; |
---|
822 | myfile.close(); |
---|
823 | |
---|
824 | myfile.open("c:\\robust_ar2.txt",ios::app); |
---|
825 | myfile << emliga->minimal_vertex->get_coordinates()[1] << ";"; |
---|
826 | myfile.close(); |
---|
827 | |
---|
828 | |
---|
829 | cout << "MaxLik coords:" << emliga->minimal_vertex->get_coordinates() << endl; |
---|
830 | cout << "Step: " << i << endl;*/ |
---|
831 | //} |
---|
832 | |
---|
833 | |
---|
834 | //} |
---|
835 | |
---|
836 | |
---|
837 | // EXPERIMENT: One step ahead price prediction. Comparison of classical and robust model using optimal trading |
---|
838 | // with maximization of logarithm of one-step ahead wealth. |
---|
839 | |
---|
840 | |
---|
841 | |
---|
842 | /* |
---|
843 | cout << "One experiment finished." << endl; |
---|
844 | |
---|
845 | ofstream myfile; |
---|
846 | myfile.open("c:\\robust_ar1.txt",ios::app); |
---|
847 | myfile << endl; |
---|
848 | myfile.close(); |
---|
849 | |
---|
850 | myfile.open("c:\\robust_ar2.txt",ios::app); |
---|
851 | myfile << endl; |
---|
852 | myfile.close();*/ |
---|
853 | |
---|
854 | |
---|
855 | //emlig* emlig1 = new emlig(emlig_size); |
---|
856 | |
---|
857 | //emlig1->step_me(0); |
---|
858 | //emlig* emlig2 = new emlig(emlig_size); |
---|
859 | |
---|
860 | /* |
---|
861 | emlig1->set_correction_factors(4); |
---|
862 | |
---|
863 | for(int j = 0;j<emlig1->correction_factors.size();j++) |
---|
864 | { |
---|
865 | for(set<my_ivec>::iterator vec_ref = emlig1->correction_factors[j].begin();vec_ref!=emlig1->correction_factors[j].end();vec_ref++) |
---|
866 | { |
---|
867 | cout << j << " "; |
---|
868 | |
---|
869 | for(int i=0;i<(*vec_ref).size();i++) |
---|
870 | { |
---|
871 | cout << (*vec_ref)[i]; |
---|
872 | } |
---|
873 | |
---|
874 | cout << endl; |
---|
875 | } |
---|
876 | }*/ |
---|
877 | |
---|
878 | /* |
---|
879 | vec condition5 = "1.0 1.0 1.01";//"-0.3 1.7 1.5"; |
---|
880 | |
---|
881 | emlig1->add_condition(condition5); |
---|
882 | //emlig1->step_me(0); |
---|
883 | |
---|
884 | |
---|
885 | vec condition1a = "-1.0 1.02 0.5"; |
---|
886 | //vec condition1b = "1.0 1.0 1.01"; |
---|
887 | emlig1->add_condition(condition1a); |
---|
888 | //emlig2->add_condition(condition1b); |
---|
889 | |
---|
890 | vec condition2a = "-0.3 1.7 1.5"; |
---|
891 | //vec condition2b = "-1.0 1.0 1.0"; |
---|
892 | emlig1->add_condition(condition2a); |
---|
893 | //emlig2->add_condition(condition2b); |
---|
894 | |
---|
895 | vec condition3a = "0.5 -1.01 1.0"; |
---|
896 | //vec condition3b = "0.5 -1.01 1.0"; |
---|
897 | |
---|
898 | emlig1->add_condition(condition3a); |
---|
899 | //emlig2->add_condition(condition3b); |
---|
900 | |
---|
901 | vec condition4a = "-0.5 -1.0 1.0"; |
---|
902 | //vec condition4b = "-0.5 -1.0 1.0"; |
---|
903 | |
---|
904 | emlig1->add_condition(condition4a); |
---|
905 | //cout << "************************************************" << endl; |
---|
906 | //emlig2->add_condition(condition4b); |
---|
907 | //cout << "************************************************" << endl; |
---|
908 | |
---|
909 | //cout << emlig1->minimal_vertex->get_coordinates(); |
---|
910 | |
---|
911 | //emlig1->remove_condition(condition3a); |
---|
912 | //emlig1->step_me(0); |
---|
913 | //emlig1->remove_condition(condition2a); |
---|
914 | //emlig1->remove_condition(condition1a); |
---|
915 | //emlig1->remove_condition(condition5); |
---|
916 | |
---|
917 | |
---|
918 | //emlig1->step_me(0); |
---|
919 | //emlig2->step_me(0); |
---|
920 | |
---|
921 | |
---|
922 | // DA SE POUZIT PRO VYPIS DO SOUBORU |
---|
923 | // emlig1->step_me(0); |
---|
924 | |
---|
925 | //emlig1->remove_condition(condition1); |
---|
926 | |
---|
927 | |
---|
928 | |
---|
929 | |
---|
930 | |
---|
931 | /* |
---|
932 | for(int i = 0;i<100;i++) |
---|
933 | { |
---|
934 | cout << endl << "Step:" << i << endl; |
---|
935 | |
---|
936 | double condition[emlig_size+1]; |
---|
937 | |
---|
938 | for(int k = 0;k<=emlig_size;k++) |
---|
939 | { |
---|
940 | condition[k] = (rand()-RAND_MAX/2)/1000.0; |
---|
941 | } |
---|
942 | |
---|
943 | |
---|
944 | vec* condition_vec = new vec(condition,emlig_size+1); |
---|
945 | emlig1->add_condition(*condition_vec); |
---|
946 | |
---|
947 | /* |
---|
948 | for(polyhedron* toprow_ref = emlig1->statistic.rows[emlig_size]; toprow_ref != emlig1->statistic.end_poly; toprow_ref = toprow_ref->next_poly) |
---|
949 | { |
---|
950 | cout << ((toprow*)toprow_ref)->probability << endl; |
---|
951 | } |
---|
952 | */ |
---|
953 | /* |
---|
954 | cout << emlig1->statistic_rowsize(emlig_size) << endl << endl; |
---|
955 | |
---|
956 | /* |
---|
957 | if(i-emlig1->number_of_parameters >= 0) |
---|
958 | { |
---|
959 | pause(30); |
---|
960 | } |
---|
961 | */ |
---|
962 | |
---|
963 | // emlig1->step_me(i); |
---|
964 | |
---|
965 | /* |
---|
966 | vector<int> sizevector; |
---|
967 | for(int s = 0;s<=emlig1->number_of_parameters;s++) |
---|
968 | { |
---|
969 | sizevector.push_back(emlig1->statistic_rowsize(s)); |
---|
970 | } |
---|
971 | */ |
---|
972 | //} |
---|
973 | |
---|
974 | |
---|
975 | |
---|
976 | |
---|
977 | /* |
---|
978 | emlig1->step_me(1); |
---|
979 | |
---|
980 | vec condition = "2.0 0.0 1.0"; |
---|
981 | |
---|
982 | emlig1->add_condition(condition); |
---|
983 | |
---|
984 | vector<int> sizevector; |
---|
985 | for(int s = 0;s<=emlig1->number_of_parameters;s++) |
---|
986 | { |
---|
987 | sizevector.push_back(emlig1->statistic_rowsize(s)); |
---|
988 | } |
---|
989 | |
---|
990 | emlig1->step_me(2); |
---|
991 | |
---|
992 | condition = "2.0 1.0 0.0"; |
---|
993 | |
---|
994 | emlig1->add_condition(condition); |
---|
995 | |
---|
996 | sizevector.clear(); |
---|
997 | for(int s = 0;s<=emlig1->number_of_parameters;s++) |
---|
998 | { |
---|
999 | sizevector.push_back(emlig1->statistic_rowsize(s)); |
---|
1000 | } |
---|
1001 | */ |
---|
1002 | |
---|
1003 | return 0; |
---|
1004 | } |
---|
1005 | |
---|
1006 | |
---|