1 | |
---|
2 | /*! |
---|
3 | \file |
---|
4 | \brief Robust |
---|
5 | \author Vasek Smidl |
---|
6 | |
---|
7 | */ |
---|
8 | |
---|
9 | #include "estim/arx.h" |
---|
10 | #include "robustlib.h" |
---|
11 | #include <vector> |
---|
12 | #include <iostream> |
---|
13 | #include <fstream> |
---|
14 | //#include <itpp/itsignal.h> |
---|
15 | #include "windows.h" |
---|
16 | #include "ddeml.h" |
---|
17 | #include "stdio.h" |
---|
18 | #include <dirent.h> |
---|
19 | //#include <itpp/itoptim.h> |
---|
20 | |
---|
21 | //#include "DDEClient.h" |
---|
22 | //#include <conio.h> |
---|
23 | |
---|
24 | |
---|
25 | using namespace itpp; |
---|
26 | using namespace bdm; |
---|
27 | |
---|
28 | //const int emlig_size = 2; |
---|
29 | //const int utility_constant = 5; |
---|
30 | |
---|
31 | const int max_model_order = 2; |
---|
32 | const double apriorno = 0.01; |
---|
33 | const int max_window_size = 40; |
---|
34 | const int utility_order = 25; |
---|
35 | const int prediction_time = 30; |
---|
36 | const double min_utility_argument = 0.001; |
---|
37 | const double max_investment = 3.0; |
---|
38 | const int sample_size = 5000; |
---|
39 | const char* commodity = "TY\\"; |
---|
40 | |
---|
41 | /* |
---|
42 | HDDEDATA CALLBACK DdeCallback( |
---|
43 | UINT uType, // Transaction type. |
---|
44 | UINT uFmt, // Clipboard data format. |
---|
45 | HCONV hconv, // Handle to the conversation. |
---|
46 | HSZ hsz1, // Handle to a string. |
---|
47 | HSZ hsz2, // Handle to a string. |
---|
48 | HDDEDATA hdata, // Handle to a global memory object. |
---|
49 | DWORD dwData1, // Transaction-specific data. |
---|
50 | DWORD dwData2) // Transaction-specific data. |
---|
51 | { |
---|
52 | return 0; |
---|
53 | } |
---|
54 | |
---|
55 | void DDERequest(DWORD idInst, HCONV hConv, char* szItem) |
---|
56 | { |
---|
57 | HSZ hszItem = DdeCreateStringHandle(idInst, szItem, 0); |
---|
58 | HDDEDATA hData = DdeClientTransaction(NULL,0,hConv,hszItem,CF_TEXT, |
---|
59 | XTYP_ADVSTART,TIMEOUT_ASYNC , NULL); //TIMEOUT_ASYNC |
---|
60 | if (hData==NULL) |
---|
61 | { |
---|
62 | printf("Request failed: %s\n", szItem); |
---|
63 | } |
---|
64 | |
---|
65 | if (hData==0) |
---|
66 | { |
---|
67 | printf("Request failed: %s\n", szItem); |
---|
68 | } |
---|
69 | } |
---|
70 | |
---|
71 | DWORD WINAPI ThrdFunc( LPVOID n ) |
---|
72 | { |
---|
73 | return 0; |
---|
74 | } |
---|
75 | */ |
---|
76 | vector<char*> listFiles(char* dir){ |
---|
77 | vector<char*> files; |
---|
78 | DIR *pDIR; |
---|
79 | struct dirent *entry; |
---|
80 | if( pDIR=opendir(dir) ){ |
---|
81 | while(entry = readdir(pDIR)){ |
---|
82 | if( strcmp(entry->d_name, ".") != 0 && strcmp(entry->d_name, "..") != 0 ) |
---|
83 | { |
---|
84 | char *file_string = new char[strlen(entry->d_name) + 1]; |
---|
85 | strcpy(file_string, entry->d_name); |
---|
86 | files.push_back(file_string); |
---|
87 | } |
---|
88 | } |
---|
89 | closedir(pDIR); |
---|
90 | } |
---|
91 | return files; |
---|
92 | } |
---|
93 | |
---|
94 | double valueCRRAUtility(const double &position, const pair<vec,vec> &samples, const int order) |
---|
95 | { |
---|
96 | double value = 0; |
---|
97 | set<double> values; |
---|
98 | |
---|
99 | for(int i=0;i<samples.first.length();i++) |
---|
100 | { |
---|
101 | double sample = samples.second.get(i); |
---|
102 | double probability = samples.first.get(i); |
---|
103 | if((position*sample+1)>min_utility_argument) |
---|
104 | { |
---|
105 | values.insert(probability*sample/pow(position*sample+1,order+1)); |
---|
106 | } |
---|
107 | else |
---|
108 | { |
---|
109 | values.insert(probability*(min_utility_argument-1)/position/pow(min_utility_argument,order+1)); |
---|
110 | } |
---|
111 | } |
---|
112 | |
---|
113 | for(set<double>::iterator val_ref = values.begin();val_ref!=values.end();val_ref++) |
---|
114 | { |
---|
115 | value+=(*val_ref); |
---|
116 | } |
---|
117 | |
---|
118 | return value; |
---|
119 | } |
---|
120 | |
---|
121 | double gradientCRRAUtility(const double &position, const pair<vec,vec> &samples, const int order) |
---|
122 | { |
---|
123 | double value = 0; |
---|
124 | set<double> values; |
---|
125 | |
---|
126 | for(int i=0;i<samples.first.length();i++) |
---|
127 | { |
---|
128 | double sample = samples.second.get(i); |
---|
129 | double probability = samples.first.get(i); |
---|
130 | if((position*sample+1)>min_utility_argument) |
---|
131 | { |
---|
132 | values.insert((-(order+1)*pow(sample,2)*probability)/pow(position*sample+1,order+2)); |
---|
133 | } |
---|
134 | } |
---|
135 | |
---|
136 | for(set<double>::iterator val_ref = values.begin();val_ref!=values.end();val_ref++) |
---|
137 | { |
---|
138 | value+=(*val_ref); |
---|
139 | } |
---|
140 | |
---|
141 | return value; |
---|
142 | } |
---|
143 | |
---|
144 | double newtonRaphson(double startingPoint, double epsilon, pair<vec,vec> samples, int order) |
---|
145 | { |
---|
146 | /* |
---|
147 | if(samples.length()>800) |
---|
148 | { |
---|
149 | samples.del(801,samples.size()-1); |
---|
150 | } |
---|
151 | */ |
---|
152 | |
---|
153 | int count = 0; |
---|
154 | |
---|
155 | bool epsilon_reached = false; |
---|
156 | |
---|
157 | while(count<1000&&!epsilon_reached) |
---|
158 | { |
---|
159 | double cur_value = valueCRRAUtility(startingPoint,samples,order); |
---|
160 | double cur_gradient = gradientCRRAUtility(startingPoint,samples,order); |
---|
161 | |
---|
162 | startingPoint = startingPoint - cur_value/cur_gradient; |
---|
163 | |
---|
164 | if(cur_value<epsilon) |
---|
165 | { |
---|
166 | epsilon_reached = true; |
---|
167 | } |
---|
168 | } |
---|
169 | |
---|
170 | if(count==100) |
---|
171 | { |
---|
172 | return startingPoint; // can be different! |
---|
173 | } |
---|
174 | else |
---|
175 | { |
---|
176 | return startingPoint; |
---|
177 | } |
---|
178 | } |
---|
179 | |
---|
180 | class model |
---|
181 | { |
---|
182 | public: |
---|
183 | set<pair<int,int>> ar_components; |
---|
184 | |
---|
185 | // Best thing would be to inherit the two models from a single souce, this is planned, but now structurally |
---|
186 | // problematic. |
---|
187 | RARX* my_rarx; //vzmenovane parametre pre triedu model |
---|
188 | ARXwin* my_arx; |
---|
189 | |
---|
190 | bool has_constant; |
---|
191 | int window_size; //musi byt vacsia ako pocet krokov ak to nema ovplyvnit |
---|
192 | int predicted_channel; |
---|
193 | mat* data_matrix; |
---|
194 | vec predictions; |
---|
195 | char name[80]; |
---|
196 | |
---|
197 | double previous_lognc; |
---|
198 | |
---|
199 | model(set<pair<int,int>> ar_components, //funkcie treidz model-konstruktor |
---|
200 | bool robust, |
---|
201 | bool has_constant, |
---|
202 | int window_size, |
---|
203 | int predicted_channel, |
---|
204 | mat* data_matrix) |
---|
205 | { |
---|
206 | this->ar_components.insert(ar_components.begin(),ar_components.end()); |
---|
207 | |
---|
208 | strcpy(name,"M"); |
---|
209 | |
---|
210 | for(set<pair<int,int>>::iterator ar_ref = ar_components.begin();ar_ref!=ar_components.end();ar_ref++) |
---|
211 | { |
---|
212 | char buffer1[2]; |
---|
213 | char buffer2[2]; |
---|
214 | itoa((*ar_ref).first,buffer1,10); |
---|
215 | itoa((*ar_ref).second,buffer2,10); |
---|
216 | |
---|
217 | strcat(name,buffer1); |
---|
218 | strcat(name,buffer2); |
---|
219 | strcat(name,"_"); |
---|
220 | } |
---|
221 | |
---|
222 | this->has_constant = has_constant; |
---|
223 | |
---|
224 | if(has_constant) |
---|
225 | { |
---|
226 | strcat(name,"C"); |
---|
227 | } |
---|
228 | |
---|
229 | this->window_size = window_size; |
---|
230 | this->predicted_channel = predicted_channel; |
---|
231 | this->data_matrix = data_matrix; |
---|
232 | |
---|
233 | if(robust) |
---|
234 | { |
---|
235 | previous_lognc = 0; |
---|
236 | strcat(name,"R"); |
---|
237 | |
---|
238 | if(has_constant) |
---|
239 | { |
---|
240 | my_rarx = new RARX(ar_components.size()+1,window_size,true,sqrt(2*apriorno),sqrt(2*apriorno),ar_components.size()+3); |
---|
241 | my_arx = NULL; |
---|
242 | } |
---|
243 | else |
---|
244 | { |
---|
245 | my_rarx = new RARX(ar_components.size(),window_size,false,sqrt(2*apriorno),sqrt(2*apriorno),ar_components.size()+2); |
---|
246 | my_arx = NULL; |
---|
247 | } |
---|
248 | } |
---|
249 | else |
---|
250 | { |
---|
251 | my_rarx = NULL; |
---|
252 | my_arx = new ARXwin(); |
---|
253 | mat V0; |
---|
254 | |
---|
255 | if(has_constant) |
---|
256 | { |
---|
257 | V0 = apriorno * eye(ar_components.size()+2); //aj tu konst |
---|
258 | V0(0,0) = 0; |
---|
259 | my_arx->set_constant(true); |
---|
260 | my_arx->set_statistics(1, V0, V0.rows()+1); |
---|
261 | } |
---|
262 | else |
---|
263 | { |
---|
264 | |
---|
265 | V0 = apriorno * eye(ar_components.size()+1);//menit konstantu |
---|
266 | V0(0,0) = 0; |
---|
267 | //V0(0,1) = -0.01; |
---|
268 | //V0(1,0) = -0.01; |
---|
269 | my_arx->set_constant(false); |
---|
270 | my_arx->set_statistics(1, V0, V0.rows()+1); |
---|
271 | |
---|
272 | } |
---|
273 | |
---|
274 | my_arx->set_parameters(window_size); |
---|
275 | my_arx->validate(); |
---|
276 | |
---|
277 | previous_lognc = my_arx->posterior().lognc(); |
---|
278 | |
---|
279 | /* |
---|
280 | vec mean = my_arx->posterior().mean(); |
---|
281 | cout << mean << endl; |
---|
282 | */ |
---|
283 | } |
---|
284 | } |
---|
285 | |
---|
286 | ~model() |
---|
287 | { |
---|
288 | if(my_rarx!=NULL) |
---|
289 | { |
---|
290 | delete my_rarx; |
---|
291 | } |
---|
292 | else |
---|
293 | { |
---|
294 | delete my_arx; |
---|
295 | } |
---|
296 | } |
---|
297 | |
---|
298 | void data_update(int time) |
---|
299 | { |
---|
300 | vec data_vector; |
---|
301 | for(set<pair<int,int>>::iterator ar_iterator = ar_components.begin();ar_iterator!=ar_components.end();ar_iterator++) |
---|
302 | { |
---|
303 | data_vector.ins(data_vector.size(),(*data_matrix).get(ar_iterator->first,time-ar_iterator->second)); |
---|
304 | } |
---|
305 | if(my_rarx!=NULL) |
---|
306 | { |
---|
307 | data_vector.ins(0,(*data_matrix).get(predicted_channel,time)); |
---|
308 | my_rarx->bayes(data_vector); |
---|
309 | } |
---|
310 | else |
---|
311 | { |
---|
312 | vec pred_vec; |
---|
313 | pred_vec.ins(0,(*data_matrix).get(predicted_channel,time)); |
---|
314 | my_arx->bayes(pred_vec,data_vector); |
---|
315 | } |
---|
316 | } |
---|
317 | |
---|
318 | pair<vec,vec> predict(int sample_size, int time, itpp::Laplace_RNG* LapRNG) //nerozumiem, ale vraj to netreba, nepouziva to |
---|
319 | { |
---|
320 | vec condition_vector; |
---|
321 | for(set<pair<int,int>>::iterator ar_iterator = ar_components.begin();ar_iterator!=ar_components.end();ar_iterator++) |
---|
322 | { |
---|
323 | condition_vector.ins(condition_vector.size(),(*data_matrix).get(ar_iterator->first,time-ar_iterator->second+1)); |
---|
324 | } |
---|
325 | |
---|
326 | if(my_rarx!=NULL) |
---|
327 | { |
---|
328 | pair<vec,mat> imp_samples = my_rarx->posterior->sample(sample_size,false); |
---|
329 | |
---|
330 | //cout << imp_samples.first << endl; |
---|
331 | |
---|
332 | vec sample_prediction; |
---|
333 | for(int t = 0;t<imp_samples.second.cols();t++) |
---|
334 | { |
---|
335 | vec lap_sample = condition_vector; |
---|
336 | |
---|
337 | if(has_constant) |
---|
338 | { |
---|
339 | lap_sample.ins(lap_sample.size(),1.0); |
---|
340 | } |
---|
341 | |
---|
342 | lap_sample.ins(lap_sample.size(),(*LapRNG)()); |
---|
343 | |
---|
344 | sample_prediction.ins(0,lap_sample*imp_samples.second.get_col(t)); |
---|
345 | } |
---|
346 | |
---|
347 | return pair<vec,vec>(imp_samples.first,sample_prediction); |
---|
348 | } |
---|
349 | else |
---|
350 | { |
---|
351 | mat samples = my_arx->posterior().sample_mat(sample_size); |
---|
352 | |
---|
353 | vec sample_prediction; |
---|
354 | for(int t = 0;t<sample_size;t++) |
---|
355 | { |
---|
356 | vec gau_sample = condition_vector; |
---|
357 | |
---|
358 | if(has_constant) |
---|
359 | { |
---|
360 | gau_sample.ins(gau_sample.size(),1.0); |
---|
361 | } |
---|
362 | |
---|
363 | gau_sample.ins(gau_sample.size(),randn()); |
---|
364 | |
---|
365 | vec param_sample = samples.get_col(t); |
---|
366 | param_sample.set(param_sample.size()-1,sqrt(param_sample[param_sample.size()-1])); |
---|
367 | sample_prediction.ins(0,gau_sample*param_sample); |
---|
368 | } |
---|
369 | |
---|
370 | return pair<vec,vec>(ones(sample_prediction.size()),sample_prediction); |
---|
371 | } |
---|
372 | |
---|
373 | } |
---|
374 | |
---|
375 | |
---|
376 | static set<set<pair<int,int>>> possible_models_recurse(int max_order,int number_of_channels) |
---|
377 | { |
---|
378 | set<set<pair<int,int>>> created_model_types; |
---|
379 | |
---|
380 | if(max_order == 1)//ukoncovacia vetva |
---|
381 | { |
---|
382 | for(int channel = 0;channel<number_of_channels;channel++)//pre AR 1 model vytvori kombinace kanalov v prvom kroku poyadu |
---|
383 | { |
---|
384 | set<pair<int,int>> returned_type; |
---|
385 | returned_type.insert(pair<int,int>(channel,1)); //?? |
---|
386 | created_model_types.insert(returned_type); |
---|
387 | } |
---|
388 | |
---|
389 | return created_model_types; |
---|
390 | } |
---|
391 | else |
---|
392 | { |
---|
393 | created_model_types = possible_models_recurse(max_order-1,number_of_channels);//tu uz mame ulozene kombinace o jeden krok dozadu //rekuryivne volanie |
---|
394 | set<set<pair<int,int>>> returned_types; |
---|
395 | |
---|
396 | for(set<set<pair<int,int>>>::iterator model_ref = created_model_types.begin();model_ref!=created_model_types.end();model_ref++) |
---|
397 | { |
---|
398 | |
---|
399 | for(int order = 1; order<=max_order; order++) |
---|
400 | { |
---|
401 | for(int channel = 0;channel<number_of_channels;channel++) |
---|
402 | { |
---|
403 | set<pair<int,int>> returned_type; |
---|
404 | pair<int,int> new_pair = pair<int,int>(channel,order);//?? |
---|
405 | if(find((*model_ref).begin(),(*model_ref).end(),new_pair)==(*model_ref).end()) //?? |
---|
406 | { |
---|
407 | returned_type.insert((*model_ref).begin(),(*model_ref).end()); //co vlozi na zaciatok retuned_type? |
---|
408 | returned_type.insert(new_pair); |
---|
409 | |
---|
410 | returned_types.insert(returned_type); |
---|
411 | } |
---|
412 | } |
---|
413 | } |
---|
414 | } |
---|
415 | |
---|
416 | created_model_types.insert(returned_types.begin(),returned_types.end()); |
---|
417 | |
---|
418 | return created_model_types; |
---|
419 | } |
---|
420 | } |
---|
421 | }; |
---|
422 | |
---|
423 | // **************************************************** |
---|
424 | // MAIN MAIN MAIN MAIN MAIN |
---|
425 | // **************************************************** |
---|
426 | int main ( int argc, char* argv[] ) |
---|
427 | { |
---|
428 | |
---|
429 | // EXPERIMENT: A moving window estimation and prediction of RARX is tested on data generated from |
---|
430 | // y_t=0.95*y_(t-1)+0.05*y_(t-2)+0.2*e_t, where e_t is normally, student(4) and cauchy distributed. It |
---|
431 | // can be compared to the classical setup. |
---|
432 | |
---|
433 | itpp::Laplace_RNG LapRNG = Laplace_RNG(); |
---|
434 | |
---|
435 | char* folder_string = "C:\\RobustExperiments\\"; // "C:\\dataADClosePercDiff"; // |
---|
436 | char* data_folder = "data\\"; |
---|
437 | char* results_folder = "results\\"; |
---|
438 | |
---|
439 | char dfstring[150]; |
---|
440 | strcpy(dfstring,folder_string); |
---|
441 | strcat(dfstring,data_folder); |
---|
442 | strcat(dfstring,commodity); |
---|
443 | vector<char*> files = listFiles(dfstring); |
---|
444 | |
---|
445 | for(int contract=0;contract<files.size();contract++) |
---|
446 | { |
---|
447 | char *cdf_str = new char[strlen(dfstring) + 1]; |
---|
448 | strcpy(cdf_str, dfstring); |
---|
449 | strcat(cdf_str,files[contract]); |
---|
450 | |
---|
451 | mat data_matrix; |
---|
452 | ifstream myfile(cdf_str); |
---|
453 | if (myfile.is_open()) |
---|
454 | { |
---|
455 | string line; |
---|
456 | while(getline(myfile,line)) |
---|
457 | { |
---|
458 | vec data_vector; |
---|
459 | while(line.find(',') != string::npos) //zmenil som ciarku za medzeru |
---|
460 | { |
---|
461 | //line.erase(0,1); // toto som sem pridal |
---|
462 | int loc2 = line.find('\n'); |
---|
463 | int loc = line.find(','); |
---|
464 | data_vector.ins(data_vector.size(),atof(line.substr(0,loc).c_str())); |
---|
465 | line.erase(0,loc+1); |
---|
466 | } |
---|
467 | |
---|
468 | data_matrix.ins_row(data_matrix.rows(),data_vector); |
---|
469 | } |
---|
470 | |
---|
471 | myfile.close(); |
---|
472 | } |
---|
473 | else |
---|
474 | { |
---|
475 | cout << "Can't open data file!" << endl; |
---|
476 | } |
---|
477 | |
---|
478 | //konec nacitavania dat |
---|
479 | set<set<pair<int,int>>> model_types = model::possible_models_recurse(max_model_order,data_matrix.rows()); //volanie funkce kde robi kombinace modelov |
---|
480 | //to priradime do model_types, data_matrix.row urcuje pocet kanalov dat |
---|
481 | vector<model*> models; |
---|
482 | for(set<set<pair<int,int>>>::iterator model_type = model_types.begin();model_type!=model_types.end();model_type++) |
---|
483 | {// prechadza rozne typy kanalov, a poctu regresorov |
---|
484 | for(int window_size = max_window_size-1;window_size < max_window_size;window_size++) |
---|
485 | { |
---|
486 | //if(model_type->size()<max_model_order) |
---|
487 | //{ |
---|
488 | models.push_back(new model((*model_type),true,true,window_size,0,&data_matrix)); // to su len konstruktory, len inicializujeme rozne typy |
---|
489 | models.push_back(new model((*model_type),false,true,window_size,0,&data_matrix)); |
---|
490 | //} |
---|
491 | models.push_back(new model((*model_type),true,false,window_size,0,&data_matrix)); |
---|
492 | models.push_back(new model((*model_type),false,false,window_size,0,&data_matrix)); |
---|
493 | } |
---|
494 | |
---|
495 | //set<pair<int,int>> empty_list; |
---|
496 | //models.push_back(new model(empty_list,false,true,100,0,&data_matrix)); |
---|
497 | } |
---|
498 | |
---|
499 | mat result_lognc; |
---|
500 | // mat result_preds; |
---|
501 | |
---|
502 | ofstream myfilew; |
---|
503 | char rfstring[150]; |
---|
504 | strcpy(rfstring,folder_string); |
---|
505 | strcat(rfstring,results_folder); |
---|
506 | strcat(rfstring,commodity); |
---|
507 | strcat(rfstring,files[contract]); |
---|
508 | |
---|
509 | /* |
---|
510 | char predstring[150]; |
---|
511 | strcpy(predstring,folder_string); |
---|
512 | strcat(predstring,results_folder); |
---|
513 | strcat(predstring,commodity); |
---|
514 | strcat(predstring,"PRED"); |
---|
515 | strcat(predstring,files[contract]); |
---|
516 | */ |
---|
517 | |
---|
518 | for(int time = max_model_order;time<data_matrix.cols();time++) //time<data_matrix.cols() |
---|
519 | { |
---|
520 | cout << "Steps: " << time << endl; |
---|
521 | |
---|
522 | if(time == max_model_order) |
---|
523 | { |
---|
524 | /* |
---|
525 | myfilew.open(rfstring,ios::app); |
---|
526 | for(int i = 0;models.size();i++) |
---|
527 | { |
---|
528 | for(set<pair<int,int>>::iterator ar_ref = models[i]->ar_components.begin();ar_ref != models[i]->ar_components.end();ar_ref++) |
---|
529 | { |
---|
530 | myfilew << (*ar_ref).second << (*ar_ref).first; |
---|
531 | } |
---|
532 | |
---|
533 | myfilew << "."; |
---|
534 | |
---|
535 | if(models[i]->my_arx == NULL) |
---|
536 | { |
---|
537 | myfilew << "31"; |
---|
538 | } |
---|
539 | else |
---|
540 | { |
---|
541 | myfilew << "30"; |
---|
542 | } |
---|
543 | |
---|
544 | if(models[i]->has_constant) |
---|
545 | { |
---|
546 | myfilew << "61"; |
---|
547 | } |
---|
548 | else |
---|
549 | { |
---|
550 | myfilew << "60"; |
---|
551 | } |
---|
552 | |
---|
553 | myfilew << ",999,999,999,"; |
---|
554 | } |
---|
555 | |
---|
556 | myfilew << "888" << endl; |
---|
557 | myfilew.close(); |
---|
558 | */ |
---|
559 | } |
---|
560 | |
---|
561 | //pocet stlpcov data_matrix je pocet casovych krokov |
---|
562 | double cur_loglikelihood; |
---|
563 | // vec preds; |
---|
564 | int prev_samples_nr; |
---|
565 | bool previous_switch = true; |
---|
566 | for(vector<model*>::iterator model_ref = models.begin();model_ref!=models.end();model_ref++) //.begin()+1;model_ref++) |
---|
567 | {//posuvam s apo models, co je pole modelov urobene o cyklus vyssie. Teda som v case time a robim to tam pre vsetky typy modelov, kombinace regresorov |
---|
568 | (*model_ref)->data_update(time); //pozret sa preco je toto tu nutne |
---|
569 | |
---|
570 | //cout << "Updated." << endl; |
---|
571 | |
---|
572 | if((*model_ref)->my_rarx!=NULL) //vklada normalizacni faktor do cur_res_lognc |
---|
573 | { |
---|
574 | //cout << "Maxlik vertex(robust):" << (*model_ref)->my_rarx->posterior->minimal_vertex->get_coordinates() << endl; |
---|
575 | cur_loglikelihood = (*model_ref)->my_rarx->posterior->_ll(); |
---|
576 | } |
---|
577 | else |
---|
578 | { |
---|
579 | //cout << "Mean(classical):" << (*model_ref)->my_arx->posterior().mean() << endl; |
---|
580 | double cur_lognc = (*model_ref)->my_arx->posterior().lognc(); |
---|
581 | cur_loglikelihood = cur_lognc-(*model_ref)->previous_lognc; |
---|
582 | |
---|
583 | (*model_ref)->previous_lognc = cur_lognc; |
---|
584 | } |
---|
585 | |
---|
586 | /* |
---|
587 | if(time == max_window_size-1) |
---|
588 | { |
---|
589 | //*********************** |
---|
590 | int sample_size = 100000; |
---|
591 | //*********************** |
---|
592 | |
---|
593 | pair<vec,mat> samples; |
---|
594 | if((*model_ref)->my_arx!=NULL) |
---|
595 | { |
---|
596 | mat samp_mat = (*model_ref)->my_arx->posterior().sample_mat(sample_size); |
---|
597 | samples = pair<vec,mat>(ones(samp_mat.cols()),samp_mat); |
---|
598 | } |
---|
599 | else |
---|
600 | { |
---|
601 | samples = (*model_ref)->my_rarx->posterior->sample(sample_size,true); |
---|
602 | } |
---|
603 | |
---|
604 | char fstring[80]; |
---|
605 | strcpy(fstring,file_string); |
---|
606 | strcat(fstring,(*model_ref)->name); |
---|
607 | strcat(fstring,".txt"); |
---|
608 | |
---|
609 | //cout << samples.first << endl; |
---|
610 | |
---|
611 | myfilew.open(fstring,ios::app); |
---|
612 | |
---|
613 | |
---|
614 | //for(int i = 0;i<samples.first.size();i++) |
---|
615 | //{ |
---|
616 | // myfilew << samples.first.get(i) << ","; |
---|
617 | //} |
---|
618 | //myfilew << endl; |
---|
619 | |
---|
620 | |
---|
621 | for(int j = 0;j<samples.second.rows()+1;j++) |
---|
622 | { |
---|
623 | for(int i = 0;i<samples.second.cols();i++) |
---|
624 | { |
---|
625 | if(j!=samples.second.rows()) |
---|
626 | { |
---|
627 | myfilew << samples.second.get(j,i) << ","; |
---|
628 | } |
---|
629 | |
---|
630 | //else |
---|
631 | //{ |
---|
632 | // myfilew << "0,"; |
---|
633 | //} |
---|
634 | |
---|
635 | } |
---|
636 | myfilew << endl; |
---|
637 | } |
---|
638 | |
---|
639 | cout << "*************************************" << endl; |
---|
640 | |
---|
641 | myfilew.close(); |
---|
642 | } |
---|
643 | */ |
---|
644 | |
---|
645 | if(time>prediction_time) |
---|
646 | { |
---|
647 | int samples_nr; |
---|
648 | if(previous_switch) |
---|
649 | { |
---|
650 | samples_nr = sample_size; |
---|
651 | } |
---|
652 | else |
---|
653 | { |
---|
654 | samples_nr = prev_samples_nr; |
---|
655 | } |
---|
656 | |
---|
657 | |
---|
658 | // PREDICTIONS |
---|
659 | pair<vec,vec> predictions = (*model_ref)->predict(samples_nr,time,&LapRNG); |
---|
660 | |
---|
661 | /* |
---|
662 | myfilew.open(predstring,ios::app); |
---|
663 | for(int i=0;i<10000;i++) |
---|
664 | { |
---|
665 | if(i<predictions.second.size()) |
---|
666 | { |
---|
667 | myfilew << predictions.second.get(i) << ","; |
---|
668 | } |
---|
669 | else |
---|
670 | { |
---|
671 | myfilew << ","; |
---|
672 | } |
---|
673 | } |
---|
674 | myfilew << endl; |
---|
675 | myfilew.close(); |
---|
676 | */ |
---|
677 | |
---|
678 | if(previous_switch) |
---|
679 | { |
---|
680 | prev_samples_nr = predictions.second.size(); |
---|
681 | samples_nr = prev_samples_nr; |
---|
682 | } |
---|
683 | |
---|
684 | previous_switch = !previous_switch; |
---|
685 | |
---|
686 | double optimalInvestment = newtonRaphson(0,0.00001,predictions,utility_order); |
---|
687 | |
---|
688 | if(abs(optimalInvestment)>max_investment) |
---|
689 | { |
---|
690 | optimalInvestment = max_investment*sign(optimalInvestment); |
---|
691 | } |
---|
692 | |
---|
693 | |
---|
694 | /* |
---|
695 | vec utilityValues; |
---|
696 | for(int j=0;j<1000;j++) |
---|
697 | { |
---|
698 | utilityValues.ins(utilityValues.length(),valueCRRAUtility(-0.5+0.001*j, predictions.second, utility_order)); |
---|
699 | }*/ |
---|
700 | |
---|
701 | double avg_prediction = (predictions.first*predictions.second)/(predictions.first*ones(predictions.first.size())); |
---|
702 | |
---|
703 | (*model_ref)->predictions.ins((*model_ref)->predictions.size(),avg_prediction); |
---|
704 | |
---|
705 | myfilew.open(rfstring,ios::app); |
---|
706 | |
---|
707 | /* |
---|
708 | for(int j=0;j<utilityValues.length();j++) |
---|
709 | { |
---|
710 | myfilew << utilityValues.get(j) << ","; |
---|
711 | } |
---|
712 | myfilew << endl; |
---|
713 | */ |
---|
714 | |
---|
715 | myfilew << avg_prediction << "," << optimalInvestment << "," << samples_nr << "," << cur_loglikelihood << ","; |
---|
716 | myfilew.close(); |
---|
717 | } |
---|
718 | } |
---|
719 | |
---|
720 | if(time>prediction_time&&(time+1)<data_matrix.cols()) |
---|
721 | { |
---|
722 | // REAL PRICE |
---|
723 | myfilew.open(rfstring,ios::app); |
---|
724 | myfilew << data_matrix.get(0,time+1) << endl; |
---|
725 | myfilew.close(); |
---|
726 | } |
---|
727 | } |
---|
728 | |
---|
729 | for(vector<model*>::reverse_iterator model_ref = models.rbegin();model_ref!=models.rend();model_ref++) |
---|
730 | { |
---|
731 | delete *model_ref; |
---|
732 | } |
---|
733 | } |
---|
734 | |
---|
735 | return 0; |
---|
736 | } |
---|
737 | |
---|
738 | |
---|