| 1 | |
|---|
| 2 | /*! |
|---|
| 3 | \file |
|---|
| 4 | \brief Robust |
|---|
| 5 | \author Vasek Smidl |
|---|
| 6 | |
|---|
| 7 | */ |
|---|
| 8 | |
|---|
| 9 | #include "estim/arx.h" |
|---|
| 10 | #include "robustlib.h" |
|---|
| 11 | #include <vector> |
|---|
| 12 | #include <iostream> |
|---|
| 13 | #include <fstream> |
|---|
| 14 | #include <itpp/itsignal.h> |
|---|
| 15 | |
|---|
| 16 | using namespace itpp; |
|---|
| 17 | using namespace bdm; |
|---|
| 18 | |
|---|
| 19 | const int emlig_size = 2; |
|---|
| 20 | const int utility_constant = 2; |
|---|
| 21 | |
|---|
| 22 | |
|---|
| 23 | int main ( int argc, char* argv[] ) { |
|---|
| 24 | |
|---|
| 25 | itpp::Laplace_RNG LapRNG = Laplace_RNG(); |
|---|
| 26 | |
|---|
| 27 | /* |
|---|
| 28 | // EXPERIMENT: 100 AR model generated time series of length of 30 from y_t=0.95*y_(t-1)+0.05*y_(t-2)+0.2*e_t, |
|---|
| 29 | // where e_t is normally, student(4) and cauchy distributed are tested using robust AR model, to obtain the |
|---|
| 30 | // variance of location parameter estimators and compare it to the classical setup. |
|---|
| 31 | vector<vector<vector<string>>> string_lists; |
|---|
| 32 | string_lists.push_back(vector<vector<string>>()); |
|---|
| 33 | string_lists.push_back(vector<vector<string>>()); |
|---|
| 34 | string_lists.push_back(vector<vector<string>>()); |
|---|
| 35 | |
|---|
| 36 | char* file_strings[3] = {"c:\\ar_normal.txt", "c:\\ar_student.txt", "c:\\ar_cauchy.txt"}; |
|---|
| 37 | |
|---|
| 38 | |
|---|
| 39 | for(int i = 0;i<3;i++) |
|---|
| 40 | { |
|---|
| 41 | ifstream myfile(file_strings[i]); |
|---|
| 42 | if (myfile.is_open()) |
|---|
| 43 | { |
|---|
| 44 | while ( myfile.good() ) |
|---|
| 45 | { |
|---|
| 46 | string line; |
|---|
| 47 | getline(myfile,line); |
|---|
| 48 | |
|---|
| 49 | vector<string> parsed_line; |
|---|
| 50 | while(line.find(',') != string::npos) |
|---|
| 51 | { |
|---|
| 52 | int loc = line.find(','); |
|---|
| 53 | parsed_line.push_back(line.substr(0,loc)); |
|---|
| 54 | line.erase(0,loc+1); |
|---|
| 55 | } |
|---|
| 56 | |
|---|
| 57 | string_lists[i].push_back(parsed_line); |
|---|
| 58 | } |
|---|
| 59 | myfile.close(); |
|---|
| 60 | } |
|---|
| 61 | } |
|---|
| 62 | |
|---|
| 63 | for(int j = 0;j<string_lists.size();j++) |
|---|
| 64 | { |
|---|
| 65 | |
|---|
| 66 | for(int i = 0;i<string_lists[j].size()-1;i++) |
|---|
| 67 | { |
|---|
| 68 | vector<vec> conditions; |
|---|
| 69 | //emlig* emliga = new emlig(2); |
|---|
| 70 | RARX* my_rarx = new RARX(2,30); |
|---|
| 71 | |
|---|
| 72 | for(int k = 1;k<string_lists[j][i].size();k++) |
|---|
| 73 | { |
|---|
| 74 | vec condition; |
|---|
| 75 | //condition.ins(0,1); |
|---|
| 76 | condition.ins(0,string_lists[j][i][k]); |
|---|
| 77 | conditions.push_back(condition); |
|---|
| 78 | |
|---|
| 79 | //cout << "orig:" << condition << endl; |
|---|
| 80 | |
|---|
| 81 | if(conditions.size()>1) |
|---|
| 82 | { |
|---|
| 83 | conditions[k-2].ins(0,string_lists[j][i][k]); |
|---|
| 84 | |
|---|
| 85 | } |
|---|
| 86 | |
|---|
| 87 | if(conditions.size()>2) |
|---|
| 88 | { |
|---|
| 89 | conditions[k-3].ins(0,string_lists[j][i][k]); |
|---|
| 90 | |
|---|
| 91 | //cout << "modi:" << conditions[k-3] << endl; |
|---|
| 92 | |
|---|
| 93 | my_rarx->bayes(conditions[k-3]); |
|---|
| 94 | |
|---|
| 95 | |
|---|
| 96 | //if(k>5) |
|---|
| 97 | //{ |
|---|
| 98 | // cout << "MaxLik coords:" << emliga->minimal_vertex->get_coordinates() << endl; |
|---|
| 99 | //} |
|---|
| 100 | |
|---|
| 101 | } |
|---|
| 102 | |
|---|
| 103 | } |
|---|
| 104 | |
|---|
| 105 | //emliga->step_me(0); |
|---|
| 106 | /* |
|---|
| 107 | ofstream myfile; |
|---|
| 108 | myfile.open("c:\\robust_ar1.txt",ios::app); |
|---|
| 109 | myfile << my_rarx->minimal_vertex->get_coordinates()[0] << ";"; |
|---|
| 110 | myfile.close(); |
|---|
| 111 | |
|---|
| 112 | myfile.open("c:\\robust_ar2.txt",ios::app); |
|---|
| 113 | myfile << emliga->minimal_vertex->get_coordinates()[1] << ";"; |
|---|
| 114 | myfile.close(); |
|---|
| 115 | |
|---|
| 116 | |
|---|
| 117 | cout << "MaxLik coords:" << emliga->minimal_vertex->get_coordinates() << endl; |
|---|
| 118 | cout << "Step: " << i << endl; |
|---|
| 119 | } |
|---|
| 120 | |
|---|
| 121 | cout << "One experiment finished." << endl; |
|---|
| 122 | |
|---|
| 123 | ofstream myfile; |
|---|
| 124 | myfile.open("c:\\robust_ar1.txt",ios::app); |
|---|
| 125 | myfile << endl; |
|---|
| 126 | myfile.close(); |
|---|
| 127 | |
|---|
| 128 | myfile.open("c:\\robust_ar2.txt",ios::app); |
|---|
| 129 | myfile << endl; |
|---|
| 130 | myfile.close(); |
|---|
| 131 | }*/ |
|---|
| 132 | |
|---|
| 133 | |
|---|
| 134 | // EXPERIMENT: A moving window estimation and prediction of RARX is tested on data generated from |
|---|
| 135 | // y_t=0.95*y_(t-1)+0.05*y_(t-2)+0.2*e_t, where e_t is normally, student(4) and cauchy distributed. It |
|---|
| 136 | // can be compared to the classical setup. |
|---|
| 137 | |
|---|
| 138 | |
|---|
| 139 | vector<vector<string>> strings; |
|---|
| 140 | |
|---|
| 141 | char* file_strings[3] = {"c:\\dataADClosePercDiff","c:\\ar_student_single","c:\\ar_cauchy_single"}; |
|---|
| 142 | |
|---|
| 143 | for(int i = 0;i<3;i++) |
|---|
| 144 | { |
|---|
| 145 | char dfstring[80]; |
|---|
| 146 | strcpy(dfstring,file_strings[i]); |
|---|
| 147 | strcat(dfstring,".txt"); |
|---|
| 148 | |
|---|
| 149 | ifstream myfile(dfstring); |
|---|
| 150 | if (myfile.is_open()) |
|---|
| 151 | { |
|---|
| 152 | string line; |
|---|
| 153 | getline(myfile,line); |
|---|
| 154 | |
|---|
| 155 | vector<string> parsed_line; |
|---|
| 156 | while(line.find(',') != string::npos) |
|---|
| 157 | { |
|---|
| 158 | int loc = line.find(','); |
|---|
| 159 | parsed_line.push_back(line.substr(0,loc)); |
|---|
| 160 | line.erase(0,loc+1); |
|---|
| 161 | } |
|---|
| 162 | |
|---|
| 163 | strings.push_back(parsed_line); |
|---|
| 164 | |
|---|
| 165 | myfile.close(); |
|---|
| 166 | } |
|---|
| 167 | } |
|---|
| 168 | |
|---|
| 169 | for(int j = 0;j<strings.size();j++) |
|---|
| 170 | { |
|---|
| 171 | vector<vec> conditions; |
|---|
| 172 | //emlig* emliga = new emlig(2); |
|---|
| 173 | RARX* my_rarx = new RARX(3,30,true); |
|---|
| 174 | |
|---|
| 175 | |
|---|
| 176 | mat V0 = 0.0001 * eye ( 3 ); |
|---|
| 177 | ARX* my_arx = new ARX(0.97); |
|---|
| 178 | my_arx->set_statistics ( 1, V0 ); //nu is default (set to have finite moments) |
|---|
| 179 | my_arx->set_constant ( false ); |
|---|
| 180 | my_arx->validate(); |
|---|
| 181 | |
|---|
| 182 | |
|---|
| 183 | for(int k = 1;k<strings[j].size();k++) |
|---|
| 184 | { |
|---|
| 185 | vec condition; |
|---|
| 186 | //condition.ins(0,1); |
|---|
| 187 | condition.ins(0,strings[j][k]); |
|---|
| 188 | conditions.push_back(condition); |
|---|
| 189 | |
|---|
| 190 | //cout << "orig:" << condition << endl; |
|---|
| 191 | |
|---|
| 192 | if(conditions.size()>1) |
|---|
| 193 | { |
|---|
| 194 | conditions[k-2].ins(0,strings[j][k]); |
|---|
| 195 | |
|---|
| 196 | } |
|---|
| 197 | |
|---|
| 198 | if(conditions.size()>2) |
|---|
| 199 | { |
|---|
| 200 | conditions[k-3].ins(0,strings[j][k]); |
|---|
| 201 | |
|---|
| 202 | cout << "Condition:" << conditions[k-3] << endl; |
|---|
| 203 | |
|---|
| 204 | my_rarx->bayes(conditions[k-3]); |
|---|
| 205 | //my_rarx->posterior->step_me(1); |
|---|
| 206 | |
|---|
| 207 | vec cond_vec; |
|---|
| 208 | cond_vec.ins(0,conditions[k-3][0]); |
|---|
| 209 | |
|---|
| 210 | my_arx->bayes(cond_vec,conditions[k-3].right(2)); |
|---|
| 211 | |
|---|
| 212 | |
|---|
| 213 | if(k>10) |
|---|
| 214 | { |
|---|
| 215 | //my_rarx->posterior->step_me(0); |
|---|
| 216 | |
|---|
| 217 | mat samples = my_rarx->posterior->sample_mat(10); |
|---|
| 218 | |
|---|
| 219 | pair<vec,mat> imp_samples = my_rarx->posterior->importance_sample(20); |
|---|
| 220 | |
|---|
| 221 | cout << imp_samples.first << endl; |
|---|
| 222 | |
|---|
| 223 | vec sample_prediction; |
|---|
| 224 | for(int t = 0;t<samples.cols();t++) |
|---|
| 225 | { |
|---|
| 226 | vec lap_sample = conditions[k-3].left(2); |
|---|
| 227 | lap_sample.ins(lap_sample.size(),1.0); |
|---|
| 228 | |
|---|
| 229 | lap_sample.ins(0,LapRNG()); |
|---|
| 230 | |
|---|
| 231 | sample_prediction.ins(0,lap_sample*samples.get_col(t)); |
|---|
| 232 | } |
|---|
| 233 | |
|---|
| 234 | |
|---|
| 235 | vec sample_pow = sample_prediction; |
|---|
| 236 | |
|---|
| 237 | // cout << sample_prediction << endl; |
|---|
| 238 | vec poly_coefs; |
|---|
| 239 | bool stop_iteration = false; |
|---|
| 240 | int en = 1; |
|---|
| 241 | do |
|---|
| 242 | { |
|---|
| 243 | double poly_coef = ones(sample_pow.size())*sample_pow/sample_pow.size(); |
|---|
| 244 | |
|---|
| 245 | poly_coef = poly_coef*en*fact(utility_constant-2+en)/fact(utility_constant-2); |
|---|
| 246 | |
|---|
| 247 | if(abs(poly_coef)>numeric_limits<double>::epsilon()) |
|---|
| 248 | { |
|---|
| 249 | sample_pow = elem_mult(sample_pow,sample_prediction); |
|---|
| 250 | poly_coefs.ins(0,pow(-1.0,en+1)*poly_coef); |
|---|
| 251 | } |
|---|
| 252 | else |
|---|
| 253 | { |
|---|
| 254 | stop_iteration = true; |
|---|
| 255 | } |
|---|
| 256 | |
|---|
| 257 | en++; |
|---|
| 258 | |
|---|
| 259 | if(en>20) |
|---|
| 260 | { |
|---|
| 261 | stop_iteration = true; |
|---|
| 262 | } |
|---|
| 263 | } |
|---|
| 264 | while(!stop_iteration); |
|---|
| 265 | |
|---|
| 266 | /* |
|---|
| 267 | ofstream myfile_coef; |
|---|
| 268 | |
|---|
| 269 | myfile_coef.open("c:\\coefs.txt",ios::app); |
|---|
| 270 | |
|---|
| 271 | for(int t = 0;t<poly_coefs.size();t++) |
|---|
| 272 | { |
|---|
| 273 | myfile_coef << poly_coefs[t] << ","; |
|---|
| 274 | } |
|---|
| 275 | |
|---|
| 276 | myfile_coef << endl; |
|---|
| 277 | myfile_coef.close(); |
|---|
| 278 | */ |
|---|
| 279 | |
|---|
| 280 | // cout << "Coefficients: " << poly_coefs << endl; |
|---|
| 281 | |
|---|
| 282 | /* |
|---|
| 283 | vec bas_coef = vec("1.0 2.0 -8.0"); |
|---|
| 284 | cout << "Coefs: " << bas_coef << endl; |
|---|
| 285 | cvec actions2 = roots(bas_coef); |
|---|
| 286 | cout << "Roots: " << actions2 << endl; |
|---|
| 287 | */ |
|---|
| 288 | |
|---|
| 289 | cvec actions = roots(poly_coefs); |
|---|
| 290 | |
|---|
| 291 | |
|---|
| 292 | bool is_max = false; |
|---|
| 293 | for(int t = 0;t<actions.size();t++) |
|---|
| 294 | { |
|---|
| 295 | if(actions[t].imag() == 0) |
|---|
| 296 | { |
|---|
| 297 | |
|---|
| 298 | |
|---|
| 299 | double second_derivative = 0; |
|---|
| 300 | for(int q = 1;q<poly_coefs.size();q++) |
|---|
| 301 | { |
|---|
| 302 | second_derivative+=poly_coefs[q]*pow(actions[t].real(),q-1)*q; |
|---|
| 303 | } |
|---|
| 304 | |
|---|
| 305 | if(second_derivative<0) |
|---|
| 306 | { |
|---|
| 307 | cout << "Action:" << actions[t].real() << endl; |
|---|
| 308 | |
|---|
| 309 | is_max = true; |
|---|
| 310 | } |
|---|
| 311 | } |
|---|
| 312 | } |
|---|
| 313 | |
|---|
| 314 | if(!is_max) |
|---|
| 315 | { |
|---|
| 316 | cout << "No maximum." << endl; |
|---|
| 317 | } |
|---|
| 318 | |
|---|
| 319 | // cout << "MaxLik coords:" << my_rarx->posterior->minimal_vertex->get_coordinates() << endl; |
|---|
| 320 | |
|---|
| 321 | double prediction = 0; |
|---|
| 322 | for(int s = 1;s<samples.rows();s++) |
|---|
| 323 | { |
|---|
| 324 | |
|---|
| 325 | double avg_parameter = samples.get_row(s)*ones(samples.cols())/samples.cols(); |
|---|
| 326 | |
|---|
| 327 | prediction += avg_parameter*conditions[k-3][s-1]; |
|---|
| 328 | |
|---|
| 329 | |
|---|
| 330 | |
|---|
| 331 | /* |
|---|
| 332 | ofstream myfile; |
|---|
| 333 | char fstring[80]; |
|---|
| 334 | strcpy(fstring,file_strings[j]); |
|---|
| 335 | |
|---|
| 336 | char es[5]; |
|---|
| 337 | strcat(fstring,itoa(s,es,10)); |
|---|
| 338 | |
|---|
| 339 | strcat(fstring,"_res.txt"); |
|---|
| 340 | |
|---|
| 341 | |
|---|
| 342 | myfile.open(fstring,ios::app); |
|---|
| 343 | |
|---|
| 344 | //myfile << my_rarx->posterior->minimal_vertex->get_coordinates()[0]; |
|---|
| 345 | myfile << avg_parameter; |
|---|
| 346 | |
|---|
| 347 | if(k!=strings[j].size()-1) |
|---|
| 348 | { |
|---|
| 349 | myfile << ","; |
|---|
| 350 | } |
|---|
| 351 | else |
|---|
| 352 | { |
|---|
| 353 | myfile << endl; |
|---|
| 354 | } |
|---|
| 355 | myfile.close(); |
|---|
| 356 | */ |
|---|
| 357 | } |
|---|
| 358 | |
|---|
| 359 | cout << "Prediction: "<< prediction << endl; |
|---|
| 360 | |
|---|
| 361 | enorm<ldmat>* pred_mat = my_arx->epredictor(conditions[k-3].left(2)); |
|---|
| 362 | double prediction2 = pred_mat->mean()[0]; |
|---|
| 363 | |
|---|
| 364 | |
|---|
| 365 | ofstream myfile; |
|---|
| 366 | char fstring[80]; |
|---|
| 367 | char f2string[80]; |
|---|
| 368 | strcpy(fstring,file_strings[j]); |
|---|
| 369 | strcpy(f2string,fstring); |
|---|
| 370 | |
|---|
| 371 | strcat(fstring,"pred.txt"); |
|---|
| 372 | strcat(f2string,"2pred.txt"); |
|---|
| 373 | |
|---|
| 374 | |
|---|
| 375 | myfile.open(fstring,ios::app); |
|---|
| 376 | |
|---|
| 377 | // myfile << my_rarx->posterior->minimal_vertex->get_coordinates()[0]; |
|---|
| 378 | myfile << prediction; |
|---|
| 379 | |
|---|
| 380 | if(k!=strings[j].size()-1) |
|---|
| 381 | { |
|---|
| 382 | myfile << ","; |
|---|
| 383 | } |
|---|
| 384 | else |
|---|
| 385 | { |
|---|
| 386 | myfile << endl; |
|---|
| 387 | } |
|---|
| 388 | myfile.close(); |
|---|
| 389 | |
|---|
| 390 | |
|---|
| 391 | myfile.open(f2string,ios::app); |
|---|
| 392 | myfile << prediction2; |
|---|
| 393 | |
|---|
| 394 | if(k!=strings[j].size()-1) |
|---|
| 395 | { |
|---|
| 396 | myfile << ","; |
|---|
| 397 | } |
|---|
| 398 | else |
|---|
| 399 | { |
|---|
| 400 | myfile << endl; |
|---|
| 401 | } |
|---|
| 402 | myfile.close(); |
|---|
| 403 | |
|---|
| 404 | |
|---|
| 405 | } |
|---|
| 406 | } |
|---|
| 407 | |
|---|
| 408 | //emliga->step_me(0); |
|---|
| 409 | /* |
|---|
| 410 | ofstream myfile; |
|---|
| 411 | myfile.open("c:\\robust_ar1.txt",ios::app); |
|---|
| 412 | myfile << my_rarx->minimal_vertex->get_coordinates()[0] << ";"; |
|---|
| 413 | myfile.close(); |
|---|
| 414 | |
|---|
| 415 | myfile.open("c:\\robust_ar2.txt",ios::app); |
|---|
| 416 | myfile << emliga->minimal_vertex->get_coordinates()[1] << ";"; |
|---|
| 417 | myfile.close(); |
|---|
| 418 | |
|---|
| 419 | |
|---|
| 420 | cout << "MaxLik coords:" << emliga->minimal_vertex->get_coordinates() << endl; |
|---|
| 421 | cout << "Step: " << i << endl;*/ |
|---|
| 422 | } |
|---|
| 423 | |
|---|
| 424 | |
|---|
| 425 | } |
|---|
| 426 | |
|---|
| 427 | |
|---|
| 428 | // EXPERIMENT: One step ahead price prediction. Comparison of classical and robust model using optimal trading |
|---|
| 429 | // with maximization of logarithm of one-step ahead wealth. |
|---|
| 430 | |
|---|
| 431 | |
|---|
| 432 | |
|---|
| 433 | /* |
|---|
| 434 | cout << "One experiment finished." << endl; |
|---|
| 435 | |
|---|
| 436 | ofstream myfile; |
|---|
| 437 | myfile.open("c:\\robust_ar1.txt",ios::app); |
|---|
| 438 | myfile << endl; |
|---|
| 439 | myfile.close(); |
|---|
| 440 | |
|---|
| 441 | myfile.open("c:\\robust_ar2.txt",ios::app); |
|---|
| 442 | myfile << endl; |
|---|
| 443 | myfile.close();*/ |
|---|
| 444 | |
|---|
| 445 | |
|---|
| 446 | //emlig* emlig1 = new emlig(emlig_size); |
|---|
| 447 | |
|---|
| 448 | //emlig1->step_me(0); |
|---|
| 449 | //emlig* emlig2 = new emlig(emlig_size); |
|---|
| 450 | |
|---|
| 451 | /* |
|---|
| 452 | emlig1->set_correction_factors(4); |
|---|
| 453 | |
|---|
| 454 | for(int j = 0;j<emlig1->correction_factors.size();j++) |
|---|
| 455 | { |
|---|
| 456 | for(set<my_ivec>::iterator vec_ref = emlig1->correction_factors[j].begin();vec_ref!=emlig1->correction_factors[j].end();vec_ref++) |
|---|
| 457 | { |
|---|
| 458 | cout << j << " "; |
|---|
| 459 | |
|---|
| 460 | for(int i=0;i<(*vec_ref).size();i++) |
|---|
| 461 | { |
|---|
| 462 | cout << (*vec_ref)[i]; |
|---|
| 463 | } |
|---|
| 464 | |
|---|
| 465 | cout << endl; |
|---|
| 466 | } |
|---|
| 467 | }*/ |
|---|
| 468 | |
|---|
| 469 | /* |
|---|
| 470 | vec condition5 = "1.0 1.0 1.01";//"-0.3 1.7 1.5"; |
|---|
| 471 | |
|---|
| 472 | emlig1->add_condition(condition5); |
|---|
| 473 | //emlig1->step_me(0); |
|---|
| 474 | |
|---|
| 475 | |
|---|
| 476 | vec condition1a = "-1.0 1.02 0.5"; |
|---|
| 477 | //vec condition1b = "1.0 1.0 1.01"; |
|---|
| 478 | emlig1->add_condition(condition1a); |
|---|
| 479 | //emlig2->add_condition(condition1b); |
|---|
| 480 | |
|---|
| 481 | vec condition2a = "-0.3 1.7 1.5"; |
|---|
| 482 | //vec condition2b = "-1.0 1.0 1.0"; |
|---|
| 483 | emlig1->add_condition(condition2a); |
|---|
| 484 | //emlig2->add_condition(condition2b); |
|---|
| 485 | |
|---|
| 486 | vec condition3a = "0.5 -1.01 1.0"; |
|---|
| 487 | //vec condition3b = "0.5 -1.01 1.0"; |
|---|
| 488 | |
|---|
| 489 | emlig1->add_condition(condition3a); |
|---|
| 490 | //emlig2->add_condition(condition3b); |
|---|
| 491 | |
|---|
| 492 | vec condition4a = "-0.5 -1.0 1.0"; |
|---|
| 493 | //vec condition4b = "-0.5 -1.0 1.0"; |
|---|
| 494 | |
|---|
| 495 | emlig1->add_condition(condition4a); |
|---|
| 496 | //cout << "************************************************" << endl; |
|---|
| 497 | //emlig2->add_condition(condition4b); |
|---|
| 498 | //cout << "************************************************" << endl; |
|---|
| 499 | |
|---|
| 500 | //cout << emlig1->minimal_vertex->get_coordinates(); |
|---|
| 501 | |
|---|
| 502 | //emlig1->remove_condition(condition3a); |
|---|
| 503 | //emlig1->step_me(0); |
|---|
| 504 | //emlig1->remove_condition(condition2a); |
|---|
| 505 | //emlig1->remove_condition(condition1a); |
|---|
| 506 | //emlig1->remove_condition(condition5); |
|---|
| 507 | |
|---|
| 508 | |
|---|
| 509 | //emlig1->step_me(0); |
|---|
| 510 | //emlig2->step_me(0); |
|---|
| 511 | |
|---|
| 512 | |
|---|
| 513 | // DA SE POUZIT PRO VYPIS DO SOUBORU |
|---|
| 514 | // emlig1->step_me(0); |
|---|
| 515 | |
|---|
| 516 | //emlig1->remove_condition(condition1); |
|---|
| 517 | |
|---|
| 518 | |
|---|
| 519 | |
|---|
| 520 | |
|---|
| 521 | |
|---|
| 522 | /* |
|---|
| 523 | for(int i = 0;i<100;i++) |
|---|
| 524 | { |
|---|
| 525 | cout << endl << "Step:" << i << endl; |
|---|
| 526 | |
|---|
| 527 | double condition[emlig_size+1]; |
|---|
| 528 | |
|---|
| 529 | for(int k = 0;k<=emlig_size;k++) |
|---|
| 530 | { |
|---|
| 531 | condition[k] = (rand()-RAND_MAX/2)/1000.0; |
|---|
| 532 | } |
|---|
| 533 | |
|---|
| 534 | |
|---|
| 535 | vec* condition_vec = new vec(condition,emlig_size+1); |
|---|
| 536 | emlig1->add_condition(*condition_vec); |
|---|
| 537 | |
|---|
| 538 | /* |
|---|
| 539 | for(polyhedron* toprow_ref = emlig1->statistic.rows[emlig_size]; toprow_ref != emlig1->statistic.end_poly; toprow_ref = toprow_ref->next_poly) |
|---|
| 540 | { |
|---|
| 541 | cout << ((toprow*)toprow_ref)->probability << endl; |
|---|
| 542 | } |
|---|
| 543 | */ |
|---|
| 544 | /* |
|---|
| 545 | cout << emlig1->statistic_rowsize(emlig_size) << endl << endl; |
|---|
| 546 | |
|---|
| 547 | /* |
|---|
| 548 | if(i-emlig1->number_of_parameters >= 0) |
|---|
| 549 | { |
|---|
| 550 | pause(30); |
|---|
| 551 | } |
|---|
| 552 | */ |
|---|
| 553 | |
|---|
| 554 | // emlig1->step_me(i); |
|---|
| 555 | |
|---|
| 556 | /* |
|---|
| 557 | vector<int> sizevector; |
|---|
| 558 | for(int s = 0;s<=emlig1->number_of_parameters;s++) |
|---|
| 559 | { |
|---|
| 560 | sizevector.push_back(emlig1->statistic_rowsize(s)); |
|---|
| 561 | } |
|---|
| 562 | */ |
|---|
| 563 | //} |
|---|
| 564 | |
|---|
| 565 | |
|---|
| 566 | |
|---|
| 567 | |
|---|
| 568 | /* |
|---|
| 569 | emlig1->step_me(1); |
|---|
| 570 | |
|---|
| 571 | vec condition = "2.0 0.0 1.0"; |
|---|
| 572 | |
|---|
| 573 | emlig1->add_condition(condition); |
|---|
| 574 | |
|---|
| 575 | vector<int> sizevector; |
|---|
| 576 | for(int s = 0;s<=emlig1->number_of_parameters;s++) |
|---|
| 577 | { |
|---|
| 578 | sizevector.push_back(emlig1->statistic_rowsize(s)); |
|---|
| 579 | } |
|---|
| 580 | |
|---|
| 581 | emlig1->step_me(2); |
|---|
| 582 | |
|---|
| 583 | condition = "2.0 1.0 0.0"; |
|---|
| 584 | |
|---|
| 585 | emlig1->add_condition(condition); |
|---|
| 586 | |
|---|
| 587 | sizevector.clear(); |
|---|
| 588 | for(int s = 0;s<=emlig1->number_of_parameters;s++) |
|---|
| 589 | { |
|---|
| 590 | sizevector.push_back(emlig1->statistic_rowsize(s)); |
|---|
| 591 | } |
|---|
| 592 | */ |
|---|
| 593 | |
|---|
| 594 | return 0; |
|---|
| 595 | } |
|---|
| 596 | |
|---|
| 597 | |
|---|