1 | |
---|
2 | /*! |
---|
3 | \file |
---|
4 | \brief Robust |
---|
5 | \author Vasek Smidl |
---|
6 | |
---|
7 | */ |
---|
8 | |
---|
9 | #include "estim/arx.h" |
---|
10 | #include "robustlib.h" |
---|
11 | #include <vector> |
---|
12 | #include <iostream> |
---|
13 | #include <fstream> |
---|
14 | //#include <itpp/itsignal.h> |
---|
15 | #include "windows.h" |
---|
16 | #include "ddeml.h" |
---|
17 | #include "stdio.h" |
---|
18 | |
---|
19 | //#include "DDEClient.h" |
---|
20 | //#include <conio.h> |
---|
21 | |
---|
22 | |
---|
23 | using namespace itpp; |
---|
24 | using namespace bdm; |
---|
25 | |
---|
26 | //const int emlig_size = 2; |
---|
27 | //const int utility_constant = 5; |
---|
28 | |
---|
29 | const int max_model_order = 2; |
---|
30 | const double apriorno = 0.01; |
---|
31 | const int max_window_size = 30; |
---|
32 | |
---|
33 | class model |
---|
34 | { |
---|
35 | public: |
---|
36 | set<pair<int,int>> ar_components; |
---|
37 | |
---|
38 | // Best thing would be to inherit the two models from a single souce, this is planned, but now structurally |
---|
39 | // problematic. |
---|
40 | RARX* my_rarx; //vzmenovane parametre pre triedu model |
---|
41 | ARXwin* my_arx; |
---|
42 | |
---|
43 | bool has_constant; |
---|
44 | int window_size; //musi byt vacsia ako pocet krokov ak to nema ovplyvnit |
---|
45 | int predicted_channel; |
---|
46 | mat* data_matrix; |
---|
47 | vec predictions; |
---|
48 | char name[80]; |
---|
49 | |
---|
50 | model(set<pair<int,int>> ar_components, //funkcie treidz model-konstruktor |
---|
51 | bool robust, |
---|
52 | bool has_constant, |
---|
53 | int window_size, |
---|
54 | int predicted_channel, |
---|
55 | mat* data_matrix) |
---|
56 | { |
---|
57 | this->ar_components.insert(ar_components.begin(),ar_components.end()); |
---|
58 | |
---|
59 | strcpy(name,"M"); |
---|
60 | |
---|
61 | for(set<pair<int,int>>::iterator ar_ref = ar_components.begin();ar_ref!=ar_components.end();ar_ref++) |
---|
62 | { |
---|
63 | char buffer1[2]; |
---|
64 | char buffer2[2]; |
---|
65 | itoa((*ar_ref).first,buffer1,10); |
---|
66 | itoa((*ar_ref).second,buffer2,10); |
---|
67 | |
---|
68 | strcat(name,buffer1); |
---|
69 | strcat(name,buffer2); |
---|
70 | strcat(name,"_"); |
---|
71 | } |
---|
72 | |
---|
73 | this->has_constant = has_constant; |
---|
74 | |
---|
75 | if(has_constant) |
---|
76 | { |
---|
77 | strcat(name,"C"); |
---|
78 | } |
---|
79 | |
---|
80 | this->window_size = window_size; |
---|
81 | this->predicted_channel = predicted_channel; |
---|
82 | this->data_matrix = data_matrix; |
---|
83 | |
---|
84 | if(robust) |
---|
85 | { |
---|
86 | strcat(name,"R"); |
---|
87 | |
---|
88 | if(has_constant) |
---|
89 | { |
---|
90 | my_rarx = new RARX(ar_components.size()+1,window_size,true,sqrt(2*apriorno),sqrt(2*apriorno),ar_components.size()+4); |
---|
91 | my_arx = NULL; |
---|
92 | } |
---|
93 | else |
---|
94 | { |
---|
95 | my_rarx = new RARX(ar_components.size(),window_size,false,sqrt(2*apriorno),sqrt(2*apriorno),ar_components.size()+3); |
---|
96 | my_arx = NULL; |
---|
97 | } |
---|
98 | } |
---|
99 | else |
---|
100 | { |
---|
101 | my_rarx = NULL; |
---|
102 | my_arx = new ARXwin(); |
---|
103 | mat V0; |
---|
104 | |
---|
105 | if(has_constant) |
---|
106 | { |
---|
107 | V0 = apriorno * eye(ar_components.size()+2); //aj tu konst |
---|
108 | //V0(0,0) = 0; |
---|
109 | my_arx->set_constant(true); |
---|
110 | } |
---|
111 | else |
---|
112 | { |
---|
113 | |
---|
114 | V0 = apriorno * eye(ar_components.size()+1);//menit konstantu |
---|
115 | //V0(0,1) = -0.01; |
---|
116 | //V0(1,0) = -0.01; |
---|
117 | my_arx->set_constant(false); |
---|
118 | |
---|
119 | } |
---|
120 | |
---|
121 | my_arx->set_statistics(1, V0, V0.rows()+2); |
---|
122 | my_arx->set_parameters(window_size); |
---|
123 | my_arx->validate(); |
---|
124 | |
---|
125 | vec mean = my_arx->posterior().mean(); |
---|
126 | cout << mean << endl; |
---|
127 | } |
---|
128 | } |
---|
129 | |
---|
130 | void data_update(int time) //vlozime cas a ono vlozi do data_vector podmineky(conditions) a predikce, ktore pouzije do bayes |
---|
131 | { |
---|
132 | vec data_vector; |
---|
133 | for(set<pair<int,int>>::iterator ar_iterator = ar_components.begin();ar_iterator!=ar_components.end();ar_iterator++) |
---|
134 | { |
---|
135 | data_vector.ins(data_vector.size(),(*data_matrix).get(ar_iterator->first,time-ar_iterator->second)); |
---|
136 | } |
---|
137 | if(my_rarx!=NULL) |
---|
138 | { |
---|
139 | data_vector.ins(0,(*data_matrix).get(predicted_channel,time)); |
---|
140 | my_rarx->bayes(data_vector); |
---|
141 | } |
---|
142 | else |
---|
143 | { |
---|
144 | vec pred_vec; |
---|
145 | pred_vec.ins(0,(*data_matrix).get(predicted_channel,time)); |
---|
146 | my_arx->bayes(pred_vec,data_vector); |
---|
147 | } |
---|
148 | } |
---|
149 | |
---|
150 | pair<vec,vec> predict(int sample_size, int time, itpp::Laplace_RNG* LapRNG) //nerozumiem, ale vraj to netreba, nepouziva to |
---|
151 | { |
---|
152 | vec condition_vector; |
---|
153 | for(set<pair<int,int>>::iterator ar_iterator = ar_components.begin();ar_iterator!=ar_components.end();ar_iterator++) |
---|
154 | { |
---|
155 | condition_vector.ins(condition_vector.size(),(*data_matrix).get(ar_iterator->first,time-ar_iterator->second+1)); |
---|
156 | } |
---|
157 | |
---|
158 | if(my_rarx!=NULL) |
---|
159 | { |
---|
160 | pair<vec,mat> imp_samples = my_rarx->posterior->sample(sample_size,false); |
---|
161 | |
---|
162 | //cout << imp_samples.first << endl; |
---|
163 | |
---|
164 | vec sample_prediction; |
---|
165 | for(int t = 0;t<sample_size;t++) |
---|
166 | { |
---|
167 | vec lap_sample = condition_vector; |
---|
168 | |
---|
169 | if(has_constant) |
---|
170 | { |
---|
171 | lap_sample.ins(lap_sample.size(),1.0); |
---|
172 | } |
---|
173 | |
---|
174 | lap_sample.ins(lap_sample.size(),(*LapRNG)()); |
---|
175 | |
---|
176 | sample_prediction.ins(0,lap_sample*imp_samples.second.get_col(t)); |
---|
177 | } |
---|
178 | |
---|
179 | return pair<vec,vec>(imp_samples.first,sample_prediction); |
---|
180 | } |
---|
181 | else |
---|
182 | { |
---|
183 | mat samples = my_arx->posterior().sample_mat(sample_size); |
---|
184 | |
---|
185 | vec sample_prediction; |
---|
186 | for(int t = 0;t<sample_size;t++) |
---|
187 | { |
---|
188 | vec gau_sample = condition_vector; |
---|
189 | |
---|
190 | if(has_constant) |
---|
191 | { |
---|
192 | gau_sample.ins(gau_sample.size(),1.0); |
---|
193 | } |
---|
194 | |
---|
195 | gau_sample.ins(gau_sample.size(),randn()); |
---|
196 | |
---|
197 | sample_prediction.ins(0,gau_sample*samples.get_col(t)); |
---|
198 | } |
---|
199 | |
---|
200 | return pair<vec,vec>(ones(sample_prediction.size()),sample_prediction); |
---|
201 | } |
---|
202 | |
---|
203 | } |
---|
204 | |
---|
205 | |
---|
206 | static set<set<pair<int,int>>> possible_models_recurse(int max_order,int number_of_channels) |
---|
207 | { |
---|
208 | set<set<pair<int,int>>> created_model_types; |
---|
209 | |
---|
210 | if(max_order == 1) |
---|
211 | { |
---|
212 | for(int channel = 0;channel<number_of_channels;channel++) |
---|
213 | { |
---|
214 | set<pair<int,int>> returned_type; |
---|
215 | returned_type.insert(pair<int,int>(channel,1)); |
---|
216 | created_model_types.insert(returned_type); |
---|
217 | } |
---|
218 | |
---|
219 | return created_model_types; |
---|
220 | } |
---|
221 | else |
---|
222 | { |
---|
223 | created_model_types = possible_models_recurse(max_order-1,number_of_channels); |
---|
224 | set<set<pair<int,int>>> returned_types; |
---|
225 | |
---|
226 | for(set<set<pair<int,int>>>::iterator model_ref = created_model_types.begin();model_ref!=created_model_types.end();model_ref++) |
---|
227 | { |
---|
228 | |
---|
229 | for(int order = 1; order<=max_order; order++) |
---|
230 | { |
---|
231 | for(int channel = 0;channel<number_of_channels;channel++) |
---|
232 | { |
---|
233 | set<pair<int,int>> returned_type; |
---|
234 | pair<int,int> new_pair = pair<int,int>(channel,order); |
---|
235 | if(find((*model_ref).begin(),(*model_ref).end(),new_pair)==(*model_ref).end()) |
---|
236 | { |
---|
237 | returned_type.insert((*model_ref).begin(),(*model_ref).end()); |
---|
238 | returned_type.insert(new_pair); |
---|
239 | |
---|
240 | |
---|
241 | returned_types.insert(returned_type); |
---|
242 | } |
---|
243 | } |
---|
244 | } |
---|
245 | } |
---|
246 | |
---|
247 | created_model_types.insert(returned_types.begin(),returned_types.end()); |
---|
248 | |
---|
249 | return created_model_types; |
---|
250 | } |
---|
251 | } |
---|
252 | }; |
---|
253 | |
---|
254 | |
---|
255 | |
---|
256 | |
---|
257 | int main ( int argc, char* argv[] ) |
---|
258 | { |
---|
259 | vector<vector<string>> strings; |
---|
260 | |
---|
261 | char* file_string = "C:\\results\\normalM"; // "C:\\dataADClosePercDiff"; // |
---|
262 | |
---|
263 | char dfstring[80]; |
---|
264 | strcpy(dfstring,file_string); |
---|
265 | strcat(dfstring,".txt"); |
---|
266 | |
---|
267 | |
---|
268 | mat data_matrix; |
---|
269 | ifstream myfile(dfstring); |
---|
270 | if (myfile.is_open()) |
---|
271 | { |
---|
272 | string line; |
---|
273 | while(getline(myfile,line)) |
---|
274 | { |
---|
275 | vec data_vector; |
---|
276 | while(line.find(',') != string::npos) |
---|
277 | { |
---|
278 | int loc2 = line.find('\n'); |
---|
279 | int loc = line.find(','); |
---|
280 | data_vector.ins(data_vector.size(),atof(line.substr(0,loc).c_str())); |
---|
281 | line.erase(0,loc+1); |
---|
282 | } |
---|
283 | |
---|
284 | data_matrix.ins_row(data_matrix.rows(),data_vector); |
---|
285 | } |
---|
286 | |
---|
287 | myfile.close(); |
---|
288 | } |
---|
289 | else |
---|
290 | { |
---|
291 | cout << "Can't open data file!" << endl; |
---|
292 | } |
---|
293 | |
---|
294 | set<pair<int,int>> model_type; |
---|
295 | model_type.insert(pair<int,int>(0,1)); |
---|
296 | model_type.insert(pair<int,int>(0,2)); |
---|
297 | |
---|
298 | vector<model*> models; |
---|
299 | |
---|
300 | ofstream myfilew; |
---|
301 | |
---|
302 | |
---|
303 | while(data_matrix.rows()!=0) |
---|
304 | { |
---|
305 | for(int i=0;i<models.size();i++) |
---|
306 | { |
---|
307 | delete models[i]; |
---|
308 | } |
---|
309 | |
---|
310 | models.clear(); |
---|
311 | models.push_back(new model(model_type,true,false,max_window_size,0,&data_matrix)); |
---|
312 | models.push_back(new model(model_type,false,false,max_window_size,0,&data_matrix)); |
---|
313 | |
---|
314 | for(int time = max_model_order;time<max_window_size;time++) //time<data_matrix.cols() |
---|
315 | { |
---|
316 | vec cur_res_lognc; |
---|
317 | |
---|
318 | vector<string> nazvy; |
---|
319 | for(vector<model*>::iterator model_ref = models.begin();model_ref!=models.end();model_ref++) |
---|
320 | { |
---|
321 | (*model_ref)->data_update(time); |
---|
322 | |
---|
323 | cout << "Updated:" << time << endl; |
---|
324 | |
---|
325 | if(time == max_window_size-1) |
---|
326 | { |
---|
327 | char fstring[80]; |
---|
328 | strcpy(fstring,file_string); |
---|
329 | strcat(fstring,"ml"); |
---|
330 | strcat(fstring,(*model_ref)->name); |
---|
331 | strcat(fstring,".txt"); |
---|
332 | |
---|
333 | vec coords; |
---|
334 | if((*model_ref)->my_arx!=NULL) |
---|
335 | { |
---|
336 | coords = (*model_ref)->my_arx->posterior().est_theta(); |
---|
337 | } |
---|
338 | else |
---|
339 | { |
---|
340 | coords = (*model_ref)->my_rarx->posterior->minimal_vertex->get_coordinates(); |
---|
341 | } |
---|
342 | |
---|
343 | myfilew.open(fstring,ios::app); |
---|
344 | |
---|
345 | for(int i=0;i<coords.size();i++) |
---|
346 | { |
---|
347 | myfilew << coords.get(i) << ","; |
---|
348 | } |
---|
349 | myfilew << endl; |
---|
350 | |
---|
351 | myfilew.close(); |
---|
352 | } |
---|
353 | } |
---|
354 | } |
---|
355 | |
---|
356 | data_matrix.del_row(0); |
---|
357 | } |
---|
358 | |
---|
359 | |
---|
360 | |
---|
361 | |
---|
362 | |
---|
363 | return 0; |
---|
364 | } |
---|
365 | |
---|
366 | |
---|