/*! \file \brief Robust \author Vasek Smidl */ #include "robustlib.h" #include #include #include using namespace itpp; //using namespace bdm; const int emlig_size = 2; int main ( int argc, char* argv[] ) { /* // EXPERIMENT: 100 AR model generated time series of length of 30 from y_t=0.95*y_(t-1)+0.05*y_(t-2)+0.2*e_t, // where e_t is normally, student(4) and cauchy distributed are tested using robust AR model, to obtain the // variance of location parameter estimators and compare it to the classical setup. vector>> string_lists; string_lists.push_back(vector>()); string_lists.push_back(vector>()); string_lists.push_back(vector>()); char* file_strings[3] = {"c:\\ar_normal.txt", "c:\\ar_student.txt", "c:\\ar_cauchy.txt"}; for(int i = 0;i<3;i++) { ifstream myfile(file_strings[i]); if (myfile.is_open()) { while ( myfile.good() ) { string line; getline(myfile,line); vector parsed_line; while(line.find(',') != string::npos) { int loc = line.find(','); parsed_line.push_back(line.substr(0,loc)); line.erase(0,loc+1); } string_lists[i].push_back(parsed_line); } myfile.close(); } } for(int j = 0;j conditions; //emlig* emliga = new emlig(2); RARX* my_rarx = new RARX(2,30); for(int k = 1;k1) { conditions[k-2].ins(0,string_lists[j][i][k]); } if(conditions.size()>2) { conditions[k-3].ins(0,string_lists[j][i][k]); //cout << "modi:" << conditions[k-3] << endl; my_rarx->bayes(conditions[k-3]); //if(k>5) //{ // cout << "MaxLik coords:" << emliga->minimal_vertex->get_coordinates() << endl; //} } } //emliga->step_me(0); /* ofstream myfile; myfile.open("c:\\robust_ar1.txt",ios::app); myfile << my_rarx->minimal_vertex->get_coordinates()[0] << ";"; myfile.close(); myfile.open("c:\\robust_ar2.txt",ios::app); myfile << emliga->minimal_vertex->get_coordinates()[1] << ";"; myfile.close(); cout << "MaxLik coords:" << emliga->minimal_vertex->get_coordinates() << endl; cout << "Step: " << i << endl; } cout << "One experiment finished." << endl; ofstream myfile; myfile.open("c:\\robust_ar1.txt",ios::app); myfile << endl; myfile.close(); myfile.open("c:\\robust_ar2.txt",ios::app); myfile << endl; myfile.close(); }*/ // EXPERIMENT: A moving window estimation and prediction of RARX is tested on data generated from // y_t=0.95*y_(t-1)+0.05*y_(t-2)+0.2*e_t, where e_t is normally, student(4) and cauchy distributed. It // can be compared to the classical setup. vector> strings; char* file_strings[3] = {"c:\\ar_cauchy_single.txt", "c:\\ar_normal_single.txt","c:\\ar_student_single.txt"}; for(int i = 0;i<3;i++) { ifstream myfile(file_strings[i]); if (myfile.is_open()) { string line; getline(myfile,line); vector parsed_line; while(line.find(',') != string::npos) { int loc = line.find(','); parsed_line.push_back(line.substr(0,loc)); line.erase(0,loc+1); } strings.push_back(parsed_line); myfile.close(); } } for(int j = 0;j conditions; //emlig* emliga = new emlig(2); RARX* my_rarx = new RARX(2,70); for(int k = 1;k<170;k++) { vec condition; //condition.ins(0,1); condition.ins(0,strings[j][k]); conditions.push_back(condition); //cout << "orig:" << condition << endl; if(conditions.size()>1) { conditions[k-2].ins(0,strings[j][k]); } if(conditions.size()>2) { conditions[k-3].ins(0,strings[j][k]); // cout << "modi:" << conditions[k-3] << endl; my_rarx->bayes(conditions[k-3]); if(k>5) { //my_rarx->posterior->step_me(0); my_rarx->posterior->sample_mat(1); cout << "MaxLik coords:" << my_rarx->posterior->minimal_vertex->get_coordinates() << endl; ofstream myfile; char fstring[80]; strcpy(fstring,file_strings[j]); strcat(fstring,"_res.txt"); myfile.open(fstring,ios::app); myfile << my_rarx->posterior->minimal_vertex->get_coordinates()[0]; if(k!=strings[j].size()-1) { myfile << ","; } else { myfile << endl; } myfile.close(); } } //emliga->step_me(0); /* ofstream myfile; myfile.open("c:\\robust_ar1.txt",ios::app); myfile << my_rarx->minimal_vertex->get_coordinates()[0] << ";"; myfile.close(); myfile.open("c:\\robust_ar2.txt",ios::app); myfile << emliga->minimal_vertex->get_coordinates()[1] << ";"; myfile.close(); cout << "MaxLik coords:" << emliga->minimal_vertex->get_coordinates() << endl; cout << "Step: " << i << endl;*/ } } /* cout << "One experiment finished." << endl; ofstream myfile; myfile.open("c:\\robust_ar1.txt",ios::app); myfile << endl; myfile.close(); myfile.open("c:\\robust_ar2.txt",ios::app); myfile << endl; myfile.close();*/ //emlig* emlig1 = new emlig(emlig_size); //emlig1->step_me(0); //emlig* emlig2 = new emlig(emlig_size); /* emlig1->set_correction_factors(4); for(int j = 0;jcorrection_factors.size();j++) { for(set::iterator vec_ref = emlig1->correction_factors[j].begin();vec_ref!=emlig1->correction_factors[j].end();vec_ref++) { cout << j << " "; for(int i=0;i<(*vec_ref).size();i++) { cout << (*vec_ref)[i]; } cout << endl; } }*/ /* vec condition5 = "1.0 1.0 1.01";//"-0.3 1.7 1.5"; emlig1->add_condition(condition5); //emlig1->step_me(0); vec condition1a = "-1.0 1.02 0.5"; //vec condition1b = "1.0 1.0 1.01"; emlig1->add_condition(condition1a); //emlig2->add_condition(condition1b); vec condition2a = "-0.3 1.7 1.5"; //vec condition2b = "-1.0 1.0 1.0"; emlig1->add_condition(condition2a); //emlig2->add_condition(condition2b); vec condition3a = "0.5 -1.01 1.0"; //vec condition3b = "0.5 -1.01 1.0"; emlig1->add_condition(condition3a); //emlig2->add_condition(condition3b); vec condition4a = "-0.5 -1.0 1.0"; //vec condition4b = "-0.5 -1.0 1.0"; emlig1->add_condition(condition4a); //cout << "************************************************" << endl; //emlig2->add_condition(condition4b); //cout << "************************************************" << endl; //cout << emlig1->minimal_vertex->get_coordinates(); //emlig1->remove_condition(condition3a); //emlig1->step_me(0); //emlig1->remove_condition(condition2a); //emlig1->remove_condition(condition1a); //emlig1->remove_condition(condition5); //emlig1->step_me(0); //emlig2->step_me(0); // DA SE POUZIT PRO VYPIS DO SOUBORU // emlig1->step_me(0); //emlig1->remove_condition(condition1); /* for(int i = 0;i<100;i++) { cout << endl << "Step:" << i << endl; double condition[emlig_size+1]; for(int k = 0;k<=emlig_size;k++) { condition[k] = (rand()-RAND_MAX/2)/1000.0; } vec* condition_vec = new vec(condition,emlig_size+1); emlig1->add_condition(*condition_vec); /* for(polyhedron* toprow_ref = emlig1->statistic.rows[emlig_size]; toprow_ref != emlig1->statistic.end_poly; toprow_ref = toprow_ref->next_poly) { cout << ((toprow*)toprow_ref)->probability << endl; } */ /* cout << emlig1->statistic_rowsize(emlig_size) << endl << endl; /* if(i-emlig1->number_of_parameters >= 0) { pause(30); } */ // emlig1->step_me(i); /* vector sizevector; for(int s = 0;s<=emlig1->number_of_parameters;s++) { sizevector.push_back(emlig1->statistic_rowsize(s)); } */ //} /* emlig1->step_me(1); vec condition = "2.0 0.0 1.0"; emlig1->add_condition(condition); vector sizevector; for(int s = 0;s<=emlig1->number_of_parameters;s++) { sizevector.push_back(emlig1->statistic_rowsize(s)); } emlig1->step_me(2); condition = "2.0 1.0 0.0"; emlig1->add_condition(condition); sizevector.clear(); for(int s = 0;s<=emlig1->number_of_parameters;s++) { sizevector.push_back(emlig1->statistic_rowsize(s)); } */ return 0; }