/*! \file \brief Robust \author Vasek Smidl */ #include "estim/arx.h" #include "robustlib.h" #include #include #include #include #include "windows.h" #include "ddeml.h" #include "stdio.h" //#include "DDEClient.h" //#include using namespace itpp; using namespace bdm; //const int emlig_size = 2; //const int utility_constant = 5; const int max_model_order = 2; HDDEDATA CALLBACK DdeCallback( UINT uType, // Transaction type. UINT uFmt, // Clipboard data format. HCONV hconv, // Handle to the conversation. HSZ hsz1, // Handle to a string. HSZ hsz2, // Handle to a string. HDDEDATA hdata, // Handle to a global memory object. DWORD dwData1, // Transaction-specific data. DWORD dwData2) // Transaction-specific data. { return 0; } void DDERequest(DWORD idInst, HCONV hConv, char* szItem) { HSZ hszItem = DdeCreateStringHandle(idInst, szItem, 0); HDDEDATA hData = DdeClientTransaction(NULL,0,hConv,hszItem,CF_TEXT, XTYP_ADVSTART,TIMEOUT_ASYNC , NULL); //TIMEOUT_ASYNC if (hData==NULL) { printf("Request failed: %s\n", szItem); } if (hData==0) { printf("Request failed: %s\n", szItem); } } class model { public: list> ar_components; // Best thing would be to inherit the two models from a single souce, this is planned, but now structurally // problematic. RARX* my_rarx; ARXwin* my_arx; bool has_constant; int window_size; int predicted_channel; mat* data_matrix; model(list> ar_components, bool robust, bool has_constant, int window_size, int predicted_channel, mat* data_matrix) { this->ar_components.insert(this->ar_components.begin(),ar_components.begin(),ar_components.end()); this->has_constant = has_constant; this->window_size = window_size; this->predicted_channel = predicted_channel; this->data_matrix = data_matrix; if(robust) { if(has_constant) { my_rarx = new RARX(ar_components.size()+1,window_size,true); my_arx = NULL; } else { my_rarx = new RARX(ar_components.size(),window_size,false); my_arx = NULL; } } else { my_rarx = NULL; my_arx = new ARXwin(); mat V0; if(has_constant) { V0 = 0.01 * eye(ar_components.size()+2); V0(0,0) = 1; my_arx->set_constant(true); } else { V0 = 0.01 * eye(ar_components.size()+1); V0(0,0) = 1; my_arx->set_constant(false); } my_arx->set_statistics(1, V0); my_arx->set_parameters(window_size); my_arx->validate(); } } void data_update(int time) { vec data_vector; for(list>::iterator ar_iterator = ar_components.begin();ar_iterator!=ar_components.end();ar_iterator++) { data_vector.ins(data_vector.size(),(*data_matrix).get(ar_iterator->first,time-ar_iterator->second)); } if(my_rarx!=NULL) { data_vector.ins(0,(*data_matrix).get(predicted_channel,time)); my_rarx->bayes(data_vector); } else { vec pred_vec; pred_vec.ins(0,(*data_matrix).get(predicted_channel,time)); my_arx->bayes(pred_vec,data_vector); } } static list>> possible_models_recurse(int max_order,int number_of_channels) { list>> created_model_types; if(max_order == 1) { for(int channel = 0;channel> returned_type; returned_type.push_back(pair(channel,1)); created_model_types.push_back(returned_type); } return created_model_types; } else { created_model_types = possible_models_recurse(max_order-1,number_of_channels); list>> returned_types; for(list>>::iterator model_ref = created_model_types.begin();model_ref!=created_model_types.end();model_ref++) { for(int order = 1; order<=max_order; order++) { for(int channel = 0;channel> returned_type; pair new_pair = pair(channel,order); if(find((*model_ref).begin(),(*model_ref).end(),new_pair)==(*model_ref).end()) { returned_type.insert(returned_type.begin(),(*model_ref).begin(),(*model_ref).end()); returned_type.push_back(new_pair); returned_types.push_back(returned_type); } } } } created_model_types.insert(created_model_types.end(),returned_types.begin(),returned_types.end()); return created_model_types; } } }; int main ( int argc, char* argv[] ) { itpp::Laplace_RNG LapRNG = Laplace_RNG(); /* char szApp[] = "MT4"; char szTopic[] = "BID"; char szItem1[] = "EURJPY"; //DDE Initialization DWORD idInst=0; UINT iReturn; iReturn = DdeInitialize(&idInst, (PFNCALLBACK)DdeCallback, APPCLASS_STANDARD | APPCMD_CLIENTONLY, 0 ); if (iReturn!=DMLERR_NO_ERROR) { printf("DDE Initialization Failed: 0x%04x\n", iReturn); Sleep(1500); return 0; } /* //Start DDE Server and wait for it to become idle. HINSTANCE hRet = ShellExecute(0, "open", szTopic, 0, 0, SW_SHOWNORMAL); if ((int)hRet < 33) { printf("Unable to Start DDE Server: 0x%04x\n", hRet); Sleep(1500); DdeUninitialize(idInst); return 0; } Sleep(1000); */ /* //DDE Connect to Server using given AppName and topic. HSZ hszApp, hszTopic; HCONV hConv; hszApp = DdeCreateStringHandle(idInst, szApp, 0); hszTopic = DdeCreateStringHandle(idInst, szTopic, 0); hConv = DdeConnect(idInst, hszApp, hszTopic, NULL); DdeFreeStringHandle(idInst, hszApp); DdeFreeStringHandle(idInst, hszTopic); if (hConv == NULL) { printf("DDE Connection Failed.\n"); Sleep(1500); DdeUninitialize(idInst); return 0; } //Execute commands/requests specific to the DDE Server. DDERequest(idInst, hConv, szItem1); //DDE Disconnect and Uninitialize. //DdeDisconnect(hConv); //DdeUninitialize(idInst); Sleep(300000); Sleep(3000); /* // EXPERIMENT: 100 AR model generated time series of length of 30 from y_t=0.95*y_(t-1)+0.05*y_(t-2)+0.2*e_t, // where e_t is normally, student(4) and cauchy distributed are tested using robust AR model, to obtain the // variance of location parameter estimators and compare it to the classical setup. vector>> string_lists; string_lists.push_back(vector>()); string_lists.push_back(vector>()); string_lists.push_back(vector>()); char* file_strings[3] = {"c:\\ar_normal.txt", "c:\\ar_student.txt", "c:\\ar_cauchy.txt"}; for(int i = 0;i<3;i++) { ifstream myfile(file_strings[i]); if (myfile.is_open()) { while ( myfile.good() ) { string line; getline(myfile,line); vector parsed_line; while(line.find(',') != string::npos) { int loc = line.find(','); parsed_line.push_back(line.substr(0,loc)); line.erase(0,loc+1); } string_lists[i].push_back(parsed_line); } myfile.close(); } } for(int j = 0;j conditions; //emlig* emliga = new emlig(2); RARX* my_rarx = new RARX(2,30); for(int k = 1;k1) { conditions[k-2].ins(0,string_lists[j][i][k]); } if(conditions.size()>2) { conditions[k-3].ins(0,string_lists[j][i][k]); //cout << "modi:" << conditions[k-3] << endl; my_rarx->bayes(conditions[k-3]); //if(k>5) //{ // cout << "MaxLik coords:" << emliga->minimal_vertex->get_coordinates() << endl; //} } } //emliga->step_me(0); /* ofstream myfile; myfile.open("c:\\robust_ar1.txt",ios::app); myfile << my_rarx->minimal_vertex->get_coordinates()[0] << ";"; myfile.close(); myfile.open("c:\\robust_ar2.txt",ios::app); myfile << emliga->minimal_vertex->get_coordinates()[1] << ";"; myfile.close(); cout << "MaxLik coords:" << emliga->minimal_vertex->get_coordinates() << endl; cout << "Step: " << i << endl; } cout << "One experiment finished." << endl; ofstream myfile; myfile.open("c:\\robust_ar1.txt",ios::app); myfile << endl; myfile.close(); myfile.open("c:\\robust_ar2.txt",ios::app); myfile << endl; myfile.close(); }*/ // EXPERIMENT: A moving window estimation and prediction of RARX is tested on data generated from // y_t=0.95*y_(t-1)+0.05*y_(t-2)+0.2*e_t, where e_t is normally, student(4) and cauchy distributed. It // can be compared to the classical setup. vector> strings; char* file_string = "c:\\dataCDClosePercDiff"; char dfstring[80]; strcpy(dfstring,file_string); strcat(dfstring,".txt"); mat data_matrix; ifstream myfile(dfstring); if (myfile.is_open()) { string line; while(getline(myfile,line)) { vec data_vector; while(line.find(',') != string::npos) { int loc2 = line.find('\n'); int loc = line.find(','); data_vector.ins(data_vector.size(),atof(line.substr(0,loc).c_str())); line.erase(0,loc+1); } data_matrix.ins_row(data_matrix.rows(),data_vector); } myfile.close(); } else { cout << "Can't open data file!" << endl; } list>> model_types = model::possible_models_recurse(max_model_order,data_matrix.rows()); list models; for(list>>::iterator model_type = model_types.begin();model_type!=model_types.end();model_type++) { models.push_back(new model((*model_type),true,true,100,0,&data_matrix)); models.push_back(new model((*model_type),false,true,100,0,&data_matrix)); models.push_back(new model((*model_type),true,false,100,0,&data_matrix)); models.push_back(new model((*model_type),false,false,100,0,&data_matrix)); } mat result_lognc; for(int time = max_model_order;time::iterator model_ref = models.begin();model_ref!=models.end();model_ref++) { (*model_ref)->data_update(time); if((*model_ref)->my_rarx!=NULL) { cur_res_lognc.ins(cur_res_lognc.size(),(*model_ref)->my_rarx->posterior->log_nc); } else { cur_res_lognc.ins(cur_res_lognc.size(),(*model_ref)->my_arx->posterior().lognc()); } } result_lognc.ins_col(result_lognc.cols(),cur_res_lognc); cout << "Updated." << endl; /* vector conditions; //emlig* emliga = new emlig(2); RARX* my_rarx = new RARX(2,10,false); mat V0 = 0.0001 * eye ( 3 ); ARX* my_arx = new ARX(0.85); my_arx->set_statistics ( 1, V0 ); //nu is default (set to have finite moments) my_arx->set_constant ( false ); my_arx->validate(); for(int k = 1;k1) { conditions[k-2].ins(0,strings[j][k]); } if(conditions.size()>2) { conditions[k-3].ins(0,strings[j][k]); // cout << "Condition:" << conditions[k-3] << endl; my_rarx->bayes(conditions[k-3]); //my_rarx->posterior->step_me(1); vec cond_vec; cond_vec.ins(0,conditions[k-3][0]); my_arx->bayes(cond_vec,conditions[k-3].right(2)); /* if(k>8) { //my_rarx->posterior->step_me(0); //mat samples = my_rarx->posterior->sample_mat(10); pair imp_samples = my_rarx->posterior->importance_sample(1000); //cout << imp_samples.first << endl; vec sample_prediction; vec averaged_params = zeros(imp_samples.second.rows()); for(int t = 0;tnumeric_limits::epsilon()) { sample_pow = elem_mult(sample_pow,sample_prediction); poly_coefs.ins(0,pow(-1.0,en+1)*poly_coef); } else { stop_iteration = true; } en++; if(en>20) { stop_iteration = true; } } while(!stop_iteration); /* ofstream myfile_coef; myfile_coef.open("c:\\coefs.txt",ios::app); for(int t = 0;tposterior->minimal_vertex->get_coordinates() << endl; /* double prediction = 0; for(int s = 1;sposterior->minimal_vertex->get_coordinates()[0]; myfile << avg_parameter; if(k!=strings[j].size()-1) { myfile << ","; } else { myfile << endl; } myfile.close(); */ //} // cout << "Prediction: "<< prediction << endl; /* enorm* pred_mat = my_arx->epredictor(conditions[k-3].left(2)); double prediction2 = pred_mat->mean()[0]; */ ofstream myfile; char fstring[80]; strcpy(fstring,file_string); strcat(fstring,"lognc.txt"); myfile.open(fstring,ios::app); // myfile << my_rarx->posterior->minimal_vertex->get_coordinates()[0]; for(int i = 0;istep_me(0); /* ofstream myfile; myfile.open("c:\\robust_ar1.txt",ios::app); myfile << my_rarx->minimal_vertex->get_coordinates()[0] << ";"; myfile.close(); myfile.open("c:\\robust_ar2.txt",ios::app); myfile << emliga->minimal_vertex->get_coordinates()[1] << ";"; myfile.close(); cout << "MaxLik coords:" << emliga->minimal_vertex->get_coordinates() << endl; cout << "Step: " << i << endl;*/ //} //} // EXPERIMENT: One step ahead price prediction. Comparison of classical and robust model using optimal trading // with maximization of logarithm of one-step ahead wealth. /* cout << "One experiment finished." << endl; ofstream myfile; myfile.open("c:\\robust_ar1.txt",ios::app); myfile << endl; myfile.close(); myfile.open("c:\\robust_ar2.txt",ios::app); myfile << endl; myfile.close();*/ //emlig* emlig1 = new emlig(emlig_size); //emlig1->step_me(0); //emlig* emlig2 = new emlig(emlig_size); /* emlig1->set_correction_factors(4); for(int j = 0;jcorrection_factors.size();j++) { for(set::iterator vec_ref = emlig1->correction_factors[j].begin();vec_ref!=emlig1->correction_factors[j].end();vec_ref++) { cout << j << " "; for(int i=0;i<(*vec_ref).size();i++) { cout << (*vec_ref)[i]; } cout << endl; } }*/ /* vec condition5 = "1.0 1.0 1.01";//"-0.3 1.7 1.5"; emlig1->add_condition(condition5); //emlig1->step_me(0); vec condition1a = "-1.0 1.02 0.5"; //vec condition1b = "1.0 1.0 1.01"; emlig1->add_condition(condition1a); //emlig2->add_condition(condition1b); vec condition2a = "-0.3 1.7 1.5"; //vec condition2b = "-1.0 1.0 1.0"; emlig1->add_condition(condition2a); //emlig2->add_condition(condition2b); vec condition3a = "0.5 -1.01 1.0"; //vec condition3b = "0.5 -1.01 1.0"; emlig1->add_condition(condition3a); //emlig2->add_condition(condition3b); vec condition4a = "-0.5 -1.0 1.0"; //vec condition4b = "-0.5 -1.0 1.0"; emlig1->add_condition(condition4a); //cout << "************************************************" << endl; //emlig2->add_condition(condition4b); //cout << "************************************************" << endl; //cout << emlig1->minimal_vertex->get_coordinates(); //emlig1->remove_condition(condition3a); //emlig1->step_me(0); //emlig1->remove_condition(condition2a); //emlig1->remove_condition(condition1a); //emlig1->remove_condition(condition5); //emlig1->step_me(0); //emlig2->step_me(0); // DA SE POUZIT PRO VYPIS DO SOUBORU // emlig1->step_me(0); //emlig1->remove_condition(condition1); /* for(int i = 0;i<100;i++) { cout << endl << "Step:" << i << endl; double condition[emlig_size+1]; for(int k = 0;k<=emlig_size;k++) { condition[k] = (rand()-RAND_MAX/2)/1000.0; } vec* condition_vec = new vec(condition,emlig_size+1); emlig1->add_condition(*condition_vec); /* for(polyhedron* toprow_ref = emlig1->statistic.rows[emlig_size]; toprow_ref != emlig1->statistic.end_poly; toprow_ref = toprow_ref->next_poly) { cout << ((toprow*)toprow_ref)->probability << endl; } */ /* cout << emlig1->statistic_rowsize(emlig_size) << endl << endl; /* if(i-emlig1->number_of_parameters >= 0) { pause(30); } */ // emlig1->step_me(i); /* vector sizevector; for(int s = 0;s<=emlig1->number_of_parameters;s++) { sizevector.push_back(emlig1->statistic_rowsize(s)); } */ //} /* emlig1->step_me(1); vec condition = "2.0 0.0 1.0"; emlig1->add_condition(condition); vector sizevector; for(int s = 0;s<=emlig1->number_of_parameters;s++) { sizevector.push_back(emlig1->statistic_rowsize(s)); } emlig1->step_me(2); condition = "2.0 1.0 0.0"; emlig1->add_condition(condition); sizevector.clear(); for(int s = 0;s<=emlig1->number_of_parameters;s++) { sizevector.push_back(emlig1->statistic_rowsize(s)); } */ return 0; }