| 1 | |
|---|
| 2 | /*! |
|---|
| 3 | \file |
|---|
| 4 | \brief Robust |
|---|
| 5 | \author Vasek Smidl |
|---|
| 6 | |
|---|
| 7 | */ |
|---|
| 8 | |
|---|
| 9 | #include "estim/arx.h" |
|---|
| 10 | #include "robustlib.h" |
|---|
| 11 | #include <vector> |
|---|
| 12 | #include <iostream> |
|---|
| 13 | #include <fstream> |
|---|
| 14 | #include <itpp/itsignal.h> |
|---|
| 15 | #include "windows.h" |
|---|
| 16 | #include "ddeml.h" |
|---|
| 17 | #include "stdio.h" |
|---|
| 18 | #include <time.h> |
|---|
| 19 | |
|---|
| 20 | //#include "DDEClient.h" |
|---|
| 21 | //#include <conio.h> |
|---|
| 22 | |
|---|
| 23 | |
|---|
| 24 | using namespace itpp; |
|---|
| 25 | using namespace bdm; |
|---|
| 26 | |
|---|
| 27 | //const int emlig_size = 2; |
|---|
| 28 | //const int utility_constant = 5; |
|---|
| 29 | |
|---|
| 30 | const int max_model_order = 2; |
|---|
| 31 | const int data_count = 5; |
|---|
| 32 | |
|---|
| 33 | static vec avg_vec; |
|---|
| 34 | |
|---|
| 35 | HDDEDATA CALLBACK DdeCallback( |
|---|
| 36 | UINT uType, // Transaction type. |
|---|
| 37 | UINT uFmt, // Clipboard data format. |
|---|
| 38 | HCONV hconv, // Handle to the conversation. |
|---|
| 39 | HSZ hsz1, // Handle to a string. |
|---|
| 40 | HSZ hsz2, // Handle to a string. |
|---|
| 41 | HDDEDATA hdata, // Handle to a global memory object. |
|---|
| 42 | DWORD dwData1, // Transaction-specific data. |
|---|
| 43 | DWORD dwData2) // Transaction-specific data. |
|---|
| 44 | { |
|---|
| 45 | char * pData; |
|---|
| 46 | DWORD data_len; |
|---|
| 47 | |
|---|
| 48 | switch (uType) |
|---|
| 49 | { |
|---|
| 50 | case XTYP_ADVDATA: |
|---|
| 51 | |
|---|
| 52 | if ( hdata == NULL ) |
|---|
| 53 | cout << "No data in the message." << endl; |
|---|
| 54 | else |
|---|
| 55 | { |
|---|
| 56 | pData = (char*)DdeAccessData( hdata, &data_len ); |
|---|
| 57 | |
|---|
| 58 | avg_vec.ins(0,atof(pData)); |
|---|
| 59 | |
|---|
| 60 | cout << pData << endl; |
|---|
| 61 | |
|---|
| 62 | DdeUnaccessData( hdata ); |
|---|
| 63 | } |
|---|
| 64 | } |
|---|
| 65 | return (HDDEDATA) NULL; |
|---|
| 66 | |
|---|
| 67 | } |
|---|
| 68 | |
|---|
| 69 | |
|---|
| 70 | |
|---|
| 71 | void DDERequest(DWORD idInst, HCONV hConv, char* szItem) |
|---|
| 72 | { |
|---|
| 73 | HSZ hszItem = DdeCreateStringHandle(idInst, szItem, 0); |
|---|
| 74 | HDDEDATA hData = DdeClientTransaction(NULL,0,hConv,hszItem,CF_TEXT, |
|---|
| 75 | XTYP_ADVSTART,TIMEOUT_ASYNC , NULL); //TIMEOUT_ASYNC |
|---|
| 76 | if (hData==NULL) |
|---|
| 77 | { |
|---|
| 78 | printf("Request failed: %s\n", szItem); |
|---|
| 79 | } |
|---|
| 80 | |
|---|
| 81 | if (hData==0) |
|---|
| 82 | { |
|---|
| 83 | printf("Request failed: %s\n", szItem); |
|---|
| 84 | } |
|---|
| 85 | } |
|---|
| 86 | |
|---|
| 87 | DWORD WINAPI ThrdFunc( LPVOID n ) |
|---|
| 88 | { |
|---|
| 89 | return 0; |
|---|
| 90 | } |
|---|
| 91 | |
|---|
| 92 | |
|---|
| 93 | class model |
|---|
| 94 | { |
|---|
| 95 | public: |
|---|
| 96 | list<pair<int,int>> ar_components; |
|---|
| 97 | |
|---|
| 98 | // Best thing would be to inherit the two models from a single souce, this is planned, but now structurally |
|---|
| 99 | // problematic. |
|---|
| 100 | RARX* my_rarx; |
|---|
| 101 | ARXwin* my_arx; |
|---|
| 102 | |
|---|
| 103 | bool has_constant; |
|---|
| 104 | int order; |
|---|
| 105 | int window_size; |
|---|
| 106 | int predicted_channel; |
|---|
| 107 | int number_of_updates; |
|---|
| 108 | double prior_lognc; |
|---|
| 109 | vec lognc_history; |
|---|
| 110 | mat* data_matrix; |
|---|
| 111 | |
|---|
| 112 | model(list<pair<int,int>> ar_components, |
|---|
| 113 | bool robust, |
|---|
| 114 | bool has_constant, |
|---|
| 115 | int window_size, |
|---|
| 116 | int predicted_channel, |
|---|
| 117 | mat* data_matrix) |
|---|
| 118 | { |
|---|
| 119 | this->ar_components.insert(this->ar_components.begin(),ar_components.begin(),ar_components.end()); |
|---|
| 120 | this->has_constant = has_constant; |
|---|
| 121 | this->window_size = window_size; |
|---|
| 122 | this->predicted_channel = predicted_channel; |
|---|
| 123 | this->data_matrix = data_matrix; |
|---|
| 124 | number_of_updates = 0; |
|---|
| 125 | |
|---|
| 126 | order = 0; |
|---|
| 127 | for(list<pair<int,int>>::iterator ar_ref = ar_components.begin();ar_ref!=ar_components.end();ar_ref++) |
|---|
| 128 | { |
|---|
| 129 | if((*ar_ref).second > order) |
|---|
| 130 | { |
|---|
| 131 | order = (*ar_ref).second; |
|---|
| 132 | } |
|---|
| 133 | } |
|---|
| 134 | |
|---|
| 135 | if(robust) |
|---|
| 136 | { |
|---|
| 137 | if(has_constant) |
|---|
| 138 | { |
|---|
| 139 | my_rarx = new RARX(ar_components.size()+1,window_size,true); |
|---|
| 140 | my_arx = NULL; |
|---|
| 141 | } |
|---|
| 142 | else |
|---|
| 143 | { |
|---|
| 144 | my_rarx = new RARX(ar_components.size(),window_size,false); |
|---|
| 145 | my_arx = NULL; |
|---|
| 146 | } |
|---|
| 147 | |
|---|
| 148 | prior_lognc = my_rarx->posterior->log_nc; |
|---|
| 149 | } |
|---|
| 150 | else |
|---|
| 151 | { |
|---|
| 152 | my_rarx = NULL; |
|---|
| 153 | my_arx = new ARXwin(); |
|---|
| 154 | mat V0; |
|---|
| 155 | |
|---|
| 156 | if(has_constant) |
|---|
| 157 | { |
|---|
| 158 | V0 = 0.001 * eye(ar_components.size()+2); |
|---|
| 159 | V0(0,0) = 1; |
|---|
| 160 | my_arx->set_constant(true); |
|---|
| 161 | |
|---|
| 162 | } |
|---|
| 163 | else |
|---|
| 164 | { |
|---|
| 165 | |
|---|
| 166 | V0 = 0.001 * eye(ar_components.size()+1); |
|---|
| 167 | V0(0,0) = 1; |
|---|
| 168 | my_arx->set_constant(false); |
|---|
| 169 | |
|---|
| 170 | } |
|---|
| 171 | |
|---|
| 172 | my_arx->set_statistics(1, V0); |
|---|
| 173 | my_arx->set_parameters(window_size); |
|---|
| 174 | my_arx->validate(); |
|---|
| 175 | |
|---|
| 176 | prior_lognc = my_arx->posterior().lognc(); |
|---|
| 177 | } |
|---|
| 178 | } |
|---|
| 179 | |
|---|
| 180 | void data_update(int time) |
|---|
| 181 | { |
|---|
| 182 | if(time > order) |
|---|
| 183 | { |
|---|
| 184 | vec data_vector; |
|---|
| 185 | for(list<pair<int,int>>::iterator ar_iterator = ar_components.begin();ar_iterator!=ar_components.end();ar_iterator++) |
|---|
| 186 | { |
|---|
| 187 | data_vector.ins(data_vector.size(),(*data_matrix).get(ar_iterator->first,time-ar_iterator->second)); |
|---|
| 188 | } |
|---|
| 189 | |
|---|
| 190 | // cout << "Update cond: " << data_vector << endl; |
|---|
| 191 | |
|---|
| 192 | double cur_lognc; |
|---|
| 193 | if(my_rarx!=NULL) |
|---|
| 194 | { |
|---|
| 195 | data_vector.ins(0,(*data_matrix).get(predicted_channel,time)); |
|---|
| 196 | my_rarx->bayes(data_vector); |
|---|
| 197 | cur_lognc = my_rarx->posterior->log_nc; |
|---|
| 198 | } |
|---|
| 199 | else |
|---|
| 200 | { |
|---|
| 201 | vec pred_vec; |
|---|
| 202 | pred_vec.ins(0,(*data_matrix).get(predicted_channel,time)); |
|---|
| 203 | my_arx->bayes(pred_vec,data_vector); |
|---|
| 204 | cur_lognc = my_arx->posterior().lognc(); |
|---|
| 205 | } |
|---|
| 206 | |
|---|
| 207 | number_of_updates++; |
|---|
| 208 | |
|---|
| 209 | if(number_of_updates>window_size) |
|---|
| 210 | { |
|---|
| 211 | lognc_history.ins(lognc_history.size(),cur_lognc-prior_lognc); |
|---|
| 212 | } |
|---|
| 213 | } |
|---|
| 214 | else |
|---|
| 215 | { |
|---|
| 216 | lognc_history.ins(lognc_history.size(),0); |
|---|
| 217 | } |
|---|
| 218 | } |
|---|
| 219 | |
|---|
| 220 | pair<vec,vec> predict(int sample_size, int time, itpp::Laplace_RNG* LapRNG) |
|---|
| 221 | { |
|---|
| 222 | if(time > order) |
|---|
| 223 | { |
|---|
| 224 | vec condition_vector; |
|---|
| 225 | for(list<pair<int,int>>::iterator ar_iterator = ar_components.begin();ar_iterator!=ar_components.end();ar_iterator++) |
|---|
| 226 | { |
|---|
| 227 | condition_vector.ins(condition_vector.size(),(*data_matrix).get(ar_iterator->first,time-ar_iterator->second+1)); |
|---|
| 228 | } |
|---|
| 229 | |
|---|
| 230 | // cout << "Prediction cond: " << condition_vector << endl; |
|---|
| 231 | |
|---|
| 232 | if(my_rarx!=NULL) |
|---|
| 233 | { |
|---|
| 234 | pair<vec,mat> imp_samples = my_rarx->posterior->importance_sample(sample_size); |
|---|
| 235 | |
|---|
| 236 | //cout << "Point estimate: " << (imp_samples.second*imp_samples.first)/(imp_samples.first*ones(imp_samples.first.size())) << endl; |
|---|
| 237 | |
|---|
| 238 | vec sample_prediction; |
|---|
| 239 | for(int t = 0;t<sample_size;t++) |
|---|
| 240 | { |
|---|
| 241 | vec lap_sample = condition_vector; |
|---|
| 242 | |
|---|
| 243 | if(has_constant) |
|---|
| 244 | { |
|---|
| 245 | lap_sample.ins(lap_sample.size(),1.0); |
|---|
| 246 | } |
|---|
| 247 | |
|---|
| 248 | lap_sample.ins(0,(*LapRNG)()); |
|---|
| 249 | |
|---|
| 250 | sample_prediction.ins(0,lap_sample*imp_samples.second.get_col(t)); |
|---|
| 251 | } |
|---|
| 252 | |
|---|
| 253 | return pair<vec,vec>(imp_samples.first,sample_prediction); |
|---|
| 254 | } |
|---|
| 255 | else |
|---|
| 256 | { |
|---|
| 257 | mat samples = my_arx->posterior().sample_mat(sample_size); |
|---|
| 258 | |
|---|
| 259 | //cout << "Point estimate: " << (samples*ones(samples.cols()))/samples.cols() << endl; |
|---|
| 260 | |
|---|
| 261 | // cout << samples.get_col(1) << endl; |
|---|
| 262 | |
|---|
| 263 | vec sample_prediction; |
|---|
| 264 | for(int t = 0;t<sample_size;t++) |
|---|
| 265 | { |
|---|
| 266 | vec gau_sample = condition_vector; |
|---|
| 267 | |
|---|
| 268 | if(has_constant) |
|---|
| 269 | { |
|---|
| 270 | gau_sample.ins(gau_sample.size(),1.0); |
|---|
| 271 | } |
|---|
| 272 | |
|---|
| 273 | gau_sample.ins(gau_sample.size(),randn()); |
|---|
| 274 | |
|---|
| 275 | sample_prediction.ins(0,gau_sample*samples.get_col(t)); |
|---|
| 276 | } |
|---|
| 277 | |
|---|
| 278 | return pair<vec,vec>(ones(sample_prediction.size()),sample_prediction); |
|---|
| 279 | } |
|---|
| 280 | } |
|---|
| 281 | else |
|---|
| 282 | { |
|---|
| 283 | |
|---|
| 284 | return pair<vec,vec>(zeros(1),ones(1)); |
|---|
| 285 | } |
|---|
| 286 | |
|---|
| 287 | } |
|---|
| 288 | |
|---|
| 289 | |
|---|
| 290 | static list<list<pair<int,int>>> possible_models_recurse(int max_order,int number_of_channels) |
|---|
| 291 | { |
|---|
| 292 | list<list<pair<int,int>>> created_model_types; |
|---|
| 293 | |
|---|
| 294 | if(max_order == 1) |
|---|
| 295 | { |
|---|
| 296 | for(int channel = 0;channel<number_of_channels;channel++) |
|---|
| 297 | { |
|---|
| 298 | list<pair<int,int>> returned_type; |
|---|
| 299 | returned_type.push_back(pair<int,int>(channel,1)); |
|---|
| 300 | created_model_types.push_back(returned_type); |
|---|
| 301 | } |
|---|
| 302 | |
|---|
| 303 | return created_model_types; |
|---|
| 304 | } |
|---|
| 305 | else |
|---|
| 306 | { |
|---|
| 307 | created_model_types = possible_models_recurse(max_order-1,number_of_channels); |
|---|
| 308 | list<list<pair<int,int>>> returned_types; |
|---|
| 309 | |
|---|
| 310 | for(list<list<pair<int,int>>>::iterator model_ref = created_model_types.begin();model_ref!=created_model_types.end();model_ref++) |
|---|
| 311 | { |
|---|
| 312 | |
|---|
| 313 | for(int order = 1; order<=max_order; order++) |
|---|
| 314 | { |
|---|
| 315 | for(int channel = 0;channel<number_of_channels;channel++) |
|---|
| 316 | { |
|---|
| 317 | list<pair<int,int>> returned_type; |
|---|
| 318 | pair<int,int> new_pair = pair<int,int>(channel,order); |
|---|
| 319 | if(find((*model_ref).begin(),(*model_ref).end(),new_pair)==(*model_ref).end()) |
|---|
| 320 | { |
|---|
| 321 | returned_type.insert(returned_type.begin(),(*model_ref).begin(),(*model_ref).end()); |
|---|
| 322 | returned_type.push_back(new_pair); |
|---|
| 323 | returned_types.push_back(returned_type); |
|---|
| 324 | } |
|---|
| 325 | } |
|---|
| 326 | } |
|---|
| 327 | } |
|---|
| 328 | |
|---|
| 329 | created_model_types.insert(created_model_types.end(),returned_types.begin(),returned_types.end()); |
|---|
| 330 | |
|---|
| 331 | return created_model_types; |
|---|
| 332 | } |
|---|
| 333 | } |
|---|
| 334 | }; |
|---|
| 335 | |
|---|
| 336 | |
|---|
| 337 | |
|---|
| 338 | |
|---|
| 339 | |
|---|
| 340 | |
|---|
| 341 | |
|---|
| 342 | int main ( int argc, char* argv[] ) { |
|---|
| 343 | |
|---|
| 344 | vec data_vec; |
|---|
| 345 | mat data_matrix; |
|---|
| 346 | DWORD Id; |
|---|
| 347 | |
|---|
| 348 | char szApp[] = "MT4"; |
|---|
| 349 | char szTopic[] = "BID"; |
|---|
| 350 | char szItem[] = "EURUSD"; |
|---|
| 351 | char* itRef = &szItem[0]; |
|---|
| 352 | |
|---|
| 353 | char* file_string = "c:\\rtdata"; |
|---|
| 354 | |
|---|
| 355 | ofstream myfile; |
|---|
| 356 | char fstring[80]; |
|---|
| 357 | strcpy(fstring,file_string); |
|---|
| 358 | strcat(fstring,itRef); |
|---|
| 359 | strcat(fstring,"lognc.txt"); |
|---|
| 360 | |
|---|
| 361 | list<list<pair<int,int>>> model_types = model::possible_models_recurse(max_model_order,1); |
|---|
| 362 | |
|---|
| 363 | int max_window = 50; |
|---|
| 364 | int min_window = 1; |
|---|
| 365 | |
|---|
| 366 | list<model*> models; |
|---|
| 367 | for(list<list<pair<int,int>>>::iterator model_type = model_types.begin();model_type!=model_types.end();model_type++) |
|---|
| 368 | { |
|---|
| 369 | for(int window_size = min_window;window_size < max_window;window_size++) |
|---|
| 370 | { |
|---|
| 371 | //models.push_back(new model((*model_type),true,true,window_size,0,&data_matrix)); |
|---|
| 372 | models.push_back(new model((*model_type),false,true,window_size,0,&data_matrix)); |
|---|
| 373 | //models.push_back(new model((*model_type),true,false,window_size,0,&data_matrix)); |
|---|
| 374 | //models.push_back(new model((*model_type),false,false,window_size,0,&data_matrix)); |
|---|
| 375 | } |
|---|
| 376 | } |
|---|
| 377 | |
|---|
| 378 | mat result_lognc; |
|---|
| 379 | mat result_preds; |
|---|
| 380 | |
|---|
| 381 | /* |
|---|
| 382 | HANDLE hThrd = CreateThread( NULL, 0, (LPTHREAD_START_ROUTINE)ThrdFunc, (LPVOID)1, 0, &Id); |
|---|
| 383 | if ( !hThrd ) |
|---|
| 384 | { |
|---|
| 385 | cout<<"Error Creating Threads,,,,.exiting"<<endl; |
|---|
| 386 | return -1; |
|---|
| 387 | } |
|---|
| 388 | Sleep ( 100 ); |
|---|
| 389 | */ |
|---|
| 390 | |
|---|
| 391 | |
|---|
| 392 | |
|---|
| 393 | //DDE Initialization |
|---|
| 394 | DWORD idInst = 0; |
|---|
| 395 | UINT iReturn; |
|---|
| 396 | iReturn = DdeInitialize(&idInst, (PFNCALLBACK)DdeCallback, |
|---|
| 397 | APPCLASS_STANDARD | APPCMD_CLIENTONLY, 0 ); |
|---|
| 398 | if (iReturn!=DMLERR_NO_ERROR) |
|---|
| 399 | { |
|---|
| 400 | printf("DDE Initialization Failed: 0x%04x\n", iReturn); |
|---|
| 401 | Sleep(1500); |
|---|
| 402 | return 0; |
|---|
| 403 | } |
|---|
| 404 | |
|---|
| 405 | //DDE Connect to Server using given AppName and topic. |
|---|
| 406 | HSZ hszApp, hszTopic; |
|---|
| 407 | HCONV hConv; |
|---|
| 408 | hszApp = DdeCreateStringHandle(idInst, szApp, 0); |
|---|
| 409 | hszTopic = DdeCreateStringHandle(idInst, szTopic, 0); |
|---|
| 410 | hConv = DdeConnect(idInst, hszApp, hszTopic, NULL); |
|---|
| 411 | //DdeFreeStringHandle(idInst, hszApp); |
|---|
| 412 | //DdeFreeStringHandle(idInst, hszTopic); |
|---|
| 413 | if (hConv == NULL) |
|---|
| 414 | { |
|---|
| 415 | printf("DDE Connection Failed.\n"); |
|---|
| 416 | Sleep(1500); DdeUninitialize(idInst); |
|---|
| 417 | return 0; |
|---|
| 418 | } |
|---|
| 419 | |
|---|
| 420 | //Execute commands/requests specific to the DDE Server. |
|---|
| 421 | |
|---|
| 422 | DDERequest(idInst, hConv, szItem); |
|---|
| 423 | |
|---|
| 424 | itpp::Laplace_RNG LapRNG = Laplace_RNG(); |
|---|
| 425 | |
|---|
| 426 | // time_t current_time = time(0); |
|---|
| 427 | |
|---|
| 428 | while(1) |
|---|
| 429 | { |
|---|
| 430 | while(avg_vec.size() < data_count) |
|---|
| 431 | { |
|---|
| 432 | MSG msg; |
|---|
| 433 | BOOL MsgReturn = GetMessage ( &msg , NULL , 0 , 0 ); |
|---|
| 434 | |
|---|
| 435 | if(MsgReturn) |
|---|
| 436 | { |
|---|
| 437 | TranslateMessage(&msg); |
|---|
| 438 | DispatchMessage(&msg); |
|---|
| 439 | } |
|---|
| 440 | Sleep(500); |
|---|
| 441 | } |
|---|
| 442 | |
|---|
| 443 | |
|---|
| 444 | data_vec.ins(data_vec.size(),avg_vec*ones(avg_vec.size())/avg_vec.size()); |
|---|
| 445 | data_matrix = mat(data_vec).T(); |
|---|
| 446 | avg_vec.del(0,avg_vec.size()-1); |
|---|
| 447 | |
|---|
| 448 | vector<double> test_lognc; |
|---|
| 449 | vec preds; |
|---|
| 450 | |
|---|
| 451 | for(list<model*>::iterator model_ref = models.begin();model_ref!=models.end();model_ref++) |
|---|
| 452 | { |
|---|
| 453 | (*model_ref)->data_update(data_vec.size()-1); |
|---|
| 454 | |
|---|
| 455 | if((*model_ref)->lognc_history.size()==0) |
|---|
| 456 | { |
|---|
| 457 | test_lognc.push_back(0); |
|---|
| 458 | } |
|---|
| 459 | else |
|---|
| 460 | { |
|---|
| 461 | test_lognc.push_back((ones((*model_ref)->lognc_history.size())*(*model_ref)->lognc_history)/(*model_ref)->lognc_history.size()*(max_window/(*model_ref)->window_size)); |
|---|
| 462 | } |
|---|
| 463 | |
|---|
| 464 | pair<vec,vec> predictions = (*model_ref)->predict(500,data_vec.size()-1,&LapRNG); |
|---|
| 465 | |
|---|
| 466 | preds.ins(preds.size(),(predictions.first*predictions.second)/(predictions.first*ones(predictions.first.size()))); |
|---|
| 467 | |
|---|
| 468 | } |
|---|
| 469 | |
|---|
| 470 | //preds.ins(0,data_matrix.get(0,data_vec.size())); |
|---|
| 471 | |
|---|
| 472 | result_preds.ins_col(result_preds.cols(),preds); |
|---|
| 473 | |
|---|
| 474 | myfile.open(fstring,ios::app); |
|---|
| 475 | |
|---|
| 476 | // myfile << my_rarx->posterior->minimal_vertex->get_coordinates()[0]; |
|---|
| 477 | |
|---|
| 478 | for(int i = 0;i<test_lognc.size();i++) |
|---|
| 479 | { |
|---|
| 480 | myfile << test_lognc[i] << ','; |
|---|
| 481 | } |
|---|
| 482 | |
|---|
| 483 | myfile << endl; |
|---|
| 484 | |
|---|
| 485 | myfile.close(); |
|---|
| 486 | |
|---|
| 487 | } |
|---|
| 488 | |
|---|
| 489 | //DDE Disconnect and Uninitialize. |
|---|
| 490 | DdeDisconnect(hConv); |
|---|
| 491 | DdeUninitialize(idInst); |
|---|
| 492 | |
|---|
| 493 | return 0; |
|---|
| 494 | } |
|---|
| 495 | |
|---|
| 496 | /* |
|---|
| 497 | // EXPERIMENT: A moving window estimation and prediction of RARX is tested on data generated from |
|---|
| 498 | // y_t=0.95*y_(t-1)+0.05*y_(t-2)+0.2*e_t, where e_t is normally, student(4) and cauchy distributed. It |
|---|
| 499 | // can be compared to the classical setup. |
|---|
| 500 | |
|---|
| 501 | vector<vector<string>> strings; |
|---|
| 502 | |
|---|
| 503 | char* file_string = "c:\\dataGCClosePercDiff"; |
|---|
| 504 | |
|---|
| 505 | char dfstring[80]; |
|---|
| 506 | strcpy(dfstring,file_string); |
|---|
| 507 | strcat(dfstring,".txt"); |
|---|
| 508 | |
|---|
| 509 | |
|---|
| 510 | mat data_matrix; |
|---|
| 511 | ifstream myfile(dfstring); |
|---|
| 512 | if (myfile.is_open()) |
|---|
| 513 | { |
|---|
| 514 | string line; |
|---|
| 515 | while(getline(myfile,line)) |
|---|
| 516 | { |
|---|
| 517 | vec data_vector; |
|---|
| 518 | while(line.find(',') != string::npos) |
|---|
| 519 | { |
|---|
| 520 | int loc2 = line.find('\n'); |
|---|
| 521 | int loc = line.find(','); |
|---|
| 522 | data_vector.ins(data_vector.size(),atof(line.substr(0,loc).c_str())); |
|---|
| 523 | line.erase(0,loc+1); |
|---|
| 524 | } |
|---|
| 525 | |
|---|
| 526 | data_matrix.ins_row(data_matrix.rows(),data_vector); |
|---|
| 527 | } |
|---|
| 528 | |
|---|
| 529 | myfile.close(); |
|---|
| 530 | } |
|---|
| 531 | else |
|---|
| 532 | { |
|---|
| 533 | cout << "Can't open data file!" << endl; |
|---|
| 534 | } |
|---|
| 535 | */ |
|---|
| 536 | |
|---|
| 537 | |
|---|
| 538 | // cout << "Updated." << endl; |
|---|
| 539 | |
|---|
| 540 | /* |
|---|
| 541 | // EXPERIMENT: 100 AR model generated time series of length of 30 from y_t=0.95*y_(t-1)+0.05*y_(t-2)+0.2*e_t, |
|---|
| 542 | // where e_t is normally, student(4) and cauchy distributed are tested using robust AR model, to obtain the |
|---|
| 543 | // variance of location parameter estimators and compare it to the classical setup. |
|---|
| 544 | vector<vector<vector<string>>> string_lists; |
|---|
| 545 | string_lists.push_back(vector<vector<string>>()); |
|---|
| 546 | string_lists.push_back(vector<vector<string>>()); |
|---|
| 547 | string_lists.push_back(vector<vector<string>>()); |
|---|
| 548 | |
|---|
| 549 | char* file_strings[3] = {"c:\\ar_normal.txt", "c:\\ar_student.txt", "c:\\ar_cauchy.txt"}; |
|---|
| 550 | |
|---|
| 551 | |
|---|
| 552 | for(int i = 0;i<3;i++) |
|---|
| 553 | { |
|---|
| 554 | ifstream myfile(file_strings[i]); |
|---|
| 555 | if (myfile.is_open()) |
|---|
| 556 | { |
|---|
| 557 | while ( myfile.good() ) |
|---|
| 558 | { |
|---|
| 559 | string line; |
|---|
| 560 | getline(myfile,line); |
|---|
| 561 | |
|---|
| 562 | vector<string> parsed_line; |
|---|
| 563 | while(line.find(',') != string::npos) |
|---|
| 564 | { |
|---|
| 565 | int loc = line.find(','); |
|---|
| 566 | parsed_line.push_back(line.substr(0,loc)); |
|---|
| 567 | line.erase(0,loc+1); |
|---|
| 568 | } |
|---|
| 569 | |
|---|
| 570 | string_lists[i].push_back(parsed_line); |
|---|
| 571 | } |
|---|
| 572 | myfile.close(); |
|---|
| 573 | } |
|---|
| 574 | } |
|---|
| 575 | |
|---|
| 576 | for(int j = 0;j<string_lists.size();j++) |
|---|
| 577 | { |
|---|
| 578 | |
|---|
| 579 | for(int i = 0;i<string_lists[j].size()-1;i++) |
|---|
| 580 | { |
|---|
| 581 | vector<vec> conditions; |
|---|
| 582 | //emlig* emliga = new emlig(2); |
|---|
| 583 | RARX* my_rarx = new RARX(2,30); |
|---|
| 584 | |
|---|
| 585 | for(int k = 1;k<string_lists[j][i].size();k++) |
|---|
| 586 | { |
|---|
| 587 | vec condition; |
|---|
| 588 | //condition.ins(0,1); |
|---|
| 589 | condition.ins(0,string_lists[j][i][k]); |
|---|
| 590 | conditions.push_back(condition); |
|---|
| 591 | |
|---|
| 592 | //cout << "orig:" << condition << endl; |
|---|
| 593 | |
|---|
| 594 | if(conditions.size()>1) |
|---|
| 595 | { |
|---|
| 596 | conditions[k-2].ins(0,string_lists[j][i][k]); |
|---|
| 597 | |
|---|
| 598 | } |
|---|
| 599 | |
|---|
| 600 | if(conditions.size()>2) |
|---|
| 601 | { |
|---|
| 602 | conditions[k-3].ins(0,string_lists[j][i][k]); |
|---|
| 603 | |
|---|
| 604 | //cout << "modi:" << conditions[k-3] << endl; |
|---|
| 605 | |
|---|
| 606 | my_rarx->bayes(conditions[k-3]); |
|---|
| 607 | |
|---|
| 608 | |
|---|
| 609 | //if(k>5) |
|---|
| 610 | //{ |
|---|
| 611 | // cout << "MaxLik coords:" << emliga->minimal_vertex->get_coordinates() << endl; |
|---|
| 612 | //} |
|---|
| 613 | |
|---|
| 614 | } |
|---|
| 615 | |
|---|
| 616 | } |
|---|
| 617 | |
|---|
| 618 | //emliga->step_me(0); |
|---|
| 619 | /* |
|---|
| 620 | ofstream myfile; |
|---|
| 621 | myfile.open("c:\\robust_ar1.txt",ios::app); |
|---|
| 622 | myfile << my_rarx->minimal_vertex->get_coordinates()[0] << ";"; |
|---|
| 623 | myfile.close(); |
|---|
| 624 | |
|---|
| 625 | myfile.open("c:\\robust_ar2.txt",ios::app); |
|---|
| 626 | myfile << emliga->minimal_vertex->get_coordinates()[1] << ";"; |
|---|
| 627 | myfile.close(); |
|---|
| 628 | |
|---|
| 629 | |
|---|
| 630 | cout << "MaxLik coords:" << emliga->minimal_vertex->get_coordinates() << endl; |
|---|
| 631 | cout << "Step: " << i << endl; |
|---|
| 632 | } |
|---|
| 633 | |
|---|
| 634 | cout << "One experiment finished." << endl; |
|---|
| 635 | |
|---|
| 636 | ofstream myfile; |
|---|
| 637 | myfile.open("c:\\robust_ar1.txt",ios::app); |
|---|
| 638 | myfile << endl; |
|---|
| 639 | myfile.close(); |
|---|
| 640 | |
|---|
| 641 | myfile.open("c:\\robust_ar2.txt",ios::app); |
|---|
| 642 | myfile << endl; |
|---|
| 643 | myfile.close(); |
|---|
| 644 | }*/ |
|---|
| 645 | |
|---|
| 646 | /* |
|---|
| 647 | vector<vec> conditions; |
|---|
| 648 | //emlig* emliga = new emlig(2); |
|---|
| 649 | RARX* my_rarx = new RARX(2,10,false); |
|---|
| 650 | |
|---|
| 651 | |
|---|
| 652 | mat V0 = 0.0001 * eye ( 3 ); |
|---|
| 653 | ARX* my_arx = new ARX(0.85); |
|---|
| 654 | my_arx->set_statistics ( 1, V0 ); //nu is default (set to have finite moments) |
|---|
| 655 | my_arx->set_constant ( false ); |
|---|
| 656 | my_arx->validate(); |
|---|
| 657 | |
|---|
| 658 | |
|---|
| 659 | for(int k = 1;k<strings[j].size();k++) |
|---|
| 660 | { |
|---|
| 661 | vec condition; |
|---|
| 662 | //condition.ins(0,1); |
|---|
| 663 | condition.ins(0,strings[j][k]); |
|---|
| 664 | conditions.push_back(condition); |
|---|
| 665 | |
|---|
| 666 | //cout << "orig:" << condition << endl; |
|---|
| 667 | |
|---|
| 668 | if(conditions.size()>1) |
|---|
| 669 | { |
|---|
| 670 | conditions[k-2].ins(0,strings[j][k]); |
|---|
| 671 | |
|---|
| 672 | } |
|---|
| 673 | |
|---|
| 674 | if(conditions.size()>2) |
|---|
| 675 | { |
|---|
| 676 | conditions[k-3].ins(0,strings[j][k]); |
|---|
| 677 | |
|---|
| 678 | // cout << "Condition:" << conditions[k-3] << endl; |
|---|
| 679 | |
|---|
| 680 | my_rarx->bayes(conditions[k-3]); |
|---|
| 681 | //my_rarx->posterior->step_me(1); |
|---|
| 682 | |
|---|
| 683 | vec cond_vec; |
|---|
| 684 | cond_vec.ins(0,conditions[k-3][0]); |
|---|
| 685 | |
|---|
| 686 | my_arx->bayes(cond_vec,conditions[k-3].right(2)); |
|---|
| 687 | |
|---|
| 688 | /* |
|---|
| 689 | if(k>8) |
|---|
| 690 | { |
|---|
| 691 | //my_rarx->posterior->step_me(0); |
|---|
| 692 | |
|---|
| 693 | //mat samples = my_rarx->posterior->sample_mat(10); |
|---|
| 694 | |
|---|
| 695 | pair<vec,mat> imp_samples = my_rarx->posterior->importance_sample(1000); |
|---|
| 696 | |
|---|
| 697 | //cout << imp_samples.first << endl; |
|---|
| 698 | |
|---|
| 699 | vec sample_prediction; |
|---|
| 700 | vec averaged_params = zeros(imp_samples.second.rows()); |
|---|
| 701 | for(int t = 0;t<imp_samples.first.size();t++) |
|---|
| 702 | { |
|---|
| 703 | vec lap_sample = conditions[k-3].left(2); |
|---|
| 704 | //lap_sample.ins(lap_sample.size(),1.0); |
|---|
| 705 | |
|---|
| 706 | lap_sample.ins(0,LapRNG()); |
|---|
| 707 | |
|---|
| 708 | sample_prediction.ins(0,lap_sample*imp_samples.second.get_col(t)); |
|---|
| 709 | |
|---|
| 710 | averaged_params += imp_samples.first[t]*imp_samples.second.get_col(t); |
|---|
| 711 | } |
|---|
| 712 | |
|---|
| 713 | averaged_params = averaged_params*(1/(imp_samples.first*ones(imp_samples.first.size()))); |
|---|
| 714 | |
|---|
| 715 | // cout << "Averaged estimated parameters: " << averaged_params << endl; |
|---|
| 716 | |
|---|
| 717 | vec sample_pow = sample_prediction; |
|---|
| 718 | |
|---|
| 719 | // cout << sample_prediction << endl; |
|---|
| 720 | vec poly_coefs; |
|---|
| 721 | double prediction; |
|---|
| 722 | bool stop_iteration = false; |
|---|
| 723 | int en = 1; |
|---|
| 724 | do |
|---|
| 725 | { |
|---|
| 726 | double poly_coef = imp_samples.first*sample_pow/(imp_samples.first*ones(imp_samples.first.size())); |
|---|
| 727 | |
|---|
| 728 | if(en==1) |
|---|
| 729 | { |
|---|
| 730 | prediction = poly_coef; |
|---|
| 731 | } |
|---|
| 732 | |
|---|
| 733 | poly_coef = poly_coef*en*fact(utility_constant-2+en)/fact(utility_constant-2); |
|---|
| 734 | |
|---|
| 735 | if(abs(poly_coef)>numeric_limits<double>::epsilon()) |
|---|
| 736 | { |
|---|
| 737 | sample_pow = elem_mult(sample_pow,sample_prediction); |
|---|
| 738 | poly_coefs.ins(0,pow(-1.0,en+1)*poly_coef); |
|---|
| 739 | } |
|---|
| 740 | else |
|---|
| 741 | { |
|---|
| 742 | stop_iteration = true; |
|---|
| 743 | } |
|---|
| 744 | |
|---|
| 745 | en++; |
|---|
| 746 | |
|---|
| 747 | if(en>20) |
|---|
| 748 | { |
|---|
| 749 | stop_iteration = true; |
|---|
| 750 | } |
|---|
| 751 | } |
|---|
| 752 | while(!stop_iteration); |
|---|
| 753 | |
|---|
| 754 | /* |
|---|
| 755 | ofstream myfile_coef; |
|---|
| 756 | |
|---|
| 757 | myfile_coef.open("c:\\coefs.txt",ios::app); |
|---|
| 758 | |
|---|
| 759 | for(int t = 0;t<poly_coefs.size();t++) |
|---|
| 760 | { |
|---|
| 761 | myfile_coef << poly_coefs[t] << ","; |
|---|
| 762 | } |
|---|
| 763 | |
|---|
| 764 | myfile_coef << endl; |
|---|
| 765 | myfile_coef.close(); |
|---|
| 766 | */ |
|---|
| 767 | |
|---|
| 768 | //cout << "Coefficients: " << poly_coefs << endl; |
|---|
| 769 | |
|---|
| 770 | /* |
|---|
| 771 | vec bas_coef = vec("1.0 2.0 -8.0"); |
|---|
| 772 | cout << "Coefs: " << bas_coef << endl; |
|---|
| 773 | cvec actions2 = roots(bas_coef); |
|---|
| 774 | cout << "Roots: " << actions2 << endl; |
|---|
| 775 | */ |
|---|
| 776 | |
|---|
| 777 | /* |
|---|
| 778 | |
|---|
| 779 | cvec actions = roots(poly_coefs); |
|---|
| 780 | |
|---|
| 781 | |
|---|
| 782 | bool is_max = false; |
|---|
| 783 | for(int t = 0;t<actions.size();t++) |
|---|
| 784 | { |
|---|
| 785 | if(actions[t].imag() == 0) |
|---|
| 786 | { |
|---|
| 787 | double second_derivative = 0; |
|---|
| 788 | for(int q = 1;q<poly_coefs.size();q++) |
|---|
| 789 | { |
|---|
| 790 | second_derivative+=poly_coefs[q]*pow(actions[t].real(),q-1)*q; |
|---|
| 791 | } |
|---|
| 792 | |
|---|
| 793 | if(second_derivative<0) |
|---|
| 794 | { |
|---|
| 795 | cout << "Action:" << actions[t].real() << endl; |
|---|
| 796 | |
|---|
| 797 | is_max = true; |
|---|
| 798 | } |
|---|
| 799 | } |
|---|
| 800 | } |
|---|
| 801 | |
|---|
| 802 | if(!is_max) |
|---|
| 803 | { |
|---|
| 804 | cout << "No maximum." << endl; |
|---|
| 805 | } |
|---|
| 806 | |
|---|
| 807 | // cout << "MaxLik coords:" << my_rarx->posterior->minimal_vertex->get_coordinates() << endl; |
|---|
| 808 | |
|---|
| 809 | /* |
|---|
| 810 | double prediction = 0; |
|---|
| 811 | for(int s = 1;s<samples.rows();s++) |
|---|
| 812 | { |
|---|
| 813 | |
|---|
| 814 | double avg_parameter = imp_samples.get_row(s)*ones(samples.cols())/samples.cols(); |
|---|
| 815 | |
|---|
| 816 | prediction += avg_parameter*conditions[k-3][s-1]; |
|---|
| 817 | |
|---|
| 818 | |
|---|
| 819 | |
|---|
| 820 | /* |
|---|
| 821 | ofstream myfile; |
|---|
| 822 | char fstring[80]; |
|---|
| 823 | strcpy(fstring,file_strings[j]); |
|---|
| 824 | |
|---|
| 825 | char es[5]; |
|---|
| 826 | strcat(fstring,itoa(s,es,10)); |
|---|
| 827 | |
|---|
| 828 | strcat(fstring,"_res.txt"); |
|---|
| 829 | |
|---|
| 830 | |
|---|
| 831 | myfile.open(fstring,ios::app); |
|---|
| 832 | |
|---|
| 833 | //myfile << my_rarx->posterior->minimal_vertex->get_coordinates()[0]; |
|---|
| 834 | myfile << avg_parameter; |
|---|
| 835 | |
|---|
| 836 | if(k!=strings[j].size()-1) |
|---|
| 837 | { |
|---|
| 838 | myfile << ","; |
|---|
| 839 | } |
|---|
| 840 | else |
|---|
| 841 | { |
|---|
| 842 | myfile << endl; |
|---|
| 843 | } |
|---|
| 844 | myfile.close(); |
|---|
| 845 | */ |
|---|
| 846 | |
|---|
| 847 | |
|---|
| 848 | //} |
|---|
| 849 | |
|---|
| 850 | // cout << "Prediction: "<< prediction << endl; |
|---|
| 851 | /* |
|---|
| 852 | enorm<ldmat>* pred_mat = my_arx->epredictor(conditions[k-3].left(2)); |
|---|
| 853 | double prediction2 = pred_mat->mean()[0]; |
|---|
| 854 | */ |
|---|
| 855 | |
|---|
| 856 | |
|---|
| 857 | |
|---|
| 858 | /* |
|---|
| 859 | myfile.open(f2string,ios::app); |
|---|
| 860 | myfile << prediction2; |
|---|
| 861 | |
|---|
| 862 | if(k!=strings[j].size()-1) |
|---|
| 863 | { |
|---|
| 864 | myfile << ","; |
|---|
| 865 | } |
|---|
| 866 | else |
|---|
| 867 | { |
|---|
| 868 | myfile << endl; |
|---|
| 869 | } |
|---|
| 870 | myfile.close(); |
|---|
| 871 | //*//* |
|---|
| 872 | |
|---|
| 873 | } |
|---|
| 874 | } */ |
|---|
| 875 | |
|---|
| 876 | //emliga->step_me(0); |
|---|
| 877 | /* |
|---|
| 878 | ofstream myfile; |
|---|
| 879 | myfile.open("c:\\robust_ar1.txt",ios::app); |
|---|
| 880 | myfile << my_rarx->minimal_vertex->get_coordinates()[0] << ";"; |
|---|
| 881 | myfile.close(); |
|---|
| 882 | |
|---|
| 883 | myfile.open("c:\\robust_ar2.txt",ios::app); |
|---|
| 884 | myfile << emliga->minimal_vertex->get_coordinates()[1] << ";"; |
|---|
| 885 | myfile.close(); |
|---|
| 886 | |
|---|
| 887 | |
|---|
| 888 | cout << "MaxLik coords:" << emliga->minimal_vertex->get_coordinates() << endl; |
|---|
| 889 | cout << "Step: " << i << endl;*/ |
|---|
| 890 | //} |
|---|
| 891 | |
|---|
| 892 | |
|---|
| 893 | //} |
|---|
| 894 | |
|---|
| 895 | |
|---|
| 896 | // EXPERIMENT: One step ahead price prediction. Comparison of classical and robust model using optimal trading |
|---|
| 897 | // with maximization of logarithm of one-step ahead wealth. |
|---|
| 898 | |
|---|
| 899 | |
|---|
| 900 | |
|---|
| 901 | /* |
|---|
| 902 | cout << "One experiment finished." << endl; |
|---|
| 903 | |
|---|
| 904 | ofstream myfile; |
|---|
| 905 | myfile.open("c:\\robust_ar1.txt",ios::app); |
|---|
| 906 | myfile << endl; |
|---|
| 907 | myfile.close(); |
|---|
| 908 | |
|---|
| 909 | myfile.open("c:\\robust_ar2.txt",ios::app); |
|---|
| 910 | myfile << endl; |
|---|
| 911 | myfile.close();*/ |
|---|
| 912 | |
|---|
| 913 | |
|---|
| 914 | //emlig* emlig1 = new emlig(emlig_size); |
|---|
| 915 | |
|---|
| 916 | //emlig1->step_me(0); |
|---|
| 917 | //emlig* emlig2 = new emlig(emlig_size); |
|---|
| 918 | |
|---|
| 919 | /* |
|---|
| 920 | emlig1->set_correction_factors(4); |
|---|
| 921 | |
|---|
| 922 | for(int j = 0;j<emlig1->correction_factors.size();j++) |
|---|
| 923 | { |
|---|
| 924 | for(set<my_ivec>::iterator vec_ref = emlig1->correction_factors[j].begin();vec_ref!=emlig1->correction_factors[j].end();vec_ref++) |
|---|
| 925 | { |
|---|
| 926 | cout << j << " "; |
|---|
| 927 | |
|---|
| 928 | for(int i=0;i<(*vec_ref).size();i++) |
|---|
| 929 | { |
|---|
| 930 | cout << (*vec_ref)[i]; |
|---|
| 931 | } |
|---|
| 932 | |
|---|
| 933 | cout << endl; |
|---|
| 934 | } |
|---|
| 935 | }*/ |
|---|
| 936 | |
|---|
| 937 | /* |
|---|
| 938 | vec condition5 = "1.0 1.0 1.01";//"-0.3 1.7 1.5"; |
|---|
| 939 | |
|---|
| 940 | emlig1->add_condition(condition5); |
|---|
| 941 | //emlig1->step_me(0); |
|---|
| 942 | |
|---|
| 943 | |
|---|
| 944 | vec condition1a = "-1.0 1.02 0.5"; |
|---|
| 945 | //vec condition1b = "1.0 1.0 1.01"; |
|---|
| 946 | emlig1->add_condition(condition1a); |
|---|
| 947 | //emlig2->add_condition(condition1b); |
|---|
| 948 | |
|---|
| 949 | vec condition2a = "-0.3 1.7 1.5"; |
|---|
| 950 | //vec condition2b = "-1.0 1.0 1.0"; |
|---|
| 951 | emlig1->add_condition(condition2a); |
|---|
| 952 | //emlig2->add_condition(condition2b); |
|---|
| 953 | |
|---|
| 954 | vec condition3a = "0.5 -1.01 1.0"; |
|---|
| 955 | //vec condition3b = "0.5 -1.01 1.0"; |
|---|
| 956 | |
|---|
| 957 | emlig1->add_condition(condition3a); |
|---|
| 958 | //emlig2->add_condition(condition3b); |
|---|
| 959 | |
|---|
| 960 | vec condition4a = "-0.5 -1.0 1.0"; |
|---|
| 961 | //vec condition4b = "-0.5 -1.0 1.0"; |
|---|
| 962 | |
|---|
| 963 | emlig1->add_condition(condition4a); |
|---|
| 964 | //cout << "************************************************" << endl; |
|---|
| 965 | //emlig2->add_condition(condition4b); |
|---|
| 966 | //cout << "************************************************" << endl; |
|---|
| 967 | |
|---|
| 968 | //cout << emlig1->minimal_vertex->get_coordinates(); |
|---|
| 969 | |
|---|
| 970 | //emlig1->remove_condition(condition3a); |
|---|
| 971 | //emlig1->step_me(0); |
|---|
| 972 | //emlig1->remove_condition(condition2a); |
|---|
| 973 | //emlig1->remove_condition(condition1a); |
|---|
| 974 | //emlig1->remove_condition(condition5); |
|---|
| 975 | |
|---|
| 976 | |
|---|
| 977 | //emlig1->step_me(0); |
|---|
| 978 | //emlig2->step_me(0); |
|---|
| 979 | |
|---|
| 980 | |
|---|
| 981 | // DA SE POUZIT PRO VYPIS DO SOUBORU |
|---|
| 982 | // emlig1->step_me(0); |
|---|
| 983 | |
|---|
| 984 | //emlig1->remove_condition(condition1); |
|---|
| 985 | |
|---|
| 986 | |
|---|
| 987 | |
|---|
| 988 | |
|---|
| 989 | |
|---|
| 990 | /* |
|---|
| 991 | for(int i = 0;i<100;i++) |
|---|
| 992 | { |
|---|
| 993 | cout << endl << "Step:" << i << endl; |
|---|
| 994 | |
|---|
| 995 | double condition[emlig_size+1]; |
|---|
| 996 | |
|---|
| 997 | for(int k = 0;k<=emlig_size;k++) |
|---|
| 998 | { |
|---|
| 999 | condition[k] = (rand()-RAND_MAX/2)/1000.0; |
|---|
| 1000 | } |
|---|
| 1001 | |
|---|
| 1002 | |
|---|
| 1003 | vec* condition_vec = new vec(condition,emlig_size+1); |
|---|
| 1004 | emlig1->add_condition(*condition_vec); |
|---|
| 1005 | |
|---|
| 1006 | /* |
|---|
| 1007 | for(polyhedron* toprow_ref = emlig1->statistic.rows[emlig_size]; toprow_ref != emlig1->statistic.end_poly; toprow_ref = toprow_ref->next_poly) |
|---|
| 1008 | { |
|---|
| 1009 | cout << ((toprow*)toprow_ref)->probability << endl; |
|---|
| 1010 | } |
|---|
| 1011 | */ |
|---|
| 1012 | /* |
|---|
| 1013 | cout << emlig1->statistic_rowsize(emlig_size) << endl << endl; |
|---|
| 1014 | |
|---|
| 1015 | /* |
|---|
| 1016 | if(i-emlig1->number_of_parameters >= 0) |
|---|
| 1017 | { |
|---|
| 1018 | pause(30); |
|---|
| 1019 | } |
|---|
| 1020 | */ |
|---|
| 1021 | |
|---|
| 1022 | // emlig1->step_me(i); |
|---|
| 1023 | |
|---|
| 1024 | /* |
|---|
| 1025 | vector<int> sizevector; |
|---|
| 1026 | for(int s = 0;s<=emlig1->number_of_parameters;s++) |
|---|
| 1027 | { |
|---|
| 1028 | sizevector.push_back(emlig1->statistic_rowsize(s)); |
|---|
| 1029 | } |
|---|
| 1030 | */ |
|---|
| 1031 | //} |
|---|
| 1032 | |
|---|
| 1033 | |
|---|
| 1034 | |
|---|
| 1035 | |
|---|
| 1036 | /* |
|---|
| 1037 | emlig1->step_me(1); |
|---|
| 1038 | |
|---|
| 1039 | vec condition = "2.0 0.0 1.0"; |
|---|
| 1040 | |
|---|
| 1041 | emlig1->add_condition(condition); |
|---|
| 1042 | |
|---|
| 1043 | vector<int> sizevector; |
|---|
| 1044 | for(int s = 0;s<=emlig1->number_of_parameters;s++) |
|---|
| 1045 | { |
|---|
| 1046 | sizevector.push_back(emlig1->statistic_rowsize(s)); |
|---|
| 1047 | } |
|---|
| 1048 | |
|---|
| 1049 | emlig1->step_me(2); |
|---|
| 1050 | |
|---|
| 1051 | condition = "2.0 1.0 0.0"; |
|---|
| 1052 | |
|---|
| 1053 | emlig1->add_condition(condition); |
|---|
| 1054 | |
|---|
| 1055 | sizevector.clear(); |
|---|
| 1056 | for(int s = 0;s<=emlig1->number_of_parameters;s++) |
|---|
| 1057 | { |
|---|
| 1058 | sizevector.push_back(emlig1->statistic_rowsize(s)); |
|---|
| 1059 | } |
|---|
| 1060 | */ |
|---|
| 1061 | |
|---|
| 1062 | |
|---|
| 1063 | |
|---|