1 | /*! |
---|
2 | \file |
---|
3 | \brief Robust Bayesian auto-regression model |
---|
4 | \author Jan Sindelar. |
---|
5 | */ |
---|
6 | |
---|
7 | #ifndef ROBUST_H |
---|
8 | #define ROBUST_H |
---|
9 | |
---|
10 | #include <stat/exp_family.h> |
---|
11 | #include <limits> |
---|
12 | #include <vector> |
---|
13 | #include <algorithm> |
---|
14 | |
---|
15 | using namespace bdm; |
---|
16 | using namespace std; |
---|
17 | |
---|
18 | const double max_range = numeric_limits<double>::max()/10e-5; |
---|
19 | |
---|
20 | class polyhedron; |
---|
21 | class vertex; |
---|
22 | |
---|
23 | /// A class describing a single polyhedron of the split complex. From a collection of such classes a Hasse diagram |
---|
24 | /// of the structure in the exponent of a Laplace-Inverse-Gamma density will be created. |
---|
25 | class polyhedron |
---|
26 | { |
---|
27 | /// A property having a value of 1 usually, with higher value only if the polyhedron arises as a coincidence of |
---|
28 | /// more than just the necessary number of conditions. For example if a newly created line passes through an already |
---|
29 | /// existing point, the points multiplicity will rise by 1. |
---|
30 | int multiplicity; |
---|
31 | |
---|
32 | public: |
---|
33 | /// A list of polyhedrons parents within the Hasse diagram. |
---|
34 | vector<polyhedron*> parents; |
---|
35 | |
---|
36 | /// A list of polyhedrons children withing the Hasse diagram. |
---|
37 | vector<polyhedron*> children; |
---|
38 | |
---|
39 | /// All the vertices of the given polyhedron |
---|
40 | vector<vertex*> vertices; |
---|
41 | |
---|
42 | /// A list used for storing children that lie in the positive region related to a certain condition |
---|
43 | vector<polyhedron*> positivechildren; |
---|
44 | |
---|
45 | /// A list used for storing children that lie in the negative region related to a certain condition |
---|
46 | vector<polyhedron*> negativechildren; |
---|
47 | |
---|
48 | /// Children intersecting the condition |
---|
49 | vector<polyhedron*> neutralchildren; |
---|
50 | |
---|
51 | /// List of triangulation polyhedrons of the polyhedron given by their relative vertices. |
---|
52 | vector<vector<vertex*>> triangulations; |
---|
53 | |
---|
54 | /// A list of relative addresses serving for Hasse diagram construction. |
---|
55 | vector<int> kids_rel_addresses; |
---|
56 | |
---|
57 | /// Default constructor |
---|
58 | polyhedron() |
---|
59 | { |
---|
60 | multiplicity = 1; |
---|
61 | } |
---|
62 | |
---|
63 | /// Setter for raising multiplicity |
---|
64 | void RaiseMultiplicity() |
---|
65 | { |
---|
66 | multiplicity++; |
---|
67 | } |
---|
68 | |
---|
69 | /// Setter for lowering multiplicity |
---|
70 | void LowerMultiplicity() |
---|
71 | { |
---|
72 | multiplicity--; |
---|
73 | } |
---|
74 | |
---|
75 | /// An obligatory operator, when the class is used within a C++ STL structure like a vector |
---|
76 | int operator==(polyhedron polyhedron2) |
---|
77 | { |
---|
78 | return true; |
---|
79 | } |
---|
80 | |
---|
81 | /// An obligatory operator, when the class is used within a C++ STL structure like a vector |
---|
82 | int operator<(polyhedron polyhedron2) |
---|
83 | { |
---|
84 | return false; |
---|
85 | } |
---|
86 | }; |
---|
87 | |
---|
88 | /// A |
---|
89 | class vertex : public polyhedron |
---|
90 | { |
---|
91 | vector<double> coordinates; |
---|
92 | |
---|
93 | public: |
---|
94 | |
---|
95 | vertex(); |
---|
96 | |
---|
97 | vertex(vector<double> coordinates) |
---|
98 | { |
---|
99 | this->coordinates = coordinates; |
---|
100 | } |
---|
101 | |
---|
102 | void push_coordinate(double coordinate) |
---|
103 | { |
---|
104 | coordinates.push_back(coordinate); |
---|
105 | } |
---|
106 | |
---|
107 | vector<double> get_coordinates() |
---|
108 | { |
---|
109 | vector<double> returned_vec; |
---|
110 | |
---|
111 | copy(this->coordinates.begin(),this->coordinates.end(),returned_vec.begin()); |
---|
112 | |
---|
113 | return returned_vec; |
---|
114 | } |
---|
115 | }; |
---|
116 | |
---|
117 | class toprow : public polyhedron |
---|
118 | { |
---|
119 | vector<double> condition; |
---|
120 | |
---|
121 | public: |
---|
122 | |
---|
123 | toprow(); |
---|
124 | |
---|
125 | toprow(vector<double> condition) |
---|
126 | { |
---|
127 | this->condition = condition; |
---|
128 | } |
---|
129 | |
---|
130 | }; |
---|
131 | |
---|
132 | |
---|
133 | |
---|
134 | |
---|
135 | //! Conditional(e) Multicriteria-Laplace-Inverse-Gamma distribution density |
---|
136 | class emlig : public eEF |
---|
137 | { |
---|
138 | |
---|
139 | vector<vector<polyhedron*>> statistic; |
---|
140 | |
---|
141 | public: |
---|
142 | |
---|
143 | emlig(int number_of_parameters) |
---|
144 | { |
---|
145 | create_statistic(number_of_parameters); |
---|
146 | } |
---|
147 | |
---|
148 | emlig(vector<vector<polyhedron*>> statistic) |
---|
149 | { |
---|
150 | this->statistic = statistic; |
---|
151 | } |
---|
152 | |
---|
153 | |
---|
154 | |
---|
155 | protected: |
---|
156 | |
---|
157 | void create_statistic(int number_of_parameters) |
---|
158 | { |
---|
159 | vector<double> origin_coord; |
---|
160 | |
---|
161 | vertex *origin = new vertex(origin_coord); |
---|
162 | |
---|
163 | origin->vertices.push_back(origin); |
---|
164 | |
---|
165 | vector<polyhedron*> origin_vec; |
---|
166 | |
---|
167 | origin_vec.push_back(origin); |
---|
168 | |
---|
169 | statistic.push_back(origin_vec); |
---|
170 | |
---|
171 | for(int i=0;i<number_of_parameters;i++) |
---|
172 | { |
---|
173 | vector<double> origin_coord1 = origin->get_coordinates(); |
---|
174 | vector<double> origin_coord2 = origin->get_coordinates(); |
---|
175 | |
---|
176 | origin->push_coordinate(0); |
---|
177 | |
---|
178 | origin_coord1.push_back(max_range); |
---|
179 | origin_coord2.push_back(-max_range); |
---|
180 | |
---|
181 | vertex *new_point1 = new vertex(origin_coord1); |
---|
182 | vertex *new_point2 = new vertex(origin_coord2); |
---|
183 | |
---|
184 | vector<vector<polyhedron*>> new_statistic1; |
---|
185 | vector<vector<polyhedron*>> new_statistic2; |
---|
186 | |
---|
187 | |
---|
188 | for(int j=0;j<statistic.size();j++) |
---|
189 | { |
---|
190 | int element_number = 0; |
---|
191 | |
---|
192 | for(vector<polyhedron*>::iterator horiz_ref = statistic[j].begin();horiz_ref<statistic[j].end();horiz_ref++) |
---|
193 | { |
---|
194 | if(!(*horiz_ref)->parents.empty()) |
---|
195 | { |
---|
196 | for(vector<polyhedron*>::iterator parent_ref = (*horiz_ref)->parents.begin();parent_ref < (*horiz_ref)->parents.end();parent_ref++) |
---|
197 | { |
---|
198 | (*parent_ref)->kids_rel_addresses.push_back(element_number); |
---|
199 | } |
---|
200 | } |
---|
201 | |
---|
202 | vector<double> vec1(i+2,0); |
---|
203 | vector<double> vec2(i+2,0); |
---|
204 | |
---|
205 | toprow *current_copy1 = new toprow(vec1); |
---|
206 | toprow *current_copy2 = new toprow(vec2); |
---|
207 | |
---|
208 | for(vector<vertex*>::iterator vert_ref = (*horiz_ref)->vertices.begin();vert_ref<(*horiz_ref)->vertices.end();vert_ref++) |
---|
209 | { |
---|
210 | current_copy1->vertices.push_back(*vert_ref); |
---|
211 | current_copy2->vertices.push_back(*vert_ref); |
---|
212 | } |
---|
213 | |
---|
214 | |
---|
215 | current_copy1->vertices.push_back(new_point1); |
---|
216 | current_copy2->vertices.push_back(new_point2); |
---|
217 | |
---|
218 | current_copy1->triangulations.push_back(current_copy1->vertices); |
---|
219 | current_copy2->triangulations.push_back(current_copy2->vertices); |
---|
220 | |
---|
221 | |
---|
222 | |
---|
223 | if(!(*horiz_ref)->kids_rel_addresses.empty()) |
---|
224 | { |
---|
225 | for(vector<int>::iterator kid_ref = (*horiz_ref)->kids_rel_addresses.begin();kid_ref<(*horiz_ref)->kids_rel_addresses.end();kid_ref++) |
---|
226 | { |
---|
227 | current_copy1->children.push_back(new_statistic1[i][(*kid_ref)]); |
---|
228 | current_copy2->children.push_back(new_statistic2[i][(*kid_ref)]); |
---|
229 | |
---|
230 | new_statistic1[i][(*kid_ref)]->parents.push_back(current_copy1); |
---|
231 | new_statistic2[i][(*kid_ref)]->parents.push_back(current_copy2); |
---|
232 | } |
---|
233 | |
---|
234 | (*horiz_ref)->kids_rel_addresses.clear(); |
---|
235 | } |
---|
236 | else |
---|
237 | { |
---|
238 | current_copy1->children.push_back(new_point1); |
---|
239 | current_copy2->children.push_back(new_point2); |
---|
240 | |
---|
241 | new_point1->parents.push_back(current_copy1); |
---|
242 | new_point2->parents.push_back(current_copy2); |
---|
243 | } |
---|
244 | |
---|
245 | current_copy1->children.push_back(*horiz_ref); |
---|
246 | current_copy2->children.push_back(*horiz_ref); |
---|
247 | |
---|
248 | new_statistic1[i+1].push_back(current_copy1); |
---|
249 | new_statistic2[i+1].push_back(current_copy2); |
---|
250 | |
---|
251 | element_number++; |
---|
252 | } |
---|
253 | } |
---|
254 | |
---|
255 | } |
---|
256 | } |
---|
257 | |
---|
258 | |
---|
259 | |
---|
260 | |
---|
261 | }; |
---|
262 | |
---|
263 | //! Robust Bayesian AR model for Multicriteria-Laplace-Inverse-Gamma density |
---|
264 | class RARX : public BMEF{ |
---|
265 | }; |
---|
266 | |
---|
267 | |
---|
268 | #endif //TRAGE_H |
---|