1 | |
---|
2 | /*! |
---|
3 | \file |
---|
4 | \brief Robust |
---|
5 | \author Vasek Smidl |
---|
6 | |
---|
7 | */ |
---|
8 | |
---|
9 | #include "estim/arx.h" |
---|
10 | #include "robustlib.h" |
---|
11 | #include <vector> |
---|
12 | #include <iostream> |
---|
13 | #include <fstream> |
---|
14 | //#include <itpp/itsignal.h> |
---|
15 | #include "windows.h" |
---|
16 | #include "ddeml.h" |
---|
17 | #include "stdio.h" |
---|
18 | |
---|
19 | //#include "DDEClient.h" |
---|
20 | //#include <conio.h> |
---|
21 | |
---|
22 | |
---|
23 | using namespace itpp; |
---|
24 | using namespace bdm; |
---|
25 | |
---|
26 | //const int emlig_size = 2; |
---|
27 | //const int utility_constant = 5; |
---|
28 | |
---|
29 | const int max_model_order = 2; |
---|
30 | const double apriorno = 0.001; |
---|
31 | |
---|
32 | /* |
---|
33 | HDDEDATA CALLBACK DdeCallback( |
---|
34 | UINT uType, // Transaction type. |
---|
35 | UINT uFmt, // Clipboard data format. |
---|
36 | HCONV hconv, // Handle to the conversation. |
---|
37 | HSZ hsz1, // Handle to a string. |
---|
38 | HSZ hsz2, // Handle to a string. |
---|
39 | HDDEDATA hdata, // Handle to a global memory object. |
---|
40 | DWORD dwData1, // Transaction-specific data. |
---|
41 | DWORD dwData2) // Transaction-specific data. |
---|
42 | { |
---|
43 | return 0; |
---|
44 | } |
---|
45 | |
---|
46 | void DDERequest(DWORD idInst, HCONV hConv, char* szItem) |
---|
47 | { |
---|
48 | HSZ hszItem = DdeCreateStringHandle(idInst, szItem, 0); |
---|
49 | HDDEDATA hData = DdeClientTransaction(NULL,0,hConv,hszItem,CF_TEXT, |
---|
50 | XTYP_ADVSTART,TIMEOUT_ASYNC , NULL); //TIMEOUT_ASYNC |
---|
51 | if (hData==NULL) |
---|
52 | { |
---|
53 | printf("Request failed: %s\n", szItem); |
---|
54 | } |
---|
55 | |
---|
56 | if (hData==0) |
---|
57 | { |
---|
58 | printf("Request failed: %s\n", szItem); |
---|
59 | } |
---|
60 | } |
---|
61 | |
---|
62 | DWORD WINAPI ThrdFunc( LPVOID n ) |
---|
63 | { |
---|
64 | return 0; |
---|
65 | } |
---|
66 | */ |
---|
67 | |
---|
68 | class model |
---|
69 | { |
---|
70 | public: |
---|
71 | set<pair<int,int>> ar_components; |
---|
72 | |
---|
73 | // Best thing would be to inherit the two models from a single souce, this is planned, but now structurally |
---|
74 | // problematic. |
---|
75 | RARX* my_rarx; //vzmenovane parametre pre triedu model |
---|
76 | ARXwin* my_arx; |
---|
77 | |
---|
78 | bool has_constant; |
---|
79 | int window_size; //musi byt vacsia ako pocet krokov ak to nema ovplyvnit |
---|
80 | int predicted_channel; |
---|
81 | mat* data_matrix; |
---|
82 | vec predictions; |
---|
83 | |
---|
84 | model(set<pair<int,int>> ar_components, //funkcie treidz model-konstruktor |
---|
85 | bool robust, |
---|
86 | bool has_constant, |
---|
87 | int window_size, |
---|
88 | int predicted_channel, |
---|
89 | mat* data_matrix) |
---|
90 | { |
---|
91 | this->ar_components.insert(ar_components.begin(),ar_components.end()); |
---|
92 | this->has_constant = has_constant; |
---|
93 | this->window_size = window_size; |
---|
94 | this->predicted_channel = predicted_channel; |
---|
95 | this->data_matrix = data_matrix; |
---|
96 | |
---|
97 | if(robust) |
---|
98 | { |
---|
99 | if(has_constant) |
---|
100 | { |
---|
101 | my_rarx = new RARX(ar_components.size()+1,window_size,true,apriorno*sqrt(2.0),apriorno*sqrt(2.0),ar_components.size()+4); |
---|
102 | my_arx = NULL; |
---|
103 | } |
---|
104 | else |
---|
105 | { |
---|
106 | my_rarx = new RARX(ar_components.size(),window_size,false,apriorno*sqrt(2.0),apriorno*sqrt(2.0),ar_components.size()+3); |
---|
107 | my_arx = NULL; |
---|
108 | } |
---|
109 | } |
---|
110 | else |
---|
111 | { |
---|
112 | my_rarx = NULL; |
---|
113 | my_arx = new ARXwin(); |
---|
114 | mat V0; |
---|
115 | |
---|
116 | if(has_constant) |
---|
117 | { |
---|
118 | V0 = apriorno * eye(ar_components.size()+2); //aj tu konst |
---|
119 | //V0(0,0) = 0; |
---|
120 | my_arx->set_constant(true); |
---|
121 | } |
---|
122 | else |
---|
123 | { |
---|
124 | |
---|
125 | V0 = apriorno * eye(ar_components.size()+1);//menit konstantu |
---|
126 | //V0(0,0) = 0; |
---|
127 | my_arx->set_constant(false); |
---|
128 | |
---|
129 | } |
---|
130 | |
---|
131 | my_arx->set_statistics(1, V0, V0.rows()+2); |
---|
132 | my_arx->set_parameters(window_size); |
---|
133 | my_arx->validate(); |
---|
134 | } |
---|
135 | } |
---|
136 | |
---|
137 | void data_update(int time) //vlozime cas a ono vlozi do data_vector podmineky(conditions) a predikce, ktore pouzije do bayes |
---|
138 | { |
---|
139 | vec data_vector; |
---|
140 | for(set<pair<int,int>>::iterator ar_iterator = ar_components.begin();ar_iterator!=ar_components.end();ar_iterator++) |
---|
141 | { //ar?iterator ide len od 1 pod 2, alebo niekedy len 1 |
---|
142 | data_vector.ins(data_vector.size(),(*data_matrix).get(ar_iterator->first,time-ar_iterator->second)); |
---|
143 | // do data vector vlozi pre dany typ regresoru prislusne cisla z data_matrix. Ale ako? preco time-ar_iterator->second? |
---|
144 | } |
---|
145 | if(my_rarx!=NULL) |
---|
146 | { //pre robust priradi az tu do data_vector aj predikciu |
---|
147 | data_vector.ins(0,(*data_matrix).get(predicted_channel,time)); |
---|
148 | my_rarx->bayes(data_vector); |
---|
149 | } |
---|
150 | else |
---|
151 | { |
---|
152 | vec pred_vec;//tu sa predikcia zadava zvlast |
---|
153 | pred_vec.ins(0,(*data_matrix).get(predicted_channel,time)); |
---|
154 | my_arx->bayes(pred_vec,data_vector); |
---|
155 | } |
---|
156 | } |
---|
157 | |
---|
158 | pair<vec,vec> predict(int sample_size, int time, itpp::Laplace_RNG* LapRNG) //nerozumiem, ale vraj to netreba, nepouziva to |
---|
159 | { |
---|
160 | vec condition_vector; |
---|
161 | for(set<pair<int,int>>::iterator ar_iterator = ar_components.begin();ar_iterator!=ar_components.end();ar_iterator++) |
---|
162 | { |
---|
163 | condition_vector.ins(condition_vector.size(),(*data_matrix).get(ar_iterator->first,time-ar_iterator->second+1)); |
---|
164 | } |
---|
165 | |
---|
166 | if(my_rarx!=NULL) |
---|
167 | { |
---|
168 | pair<vec,mat> imp_samples = my_rarx->posterior->importance_sample(sample_size); |
---|
169 | |
---|
170 | //cout << imp_samples.first << endl; |
---|
171 | |
---|
172 | vec sample_prediction; |
---|
173 | for(int t = 0;t<sample_size;t++) |
---|
174 | { |
---|
175 | vec lap_sample = condition_vector; |
---|
176 | |
---|
177 | if(has_constant) |
---|
178 | { |
---|
179 | lap_sample.ins(lap_sample.size(),1.0); |
---|
180 | } |
---|
181 | |
---|
182 | lap_sample.ins(0,(*LapRNG)()); |
---|
183 | |
---|
184 | sample_prediction.ins(0,lap_sample*imp_samples.second.get_col(t)); |
---|
185 | } |
---|
186 | |
---|
187 | return pair<vec,vec>(imp_samples.first,sample_prediction); |
---|
188 | } |
---|
189 | else |
---|
190 | { |
---|
191 | mat samples = my_arx->posterior().sample_mat(sample_size); |
---|
192 | |
---|
193 | vec sample_prediction; |
---|
194 | for(int t = 0;t<sample_size;t++) |
---|
195 | { |
---|
196 | vec gau_sample = condition_vector; |
---|
197 | |
---|
198 | if(has_constant) |
---|
199 | { |
---|
200 | gau_sample.ins(gau_sample.size(),1.0); |
---|
201 | } |
---|
202 | |
---|
203 | gau_sample.ins(gau_sample.size(),randn()); |
---|
204 | |
---|
205 | sample_prediction.ins(0,gau_sample*samples.get_col(t)); |
---|
206 | } |
---|
207 | |
---|
208 | return pair<vec,vec>(ones(sample_prediction.size()),sample_prediction); |
---|
209 | } |
---|
210 | |
---|
211 | } |
---|
212 | |
---|
213 | |
---|
214 | static set<set<pair<int,int>>> possible_models_recurse(int max_order,int number_of_channels) |
---|
215 | { |
---|
216 | set<set<pair<int,int>>> created_model_types; |
---|
217 | |
---|
218 | if(max_order == 1)//ukoncovacia vetva |
---|
219 | { |
---|
220 | for(int channel = 0;channel<number_of_channels;channel++)//pre AR 1 model vytvori kombinace kanalov v prvom kroku poyadu |
---|
221 | { |
---|
222 | set<pair<int,int>> returned_type; |
---|
223 | returned_type.insert(pair<int,int>(channel,1)); //?? |
---|
224 | created_model_types.insert(returned_type); |
---|
225 | } |
---|
226 | |
---|
227 | return created_model_types; |
---|
228 | } |
---|
229 | else |
---|
230 | { |
---|
231 | created_model_types = possible_models_recurse(max_order-1,number_of_channels);//tu uz mame ulozene kombinace o jeden krok dozadu //rekuryivne volanie |
---|
232 | set<set<pair<int,int>>> returned_types; |
---|
233 | |
---|
234 | for(set<set<pair<int,int>>>::iterator model_ref = created_model_types.begin();model_ref!=created_model_types.end();model_ref++) |
---|
235 | { |
---|
236 | |
---|
237 | for(int order = 1; order<=max_order; order++) |
---|
238 | { |
---|
239 | for(int channel = 0;channel<number_of_channels;channel++) |
---|
240 | { |
---|
241 | set<pair<int,int>> returned_type; |
---|
242 | pair<int,int> new_pair = pair<int,int>(channel,order);//?? |
---|
243 | if(find((*model_ref).begin(),(*model_ref).end(),new_pair)==(*model_ref).end()) //?? |
---|
244 | { |
---|
245 | returned_type.insert((*model_ref).begin(),(*model_ref).end()); //co vlozi na zaciatok retuned_type? |
---|
246 | returned_type.insert(new_pair); |
---|
247 | |
---|
248 | |
---|
249 | returned_types.insert(returned_type); |
---|
250 | } |
---|
251 | } |
---|
252 | } |
---|
253 | } |
---|
254 | |
---|
255 | created_model_types.insert(returned_types.begin(),returned_types.end()); |
---|
256 | |
---|
257 | return created_model_types; |
---|
258 | } |
---|
259 | } |
---|
260 | }; |
---|
261 | |
---|
262 | |
---|
263 | |
---|
264 | |
---|
265 | int main ( int argc, char* argv[] ) |
---|
266 | { |
---|
267 | |
---|
268 | // EXPERIMENT: A moving window estimation and prediction of RARX is tested on data generated from |
---|
269 | // y_t=0.95*y_(t-1)+0.05*y_(t-2)+0.2*e_t, where e_t is normally, student(4) and cauchy distributed. It |
---|
270 | // can be compared to the classical setup. |
---|
271 | |
---|
272 | itpp::Laplace_RNG LapRNG = Laplace_RNG(); |
---|
273 | |
---|
274 | vector<vector<string>> strings; |
---|
275 | |
---|
276 | char* file_string = "C:\\Users\\Hontik\\Desktop\\Bayes\\dataADClosePercDiff"; // "C:\\Users\\Hontik\\Desktop\\Bayes\\ar_normal_single"; // |
---|
277 | |
---|
278 | char dfstring[80]; |
---|
279 | strcpy(dfstring,file_string); |
---|
280 | strcat(dfstring,".txt"); |
---|
281 | |
---|
282 | |
---|
283 | mat data_matrix; |
---|
284 | ifstream myfile(dfstring); |
---|
285 | if (myfile.is_open()) |
---|
286 | { |
---|
287 | string line; |
---|
288 | while(getline(myfile,line)) |
---|
289 | { |
---|
290 | vec data_vector; |
---|
291 | while(line.find(',') != string::npos) //zmenil som ciarku za medzeru |
---|
292 | { |
---|
293 | //line.erase(0,1); // toto som sem pridal |
---|
294 | int loc2 = line.find('\n'); |
---|
295 | int loc = line.find(','); |
---|
296 | data_vector.ins(data_vector.size(),atof(line.substr(0,loc).c_str())); |
---|
297 | line.erase(0,loc+1); |
---|
298 | } |
---|
299 | |
---|
300 | data_matrix.ins_row(data_matrix.rows(),data_vector); |
---|
301 | } |
---|
302 | |
---|
303 | myfile.close(); |
---|
304 | } |
---|
305 | else |
---|
306 | { |
---|
307 | cout << "Can't open data file!" << endl; |
---|
308 | } |
---|
309 | |
---|
310 | //konec nacitavania dat |
---|
311 | set<set<pair<int,int>>> model_types = model::possible_models_recurse(max_model_order,data_matrix.rows()); //volanie funkce kde robi kombinace modelov |
---|
312 | //to priradime do model_types, data_matrix.row urcuje pocet kanalov dat |
---|
313 | vector<model*> models; |
---|
314 | for(set<set<pair<int,int>>>::iterator model_type = model_types.begin();model_type!=model_types.end();model_type++) |
---|
315 | {// prechadza rozne typy kanalov, a poctu regresorov |
---|
316 | for(int window_size = 50;window_size < 51;window_size++) |
---|
317 | { |
---|
318 | models.push_back(new model((*model_type),true,true,window_size,0,&data_matrix)); // to su len konstruktory, len inicializujeme rozne typy |
---|
319 | models.push_back(new model((*model_type),false,true,window_size,0,&data_matrix)); |
---|
320 | models.push_back(new model((*model_type),true,false,window_size,0,&data_matrix)); |
---|
321 | models.push_back(new model((*model_type),false,false,window_size,0,&data_matrix)); |
---|
322 | } |
---|
323 | |
---|
324 | //set<pair<int,int>> empty_list; |
---|
325 | //models.push_back(new model(empty_list,false,true,100,0,&data_matrix)); |
---|
326 | } |
---|
327 | |
---|
328 | mat result_lognc; |
---|
329 | // mat result_preds; |
---|
330 | |
---|
331 | ofstream myfilew; |
---|
332 | char fstring[80]; |
---|
333 | strcpy(fstring,file_string); |
---|
334 | strcat(fstring,"lognc.txt"); |
---|
335 | //strcat(fstring,"preds.txt"); |
---|
336 | |
---|
337 | for(int time = max_model_order;time<data_matrix.cols();time++) //time<data_matrix.cols() |
---|
338 | { //pocet stlpcov data_matrix je pocet casovych krokov |
---|
339 | vec cur_res_lognc; |
---|
340 | // vec preds; |
---|
341 | vector<string> nazvy; |
---|
342 | for(vector<model*>::iterator model_ref = models.begin();model_ref!=models.end();model_ref++) |
---|
343 | {//posuvam s apo models, co je pole modelov urobene o cyklus vyssie. Teda som v case time a robim to tam pre vsetky typy modelov, kombinace regresorov |
---|
344 | (*model_ref)->data_update(time); //pozret sa preco je toto tu nutne |
---|
345 | |
---|
346 | cout << "Updated." << endl; |
---|
347 | //if (time = max_model_order) nazvy.push_back(models.model_ref]);// ako by som mohol dostat nazov modelu? |
---|
348 | |
---|
349 | if((*model_ref)->my_rarx!=NULL) //vklada normalizacnz faktor do cur_res_lognc |
---|
350 | { |
---|
351 | cur_res_lognc.ins(cur_res_lognc.size(),(*model_ref)->my_rarx->posterior->_ll()); |
---|
352 | } |
---|
353 | else |
---|
354 | { |
---|
355 | cur_res_lognc.ins(cur_res_lognc.size(),(*model_ref)->my_arx->_ll()); |
---|
356 | } |
---|
357 | |
---|
358 | pair<vec,vec> predictions = (*model_ref)->predict(20,time,&LapRNG); |
---|
359 | |
---|
360 | cout << predictions.first << endl << predictions.second << endl; |
---|
361 | |
---|
362 | double avg_prediction = (predictions.first*predictions.second)/(predictions.first*ones(predictions.first.size())); |
---|
363 | |
---|
364 | (*model_ref)->predictions.ins((*model_ref)->predictions.size(),avg_prediction); |
---|
365 | |
---|
366 | /* |
---|
367 | myfilew.open(fstring,ios::app); |
---|
368 | myfilew << avg_prediction << ","; |
---|
369 | myfilew.close(); |
---|
370 | */ |
---|
371 | |
---|
372 | //preds.ins(0,data_matrix.get(0,time+1)); |
---|
373 | } |
---|
374 | |
---|
375 | /* |
---|
376 | myfilew.open(fstring,ios::app); |
---|
377 | myfilew << data_matrix.get(0,time+1) << endl; |
---|
378 | myfilew.close(); |
---|
379 | */ |
---|
380 | |
---|
381 | result_lognc.ins_col(result_lognc.cols(),cur_res_lognc); |
---|
382 | // result_preds.ins_col(result_preds.cols(),preds); |
---|
383 | |
---|
384 | // cout << "Updated." << endl; |
---|
385 | |
---|
386 | |
---|
387 | myfilew.open(fstring,ios::app); |
---|
388 | |
---|
389 | // myfile << my_rarx->posterior->minimal_vertex->get_coordinates()[0]; |
---|
390 | |
---|
391 | if(time == max_model_order) |
---|
392 | { |
---|
393 | for(int i = 0;i<cur_res_lognc.size();i++) |
---|
394 | { |
---|
395 | for(set<pair<int,int>>::iterator ar_ref = models[i]->ar_components.begin();ar_ref != models[i]->ar_components.end();ar_ref++) |
---|
396 | { |
---|
397 | myfilew << (*ar_ref).second << (*ar_ref).first; |
---|
398 | } |
---|
399 | |
---|
400 | myfilew << "."; |
---|
401 | |
---|
402 | if(models[i]->my_arx == NULL) |
---|
403 | { |
---|
404 | myfilew << "1"; |
---|
405 | } |
---|
406 | else |
---|
407 | { |
---|
408 | myfilew << "0"; |
---|
409 | } |
---|
410 | |
---|
411 | if(models[i]->has_constant) |
---|
412 | { |
---|
413 | myfilew << "1"; |
---|
414 | } |
---|
415 | else |
---|
416 | { |
---|
417 | myfilew << "0"; |
---|
418 | } |
---|
419 | |
---|
420 | myfilew << ","; |
---|
421 | } |
---|
422 | |
---|
423 | myfilew << endl; |
---|
424 | } |
---|
425 | |
---|
426 | for(int i = 0;i<cur_res_lognc.size();i++) |
---|
427 | { |
---|
428 | myfilew << cur_res_lognc[i] << ' ';//zmenil som ciarku ze medzeru |
---|
429 | } |
---|
430 | |
---|
431 | myfilew << endl; |
---|
432 | |
---|
433 | myfilew.close(); |
---|
434 | |
---|
435 | } |
---|
436 | |
---|
437 | |
---|
438 | |
---|
439 | // EXPERIMENT: One step ahead price prediction. Comparison of classical and robust model using optimal trading |
---|
440 | // with maximization of logarithm of one-step ahead wealth. |
---|
441 | |
---|
442 | |
---|
443 | |
---|
444 | /* |
---|
445 | cout << "One experiment finished." << endl; |
---|
446 | |
---|
447 | ofstream myfile; |
---|
448 | myfile.open("c:\\robust_ar1.txt",ios::app); |
---|
449 | myfile << endl; |
---|
450 | myfile.close(); |
---|
451 | |
---|
452 | myfile.open("c:\\robust_ar2.txt",ios::app); |
---|
453 | myfile << endl; |
---|
454 | myfile.close();*/ |
---|
455 | |
---|
456 | |
---|
457 | //emlig* emlig1 = new emlig(emlig_size); |
---|
458 | |
---|
459 | //emlig1->step_me(0); |
---|
460 | //emlig* emlig2 = new emlig(emlig_size); |
---|
461 | |
---|
462 | /* |
---|
463 | emlig1->set_correction_factors(4); |
---|
464 | |
---|
465 | for(int j = 0;j<emlig1->correction_factors.size();j++) |
---|
466 | { |
---|
467 | for(set<my_ivec>::iterator vec_ref = emlig1->correction_factors[j].begin();vec_ref!=emlig1->correction_factors[j].end();vec_ref++) |
---|
468 | { |
---|
469 | cout << j << " "; |
---|
470 | |
---|
471 | for(int i=0;i<(*vec_ref).size();i++) |
---|
472 | { |
---|
473 | cout << (*vec_ref)[i]; |
---|
474 | } |
---|
475 | |
---|
476 | cout << endl; |
---|
477 | } |
---|
478 | }*/ |
---|
479 | |
---|
480 | /* |
---|
481 | vec condition5 = "1.0 1.0 1.01";//"-0.3 1.7 1.5"; |
---|
482 | |
---|
483 | emlig1->add_condition(condition5); |
---|
484 | //emlig1->step_me(0); |
---|
485 | |
---|
486 | |
---|
487 | vec condition1a = "-1.0 1.02 0.5"; |
---|
488 | //vec condition1b = "1.0 1.0 1.01"; |
---|
489 | emlig1->add_condition(condition1a); |
---|
490 | //emlig2->add_condition(condition1b); |
---|
491 | |
---|
492 | vec condition2a = "-0.3 1.7 1.5"; |
---|
493 | //vec condition2b = "-1.0 1.0 1.0"; |
---|
494 | emlig1->add_condition(condition2a); |
---|
495 | //emlig2->add_condition(condition2b); |
---|
496 | |
---|
497 | vec condition3a = "0.5 -1.01 1.0"; |
---|
498 | //vec condition3b = "0.5 -1.01 1.0"; |
---|
499 | |
---|
500 | emlig1->add_condition(condition3a); |
---|
501 | //emlig2->add_condition(condition3b); |
---|
502 | |
---|
503 | vec condition4a = "-0.5 -1.0 1.0"; |
---|
504 | //vec condition4b = "-0.5 -1.0 1.0"; |
---|
505 | |
---|
506 | emlig1->add_condition(condition4a); |
---|
507 | //cout << "************************************************" << endl; |
---|
508 | //emlig2->add_condition(condition4b); |
---|
509 | //cout << "************************************************" << endl; |
---|
510 | |
---|
511 | //cout << emlig1->minimal_vertex->get_coordinates(); |
---|
512 | |
---|
513 | //emlig1->remove_condition(condition3a); |
---|
514 | //emlig1->step_me(0); |
---|
515 | //emlig1->remove_condition(condition2a); |
---|
516 | //emlig1->remove_condition(condition1a); |
---|
517 | //emlig1->remove_condition(condition5); |
---|
518 | |
---|
519 | |
---|
520 | //emlig1->step_me(0); |
---|
521 | //emlig2->step_me(0); |
---|
522 | |
---|
523 | |
---|
524 | // DA SE POUZIT PRO VYPIS DO SOUBORU |
---|
525 | // emlig1->step_me(0); |
---|
526 | |
---|
527 | //emlig1->remove_condition(condition1); |
---|
528 | |
---|
529 | |
---|
530 | |
---|
531 | |
---|
532 | |
---|
533 | /* |
---|
534 | for(int i = 0;i<100;i++) |
---|
535 | { |
---|
536 | cout << endl << "Step:" << i << endl; |
---|
537 | |
---|
538 | double condition[emlig_size+1]; |
---|
539 | |
---|
540 | for(int k = 0;k<=emlig_size;k++) |
---|
541 | { |
---|
542 | condition[k] = (rand()-RAND_MAX/2)/1000.0; |
---|
543 | } |
---|
544 | |
---|
545 | |
---|
546 | vec* condition_vec = new vec(condition,emlig_size+1); |
---|
547 | emlig1->add_condition(*condition_vec); |
---|
548 | |
---|
549 | /* |
---|
550 | for(polyhedron* toprow_ref = emlig1->statistic.rows[emlig_size]; toprow_ref != emlig1->statistic.end_poly; toprow_ref = toprow_ref->next_poly) |
---|
551 | { |
---|
552 | cout << ((toprow*)toprow_ref)->probability << endl; |
---|
553 | } |
---|
554 | */ |
---|
555 | /* |
---|
556 | cout << emlig1->statistic_rowsize(emlig_size) << endl << endl; |
---|
557 | |
---|
558 | /* |
---|
559 | if(i-emlig1->number_of_parameters >= 0) |
---|
560 | { |
---|
561 | pause(30); |
---|
562 | } |
---|
563 | */ |
---|
564 | |
---|
565 | // emlig1->step_me(i); |
---|
566 | |
---|
567 | /* |
---|
568 | vector<int> sizevector; |
---|
569 | for(int s = 0;s<=emlig1->number_of_parameters;s++) |
---|
570 | { |
---|
571 | sizevector.push_back(emlig1->statistic_rowsize(s)); |
---|
572 | } |
---|
573 | */ |
---|
574 | //} |
---|
575 | |
---|
576 | |
---|
577 | |
---|
578 | |
---|
579 | /* |
---|
580 | emlig1->step_me(1); |
---|
581 | |
---|
582 | vec condition = "2.0 0.0 1.0"; |
---|
583 | |
---|
584 | emlig1->add_condition(condition); |
---|
585 | |
---|
586 | vector<int> sizevector; |
---|
587 | for(int s = 0;s<=emlig1->number_of_parameters;s++) |
---|
588 | { |
---|
589 | sizevector.push_back(emlig1->statistic_rowsize(s)); |
---|
590 | } |
---|
591 | |
---|
592 | emlig1->step_me(2); |
---|
593 | |
---|
594 | condition = "2.0 1.0 0.0"; |
---|
595 | |
---|
596 | emlig1->add_condition(condition); |
---|
597 | |
---|
598 | sizevector.clear(); |
---|
599 | for(int s = 0;s<=emlig1->number_of_parameters;s++) |
---|
600 | { |
---|
601 | sizevector.push_back(emlig1->statistic_rowsize(s)); |
---|
602 | } |
---|
603 | */ |
---|
604 | |
---|
605 | return 0; |
---|
606 | } |
---|
607 | |
---|
608 | |
---|