/*! \file \brief Robust Bayesian auto-regression model \author Jan Sindelar. */ #ifndef ROBUST_H #define ROBUST_H #include #include #include #include #include #include #include #include #include using namespace bdm; using namespace std; using namespace itpp; const double max_range = 10;//numeric_limits::max()/10e-10; /// An enumeration of possible actions performed on the polyhedrons. We can merge them or split them. enum actions {MERGE, SPLIT}; // Forward declaration of polyhedron, vertex and emlig class polyhedron; class vertex; class emlig; /* class t_simplex { public: set minima; set simplex; t_simplex(vertex* origin_vertex) { simplex.insert(origin_vertex); minima.insert(origin_vertex); } };*/ /// A class representing a single condition that can be added to the emlig. A condition represents data entries in a statistical model. class condition { public: /// Value of the condition representing the data vec value; /// Mulitplicity of the given condition may represent multiple occurences of same data entry. int multiplicity; /// Default constructor of condition class takes the value of data entry and creates a condition with multiplicity 1 (first occurence of the data). condition(vec value) { this->value = value; multiplicity = 1; } }; class simplex { public: set vertices; double probability; vector> positive_gamma_parameters; vector> negative_gamma_parameters; double positive_gamma_sum; double negative_gamma_sum; double min_beta; simplex(set vertices) { this->vertices.insert(vertices.begin(),vertices.end()); probability = 0; } simplex(vertex* vertex) { this->vertices.insert(vertex); probability = 0; } void clear_gammas() { positive_gamma_parameters.clear(); negative_gamma_parameters.clear(); positive_gamma_sum = 0; negative_gamma_sum = 0; min_beta = numeric_limits::max(); } void insert_gamma(int order, double weight, double beta) { if(weight>=0) { while(positive_gamma_parameters.size() map; positive_gamma_parameters.push_back(map); } positive_gamma_sum += weight; positive_gamma_parameters[order].insert(pair(weight,beta)); } else { while(negative_gamma_parameters.size() map; negative_gamma_parameters.push_back(map); } negative_gamma_sum -= weight; negative_gamma_parameters[order].insert(pair(-weight,beta)); } if(beta < min_beta) { min_beta = beta; } } }; /// A class describing a single polyhedron of the split complex. From a collection of such classes a Hasse diagram /// of the structure in the exponent of a Laplace-Inverse-Gamma density will be created. class polyhedron { /// A property having a value of 1 usually, with higher value only if the polyhedron arises as a coincidence of /// more than just the necessary number of conditions. For example if a newly created line passes through an already /// existing point, the points multiplicity will rise by 1. int multiplicity; /// A property representing the position of the polyhedron related to current condition with relation to which we /// are splitting the parameter space (new data has arrived). This property is setup within a classification procedure and /// is only valid while the new condition is being added. It has to be reset when new condition is added and new classification /// has to be performed. int split_state; /// A property representing the position of the polyhedron related to current condition with relation to which we /// are merging the parameter space (data is being deleted usually due to a moving window model which is more adaptive and /// steps in for the forgetting in a classical Gaussian AR model). This property is setup within a classification procedure and /// is only valid while the new condition is being removed. It has to be reset when new condition is removed and new classification /// has to be performed. int merge_state; public: /// A pointer to the multi-Laplace inverse gamma distribution this polyhedron belongs to. emlig* my_emlig; /// A list of polyhedrons parents within the Hasse diagram. list parents; /// A list of polyhedrons children withing the Hasse diagram. list children; /// All the vertices of the given polyhedron set vertices; /// The conditions that gave birth to the polyhedron. If some of them is removed, the polyhedron ceases to exist. set parentconditions; /// A list used for storing children that lie in the positive region related to a certain condition list positivechildren; /// A list used for storing children that lie in the negative region related to a certain condition list negativechildren; /// Children intersecting the condition list neutralchildren; /// A set of grandchildren of the polyhedron that when new condition is added lie exactly on the condition hyperplane. These grandchildren /// behave differently from other grandchildren, when the polyhedron is split. New grandchild is not necessarily created on the crossection of /// the polyhedron and new condition. set totallyneutralgrandchildren; /// A set of children of the polyhedron that when new condition is added lie exactly on the condition hyperplane. These children /// behave differently from other children, when the polyhedron is split. New child is not necessarily created on the crossection of /// the polyhedron and new condition. set totallyneutralchildren; /// Reverse relation to the totallyneutralgrandchildren set is needed for merging of already existing polyhedrons to keep /// totallyneutralgrandchildren list up to date. set grandparents; /// Vertices of the polyhedron classified as positive related to an added condition. When the polyhderon is split by the new condition, /// these vertices will belong to the positive part of the splitted polyhedron. set positiveneutralvertices; /// Vertices of the polyhedron classified as negative related to an added condition. When the polyhderon is split by the new condition, /// these vertices will belong to the negative part of the splitted polyhedron. set negativeneutralvertices; /// A bool specifying if the polyhedron lies exactly on the newly added condition or not. bool totally_neutral; /// When two polyhedrons are merged, there always exists a child lying on the former border of the polyhedrons. This child manages the merge /// of the two polyhedrons. This property gives us the address of the mediator child. polyhedron* mergechild; /// If the polyhedron serves as a mergechild for two of its parents, we need to have the address of the parents to access them. This /// is the pointer to the positive parent being merged. polyhedron* positiveparent; /// If the polyhedron serves as a mergechild for two of its parents, we need to have the address of the parents to access them. This /// is the pointer to the negative parent being merged. polyhedron* negativeparent; /// Adressing withing the statistic. Next_poly is a pointer to the next polyhedron in the statistic on the same level (if this is a point, /// next_poly will be a point etc.). polyhedron* next_poly; /// Adressing withing the statistic. Prev_poly is a pointer to the previous polyhedron in the statistic on the same level (if this is a point, /// next_poly will be a point etc.). polyhedron* prev_poly; /// A property counting the number of messages obtained from children within a classification procedure of position of the polyhedron related /// an added/removed condition. If the message counter reaches the number of children, we know the polyhedrons' position has been fully classified. int message_counter; /// List of triangulation polyhedrons of the polyhedron given by their relative vertices. set triangulation; /// A list of relative addresses serving for Hasse diagram construction. list kids_rel_addresses; /// Default constructor polyhedron() { multiplicity = 1; message_counter = 0; totally_neutral = NULL; mergechild = NULL; } /// Setter for raising multiplicity void raise_multiplicity() { multiplicity++; } /// Setter for lowering multiplicity void lower_multiplicity() { multiplicity--; } int get_multiplicity() { return multiplicity; } /// An obligatory operator, when the class is used within a C++ STL structure like a vector int operator==(polyhedron polyhedron2) { return true; } /// An obligatory operator, when the class is used within a C++ STL structure like a vector int operator<(polyhedron polyhedron2) { return false; } /// A setter of state of current polyhedron relative to the action specified in the argument. The three possible states of the /// polyhedron are -1 - NEGATIVE, 0 - NEUTRAL, 1 - POSITIVE. Neutral state means that either the state has been reset or the polyhedron is /// ready to be split/merged. int set_state(double state_indicator, actions action) { switch(action) { case MERGE: merge_state = (int)sign(state_indicator); return merge_state; case SPLIT: split_state = (int)sign(state_indicator); return split_state; } } /// A getter of state of current polyhedron relative to the action specified in the argument. The three possible states of the /// polyhedron are -1 - NEGATIVE, 0 - NEUTRAL, 1 - POSITIVE. Neutral state means that either the state has been reset or the polyhedron is /// ready to be split/merged. int get_state(actions action) { switch(action) { case MERGE: return merge_state; break; case SPLIT: return split_state; break; } } /// Method for obtaining the number of children of given polyhedron. int number_of_children() { return children.size(); } /// A method for triangulation of given polyhedron. double triangulate(bool should_integrate); }; /// A class for representing 0-dimensional polyhedron - a vertex. It will be located in the bottom row of the Hasse /// diagram representing a complex of polyhedrons. It has its coordinates in the parameter space. class vertex : public polyhedron { /// A dynamic array representing coordinates of the vertex vec coordinates; public: /// A property specifying the value of the density (ted nevim, jestli je to jakoby log nebo ne) above the vertex. double function_value; /// Default constructor vertex(); /// Constructor of a vertex from a set of coordinates vertex(vec coordinates) { this->coordinates = coordinates; vertices.insert(this); simplex* vert_simplex = new simplex(vertices); triangulation.insert(vert_simplex); } /// A method that widens the set of coordinates of given vertex. It is used when a complex in a parameter /// space of certain dimension is established, but the dimension is not known when the vertex is created. void push_coordinate(double coordinate) { coordinates = concat(coordinates,coordinate); } /// A method obtaining the set of coordinates of a vertex. These coordinates are not obtained as a pointer /// (not given by reference), but a new copy is created (they are given by value). vec get_coordinates() { return coordinates; } }; /// A class representing a polyhedron in a top row of the complex. Such polyhedron has a condition that differen tiates /// it from polyhedrons in other rows. class toprow : public polyhedron { public: double probability; vertex* minimal_vertex; /// A condition used for determining the function of a Laplace-Inverse-Gamma density resulting from Bayesian estimation vec condition_sum; int condition_order; /// Default constructor toprow(){}; /// Constructor creating a toprow from the condition toprow(condition *condition, int condition_order) { this->condition_sum = condition->value; this->condition_order = condition_order; } toprow(vec condition_sum, int condition_order) { this->condition_sum = condition_sum; this->condition_order = condition_order; } double integrate_simplex(simplex* simplex, char c); }; class c_statistic { public: polyhedron* end_poly; polyhedron* start_poly; vector rows; vector row_ends; c_statistic() { end_poly = new polyhedron(); start_poly = new polyhedron(); }; ~c_statistic() { delete end_poly; delete start_poly; } void append_polyhedron(int row, polyhedron* appended_start, polyhedron* appended_end) { if(row>((int)rows.size())-1) { if(row>rows.size()) { throw new exception("You are trying to append a polyhedron whose children are not in the statistic yet!"); return; } rows.push_back(end_poly); row_ends.push_back(end_poly); } // POSSIBLE FAILURE: the function is not checking if start and end are connected if(rows[row] != end_poly) { appended_start->prev_poly = row_ends[row]; row_ends[row]->next_poly = appended_start; } else if((row>0 && rows[row-1]!=end_poly)||row==0) { appended_start->prev_poly = start_poly; rows[row]= appended_start; } else { throw new exception("Wrong polyhedron insertion into statistic: missing intermediary polyhedron!"); } appended_end->next_poly = end_poly; row_ends[row] = appended_end; } void append_polyhedron(int row, polyhedron* appended_poly) { append_polyhedron(row,appended_poly,appended_poly); } void insert_polyhedron(int row, polyhedron* inserted_poly, polyhedron* following_poly) { if(following_poly != end_poly) { inserted_poly->next_poly = following_poly; inserted_poly->prev_poly = following_poly->prev_poly; if(following_poly->prev_poly == start_poly) { rows[row] = inserted_poly; } else { inserted_poly->prev_poly->next_poly = inserted_poly; } following_poly->prev_poly = inserted_poly; } else { this->append_polyhedron(row, inserted_poly); } } void delete_polyhedron(int row, polyhedron* deleted_poly) { if(deleted_poly->prev_poly != start_poly) { deleted_poly->prev_poly->next_poly = deleted_poly->next_poly; } else { rows[row] = deleted_poly->next_poly; } if(deleted_poly->next_poly!=end_poly) { deleted_poly->next_poly->prev_poly = deleted_poly->prev_poly; } else { row_ends[row] = deleted_poly->prev_poly; } deleted_poly->next_poly = NULL; deleted_poly->prev_poly = NULL; } int size() { return rows.size(); } polyhedron* get_end() { return end_poly; } polyhedron* get_start() { return start_poly; } int row_size(int row) { if(this->size()>row && row>=0) { int row_size = 0; for(polyhedron* row_poly = rows[row]; row_poly!=end_poly; row_poly=row_poly->next_poly) { row_size++; } return row_size; } else { throw new exception("There is no row to obtain size from!"); } } }; class my_ivec : public ivec { public: my_ivec():ivec(){}; my_ivec(ivec origin):ivec() { this->ins(0,origin); } bool operator>(const my_ivec &second) const { return max(*this)>max(second); /* int size1 = this->size(); int size2 = second.size(); int counter1 = 0; while(0==0) { if((*this)[counter1]==0) { size1--; } if((*this)[counter1]!=0) break; counter1++; } int counter2 = 0; while(0==0) { if(second[counter2]==0) { size2--; } if(second[counter2]!=0) break; counter2++; } if(size1!=size2) { return size1>size2; } else { for(int i = 0;isecond[counter2+i]; } } return false; }*/ } bool operator==(const my_ivec &second) const { return max(*this)==max(second); /* int size1 = this->size(); int size2 = second.size(); int counter = 0; while(0==0) { if((*this)[counter]==0) { size1--; } if((*this)[counter]!=0) break; counter++; } counter = 0; while(0==0) { if(second[counter]==0) { size2--; } if(second[counter]!=0) break; counter++; } if(size1!=size2) { return false; } else { for(int i=0;isecond)||((*this)==second)); } bool operator!=(const my_ivec &second) const { return !((*this)==second); } bool operator<=(const my_ivec &second) const { return !((*this)>second); } bool operator>=(const my_ivec &second) const { return !((*this)> for_splitting; vector> for_merging; list conditions; double normalization_factor; int condition_order; double last_log_nc; void alter_toprow_conditions(condition *condition, bool should_be_added) { for(polyhedron* horiz_ref = statistic.rows[statistic.size()-1];horiz_ref!=statistic.get_end();horiz_ref=horiz_ref->next_poly) { set::iterator vertex_ref = horiz_ref->vertices.begin(); do { vertex_ref++; } while((*vertex_ref)->parentconditions.find(condition)==(*vertex_ref)->parentconditions.end()); double product = (*vertex_ref)->get_coordinates()*condition->value; if(should_be_added) { ((toprow*) horiz_ref)->condition_order++; if(product>0) { ((toprow*) horiz_ref)->condition_sum += condition->value; } else { ((toprow*) horiz_ref)->condition_sum -= condition->value; } } else { ((toprow*) horiz_ref)->condition_order--; if(product<0) { ((toprow*) horiz_ref)->condition_sum += condition->value; } else { ((toprow*) horiz_ref)->condition_sum -= condition->value; } } } } void send_state_message(polyhedron* sender, condition *toadd, condition *toremove, int level) { bool shouldmerge = (toremove != NULL); bool shouldsplit = (toadd != NULL); if(shouldsplit||shouldmerge) { for(list::iterator parent_iterator = sender->parents.begin();parent_iterator!=sender->parents.end();parent_iterator++) { polyhedron* current_parent = *parent_iterator; current_parent->message_counter++; bool is_last = (current_parent->message_counter == current_parent->number_of_children()); bool is_first = (current_parent->message_counter == 1); bool out_of_the_game = true; if(shouldmerge) { int child_state = sender->get_state(MERGE); int parent_state = current_parent->get_state(MERGE); if(parent_state == 0||is_first) { parent_state = current_parent->set_state(child_state, MERGE); } if(child_state == 0) { if(current_parent->mergechild == NULL) { current_parent->mergechild = sender; } } if(is_last) { if(level == number_of_parameters-1) { if(parent_state == 1) { ((toprow*)current_parent)->condition_sum-=toremove->value; } if(parent_state == -1) { ((toprow*)current_parent)->condition_sum+=toremove->value; } } ((toprow*)current_parent)->condition_order--; if(current_parent->mergechild != NULL) { out_of_the_game = false; if(current_parent->mergechild->get_multiplicity()==1) { if(parent_state > 0) { current_parent->mergechild->positiveparent = current_parent; } if(parent_state < 0) { current_parent->mergechild->negativeparent = current_parent; } } else { out_of_the_game = true; } } if(out_of_the_game) { //current_parent->set_state(0,MERGE); if((level == number_of_parameters - 1) && (!shouldsplit)) { toprow* cur_par_toprow = ((toprow*)current_parent); cur_par_toprow->probability = 0.0; //set new_triangulation; for(set::iterator s_ref = current_parent->triangulation.begin();s_ref!=current_parent->triangulation.end();s_ref++) { double cur_prob = cur_par_toprow->integrate_simplex((*s_ref),'C'); cur_par_toprow->probability += cur_prob; //new_triangulation.insert(pair>(cur_prob,(*t_ref).second)); } normalization_factor += cur_par_toprow->probability; //current_parent->triangulation.clear(); //current_parent->triangulation.insert(new_triangulation.begin(),new_triangulation.end()); } } if(parent_state == 0) { for_merging[level+1].push_back(current_parent); //current_parent->parentconditions.erase(toremove); } } } if(shouldsplit) { current_parent->totallyneutralgrandchildren.insert(sender->totallyneutralchildren.begin(),sender->totallyneutralchildren.end()); for(set::iterator tot_child_ref = sender->totallyneutralchildren.begin();tot_child_ref!=sender->totallyneutralchildren.end();tot_child_ref++) { (*tot_child_ref)->grandparents.insert(current_parent); } if(current_parent->totally_neutral == NULL) { current_parent->totally_neutral = sender->totally_neutral; } else { current_parent->totally_neutral = current_parent->totally_neutral && sender->totally_neutral; } switch(sender->get_state(SPLIT)) { case 1: current_parent->positivechildren.push_back(sender); current_parent->positiveneutralvertices.insert(sender->vertices.begin(),sender->vertices.end()); break; case 0: current_parent->neutralchildren.push_back(sender); if(level!=0) { current_parent->positiveneutralvertices.insert(sender->positiveneutralvertices.begin(),sender->positiveneutralvertices.end()); current_parent->negativeneutralvertices.insert(sender->negativeneutralvertices.begin(),sender->negativeneutralvertices.end()); } else { current_parent->positiveneutralvertices.insert(*sender->vertices.begin()); current_parent->negativeneutralvertices.insert(*sender->vertices.begin()); } if(sender->totally_neutral) { current_parent->totallyneutralchildren.insert(sender); } break; case -1: current_parent->negativechildren.push_back(sender); current_parent->negativeneutralvertices.insert(sender->vertices.begin(),sender->vertices.end()); break; } if(is_last) { if((current_parent->negativechildren.size()>0&¤t_parent->positivechildren.size()>0) ||(current_parent->neutralchildren.size()>0&¤t_parent->totallyneutralchildren.empty())) { for_splitting[level+1].push_back(current_parent); current_parent->set_state(0, SPLIT); } else { if(current_parent->negativechildren.size()>0) { current_parent->set_state(-1, SPLIT); if(level == number_of_parameters-1) { ((toprow*)current_parent)->condition_sum-=toadd->value; } } else if(current_parent->positivechildren.size()>0) { current_parent->set_state(1, SPLIT); if(level == number_of_parameters-1) { ((toprow*)current_parent)->condition_sum+=toadd->value; } } else { current_parent->raise_multiplicity(); current_parent->totally_neutral = true; current_parent->parentconditions.insert(toadd); } ((toprow*)current_parent)->condition_order++; if(level == number_of_parameters - 1 && current_parent->mergechild == NULL) { toprow* cur_par_toprow = ((toprow*)current_parent); cur_par_toprow->probability = 0.0; //map> new_triangulation; for(set::iterator s_ref = current_parent->triangulation.begin();s_ref!=current_parent->triangulation.end();s_ref++) { double cur_prob = cur_par_toprow->integrate_simplex((*s_ref),'C'); cur_par_toprow->probability += cur_prob; //new_triangulation.insert(pair>(cur_prob,(*t_ref).second)); } normalization_factor += cur_par_toprow->probability; //current_parent->triangulation.clear(); //current_parent->triangulation.insert(new_triangulation.begin(),new_triangulation.end()); } if(out_of_the_game) { current_parent->positivechildren.clear(); current_parent->negativechildren.clear(); current_parent->neutralchildren.clear(); //current_parent->totallyneutralchildren.clear(); current_parent->totallyneutralgrandchildren.clear(); // current_parent->grandparents.clear(); current_parent->positiveneutralvertices.clear(); current_parent->negativeneutralvertices.clear(); current_parent->totally_neutral = NULL; current_parent->kids_rel_addresses.clear(); } } } } if(is_last) { current_parent->mergechild = NULL; current_parent->message_counter = 0; send_state_message(current_parent,toadd,toremove,level+1); } } sender->totallyneutralchildren.clear(); } } public: c_statistic statistic; vertex* minimal_vertex; double min_ll; double log_nc; vector> correction_factors; int number_of_parameters; /// A default constructor creates an emlig with predefined statistic representing only the range of the given /// parametric space, where the number of parameters of the needed model is given as a parameter to the constructor. emlig(int number_of_parameters, double soft_prior_parameter) { this->number_of_parameters = number_of_parameters; condition_order = number_of_parameters+2; create_statistic(number_of_parameters, soft_prior_parameter); //step_me(10); min_ll = numeric_limits::max(); double normalization_factor = 0; int counter = 0; for(polyhedron* top_ref = statistic.rows[number_of_parameters];top_ref!=statistic.get_end();top_ref=top_ref->next_poly) { counter++; toprow* cur_toprow = (toprow*)top_ref; set::iterator cur_simplex = cur_toprow->triangulation.begin(); normalization_factor += cur_toprow->integrate_simplex(*cur_simplex,'X'); } log_nc = log(normalization_factor) + logfact(condition_order-number_of_parameters-2)-(condition_order-number_of_parameters-2)*log(2.0); /* cout << "part1: " << log(normalization_factor) << endl; cout << "part2: " << logfact(condition_order-number_of_parameters-2) << endl; pause(1); */ } /// A constructor for creating an emlig when the user wants to create the statistic by himself. The creation of a /// statistic is needed outside the constructor. Used for a user defined prior distribution on the parameters. emlig(c_statistic statistic, int condition_order) { this->statistic = statistic; min_ll = numeric_limits::max(); this->condition_order = condition_order; } void step_me(int marker) { for(int i = 0;inext_poly) { if(i==statistic.size()-1) { cout << ((toprow*)horiz_ref)->condition_sum << " " << ((toprow*)horiz_ref)->probability << endl; cout << "Condition: " << ((toprow*)horiz_ref)->condition_sum << endl; cout << "Order:" << ((toprow*)horiz_ref)->condition_order << endl; } // cout << "Stepped." << endl; if(marker==101) { if(!(*horiz_ref).negativechildren.empty()||!(*horiz_ref).positivechildren.empty()||!(*horiz_ref).neutralchildren.empty()||!(*horiz_ref).kids_rel_addresses.empty()||!(*horiz_ref).mergechild==NULL||!(*horiz_ref).negativeneutralvertices.empty()) { cout << "Cleaning error!" << endl; } } for(set::iterator sim_ref = (*horiz_ref).triangulation.begin();sim_ref!=(*horiz_ref).triangulation.end();sim_ref++) { if((*sim_ref)->vertices.size()!=i+1) { cout << "Something is wrong." << endl; } } /* if(i==0) { cout << ((vertex*)horiz_ref)->get_coordinates() << endl; } */ /* char* string = "Checkpoint"; if((*horiz_ref).parentconditions.size()==0) { zero++; } else if((*horiz_ref).parentconditions.size()==1) { one++; } else { two++; } */ } } /* list table_entries; for(polyhedron* horiz_ref = statistic.rows[statistic.size()-1];horiz_ref!=statistic.row_ends[statistic.size()-1];horiz_ref=horiz_ref->next_poly) { toprow *current_toprow = (toprow*)(horiz_ref); for(list>::iterator tri_ref = current_toprow->triangulation.begin();tri_ref!=current_toprow->triangulation.end();tri_ref++) { for(set::iterator vert_ref = (*tri_ref).begin();vert_ref!=(*tri_ref).end();vert_ref++) { vec table_entry = vec(); table_entry.ins(0,(*vert_ref)->get_coordinates()*current_toprow->condition.get(1,current_toprow->condition.size()-1)-current_toprow->condition.get(0,0)); table_entry.ins(0,(*vert_ref)->get_coordinates()); table_entries.push_back(table_entry); } } } unique(table_entries.begin(),table_entries.end()); for(list::iterator entry_ref = table_entries.begin();entry_ref!=table_entries.end();entry_ref++) { ofstream myfile; myfile.open("robust_data.txt", ios::out | ios::app); if (myfile.is_open()) { for(int i = 0;i<(*entry_ref).size();i++) { myfile << (*entry_ref)[i] << ";"; } myfile << endl; myfile.close(); } else { cout << "File problem." << endl; } } */ return; } int statistic_rowsize(int row) { return statistic.row_size(row); } void add_condition(vec toadd) { vec null_vector = ""; add_and_remove_condition(toadd, null_vector); } void remove_condition(vec toremove) { vec null_vector = ""; add_and_remove_condition(null_vector, toremove); } void add_and_remove_condition(vec toadd, vec toremove) { //step_me(0); normalization_factor = 0; min_ll = numeric_limits::max(); bool should_remove = (toremove.size() != 0); bool should_add = (toadd.size() != 0); if(should_remove) { condition_order--; } if(should_add) { condition_order++; } for_splitting.clear(); for_merging.clear(); for(int i = 0;i empty_split; list empty_merge; for_splitting.push_back(empty_split); for_merging.push_back(empty_merge); } list::iterator toremove_ref = conditions.end(); bool condition_should_be_added = should_add; for(list::iterator ref = conditions.begin();ref!=conditions.end();ref++) { if(should_remove) { if((*ref)->value == toremove) { if((*ref)->multiplicity>1) { (*ref)->multiplicity--; alter_toprow_conditions(*ref,false); should_remove = false; } else { toremove_ref = ref; } } } if(should_add) { if((*ref)->value == toadd) { (*ref)->multiplicity++; alter_toprow_conditions(*ref,true); should_add = false; condition_should_be_added = false; } } } condition* condition_to_remove = NULL; if(toremove_ref!=conditions.end()) { condition_to_remove = *toremove_ref; conditions.erase(toremove_ref); } condition* condition_to_add = NULL; if(condition_should_be_added) { condition* new_condition = new condition(toadd); conditions.push_back(new_condition); condition_to_add = new_condition; } for(polyhedron* horizontal_position = statistic.rows[0];horizontal_position!=statistic.get_end();horizontal_position=horizontal_position->next_poly) { vertex* current_vertex = (vertex*)horizontal_position; if(should_add||should_remove) { vec appended_coords = current_vertex->get_coordinates(); appended_coords.ins(0,-1.0); if(should_add) { double local_condition = 0;// = toadd*(appended_coords.first/=appended_coords.second); local_condition = appended_coords*toadd; // cout << "Vertex multiplicity: "<< current_vertex->get_multiplicity() << endl; current_vertex->set_state(local_condition,SPLIT); /// \TODO There should be a rounding error tolerance used here to insure we are not having too many points because of rounding error. if(local_condition == 0) { cout << "Condition to add: " << toadd << endl; cout << "Vertex coords: " << appended_coords << endl; current_vertex->totally_neutral = true; current_vertex->raise_multiplicity(); current_vertex->parentconditions.insert(condition_to_add); } else { current_vertex->totally_neutral = false; } } if(should_remove) { set::iterator cond_ref; for(cond_ref = current_vertex->parentconditions.begin();cond_ref!=current_vertex->parentconditions.end();cond_ref++) { if(*cond_ref == condition_to_remove) { break; } } if(cond_ref!=current_vertex->parentconditions.end()) { current_vertex->parentconditions.erase(cond_ref); current_vertex->set_state(0,MERGE); for_merging[0].push_back(current_vertex); } else { double local_condition = toremove*appended_coords; current_vertex->set_state(local_condition,MERGE); } } } send_state_message(current_vertex, condition_to_add, condition_to_remove, 0); } // step_me(1); if(should_remove) { /* for(int i = 0;i::iterator merge_ref = for_merging[i].begin();merge_ref!=for_merging[i].end();merge_ref++) { for(list::iterator par_ref = (*merge_ref)->children.begin();par_ref!=(*merge_ref)->children.end();par_ref++) { if(find((*par_ref)->parents.begin(),(*par_ref)->parents.end(),(*merge_ref))==(*par_ref)->parents.end()) { cout << "Parent/child relations are not matched!" << endl; } } //cout << (*merge_ref)->get_state(MERGE) << ","; } // cout << endl; } */ cout << "Merging." << endl; set vertices_to_be_reduced; int k = 1; for(vector>::iterator vert_ref = for_merging.begin();vert_ref::reverse_iterator merge_ref = vert_ref->rbegin();merge_ref!=vert_ref->rend();merge_ref++) { if((*merge_ref)->get_multiplicity()>1) { (*merge_ref)->parentconditions.erase(condition_to_remove); if(k==1) { vertices_to_be_reduced.insert((vertex*)(*merge_ref)); } else { (*merge_ref)->lower_multiplicity(); } if((*merge_ref)->get_state(SPLIT)!=0||(*merge_ref)->totally_neutral) { (*merge_ref)->positivechildren.clear(); (*merge_ref)->negativechildren.clear(); (*merge_ref)->neutralchildren.clear(); (*merge_ref)->totallyneutralgrandchildren.clear(); (*merge_ref)->positiveneutralvertices.clear(); (*merge_ref)->negativeneutralvertices.clear(); (*merge_ref)->totally_neutral = NULL; (*merge_ref)->kids_rel_addresses.clear(); } } else { bool will_be_split = false; toprow* current_positive = (toprow*)(*merge_ref)->positiveparent; toprow* current_negative = (toprow*)(*merge_ref)->negativeparent; if(current_positive->totally_neutral!=current_negative->totally_neutral) { throw new exception("Both polyhedrons must be totally neutral if they should be merged!"); } //current_positive->condition_sum -= toremove; //current_positive->condition_order--; current_positive->parentconditions.erase(condition_to_remove); current_positive->children.insert(current_positive->children.end(),current_negative->children.begin(),current_negative->children.end()); current_positive->children.remove(*merge_ref); for(list::iterator child_ref = current_negative->children.begin();child_ref!=current_negative->children.end();child_ref++) { (*child_ref)->parents.remove(current_negative); (*child_ref)->parents.push_back(current_positive); } // current_positive->parents.insert(current_positive->parents.begin(),current_negative->parents.begin(),current_negative->parents.end()); // unique(current_positive->parents.begin(),current_positive->parents.end()); for(list::iterator parent_ref = current_negative->parents.begin();parent_ref!=current_negative->parents.end();parent_ref++) { (*parent_ref)->children.remove(current_negative); switch(current_negative->get_state(SPLIT)) { case -1: (*parent_ref)->negativechildren.remove(current_negative); break; case 0: (*parent_ref)->neutralchildren.remove(current_negative); break; case 1: (*parent_ref)->positivechildren.remove(current_negative); break; } //(*parent_ref)->children.push_back(current_positive); } if(current_positive->get_state(SPLIT)!=0&¤t_negative->get_state(SPLIT)==0) { for(list::iterator parent_ref = current_positive->parents.begin();parent_ref!=current_positive->parents.end();parent_ref++) { if(current_positive->get_state(SPLIT)==1) { (*parent_ref)->positivechildren.remove(current_positive); } else { (*parent_ref)->negativechildren.remove(current_positive); } (*parent_ref)->neutralchildren.push_back(current_positive); } current_positive->set_state(0,SPLIT); for_splitting[k].push_back(current_positive); will_be_split = true; } if((current_positive->get_state(SPLIT)==0&&!current_positive->totally_neutral)||(current_negative->get_state(SPLIT)==0&&!current_negative->totally_neutral)) { current_positive->negativechildren.insert(current_positive->negativechildren.end(),current_negative->negativechildren.begin(),current_negative->negativechildren.end()); current_positive->positivechildren.insert(current_positive->positivechildren.end(),current_negative->positivechildren.begin(),current_negative->positivechildren.end()); current_positive->neutralchildren.insert(current_positive->neutralchildren.end(),current_negative->neutralchildren.begin(),current_negative->neutralchildren.end()); switch((*merge_ref)->get_state(SPLIT)) { case -1: current_positive->negativechildren.remove(*merge_ref); break; case 0: current_positive->neutralchildren.remove(*merge_ref); break; case 1: current_positive->positivechildren.remove(*merge_ref); break; } /* current_positive->totallyneutralchildren.insert(current_negative->totallyneutralchildren.begin(),current_negative->totallyneutralchildren.end()); current_positive->totallyneutralchildren.erase(*merge_ref); */ current_positive->totallyneutralgrandchildren.insert(current_negative->totallyneutralgrandchildren.begin(),current_negative->totallyneutralgrandchildren.end()); current_positive->negativeneutralvertices.insert(current_negative->negativeneutralvertices.begin(),current_negative->negativeneutralvertices.end()); current_positive->positiveneutralvertices.insert(current_negative->positiveneutralvertices.begin(),current_negative->positiveneutralvertices.end()); will_be_split = true; } else { current_positive->positivechildren.clear(); current_positive->negativechildren.clear(); current_positive->neutralchildren.clear(); // current_positive->totallyneutralchildren.clear(); current_positive->totallyneutralgrandchildren.clear(); current_positive->positiveneutralvertices.clear(); current_positive->negativeneutralvertices.clear(); current_positive->totally_neutral = NULL; current_positive->kids_rel_addresses.clear(); } current_positive->vertices.insert(current_negative->vertices.begin(),current_negative->vertices.end()); for(set::iterator vert_ref = (*merge_ref)->vertices.begin();vert_ref!=(*merge_ref)->vertices.end();vert_ref++) { if((*vert_ref)->get_multiplicity()==1) { current_positive->vertices.erase(*vert_ref); if(will_be_split) { current_positive->negativeneutralvertices.erase(*vert_ref); current_positive->positiveneutralvertices.erase(*vert_ref); } } } if(current_negative->get_state(SPLIT)==0&&!current_negative->totally_neutral) { for_splitting[k].remove(current_negative); } if(current_positive->totally_neutral) { for(set::iterator grand_ref = current_negative->grandparents.begin();grand_ref!=current_negative->grandparents.end();grand_ref++) { (*grand_ref)->totallyneutralgrandchildren.erase(current_negative); (*grand_ref)->totallyneutralgrandchildren.insert(current_positive); } } current_positive->grandparents.clear(); normalization_factor += current_positive->triangulate(k==for_splitting.size()-1 && !will_be_split); statistic.delete_polyhedron(k,current_negative); delete current_negative; for(list::iterator child_ref = (*merge_ref)->children.begin();child_ref!=(*merge_ref)->children.end();child_ref++) { (*child_ref)->parents.remove(*merge_ref); } /* for(list::iterator parent_ref = (*merge_ref)->parents.begin();parent_ref!=(*merge_ref)->parents.end();parent_ref++) { (*parent_ref)->positivechildren.remove(*merge_ref); (*parent_ref)->negativechildren.remove(*merge_ref); (*parent_ref)->neutralchildren.remove(*merge_ref); (*parent_ref)->children.remove(*merge_ref); } */ for(set::iterator grand_ch_ref = (*merge_ref)->totallyneutralgrandchildren.begin();grand_ch_ref!=(*merge_ref)->totallyneutralgrandchildren.end();grand_ch_ref++) { (*grand_ch_ref)->grandparents.erase(*merge_ref); } for(set::iterator grand_p_ref = (*merge_ref)->grandparents.begin();grand_p_ref!=(*merge_ref)->grandparents.end();grand_p_ref++) { (*grand_p_ref)->totallyneutralgrandchildren.erase(*merge_ref); } statistic.delete_polyhedron(k-1,*merge_ref); if(k==1) { vertices_to_be_reduced.insert((vertex*)(*merge_ref)); for_splitting[k-1].remove(*merge_ref); } else { delete (*merge_ref); for_splitting[k-1].remove(*merge_ref); } } } k++; } for(set::iterator vert_ref = vertices_to_be_reduced.begin();vert_ref!=vertices_to_be_reduced.end();vert_ref++) { if((*vert_ref)->get_multiplicity()>1) { (*vert_ref)->lower_multiplicity(); } else { delete (*vert_ref); } } delete condition_to_remove; } vector sizevector; for(int s = 0;s>::iterator beginning_ref = ++for_splitting.begin(); for(vector>::iterator vert_ref = beginning_ref;vert_ref::reverse_iterator split_ref = vert_ref->rbegin();split_ref != vert_ref->rend();split_ref++) { counter++; polyhedron* new_totally_neutral_child; polyhedron* current_polyhedron = (*split_ref); if(vert_ref == beginning_ref) { vec coordinates1 = ((vertex*)(*(current_polyhedron->children.begin())))->get_coordinates(); vec coordinates2 = ((vertex*)(*(++current_polyhedron->children.begin())))->get_coordinates(); vec extended_coord2 = coordinates2; extended_coord2.ins(0,-1.0); double t = (-toadd*extended_coord2)/(toadd(1,toadd.size()-1)*(coordinates1-coordinates2)); vec new_coordinates = (1-t)*coordinates2+t*coordinates1; // cout << "c1:" << coordinates1 << endl << "c2:" << coordinates2 << endl << "nc:" << new_coordinates << endl; vertex* neutral_vertex = new vertex(new_coordinates); new_totally_neutral_child = neutral_vertex; } else { toprow* neutral_toprow = new toprow(); neutral_toprow->condition_sum = ((toprow*)current_polyhedron)->condition_sum; // tohle tu bylo driv: zeros(number_of_parameters+1); neutral_toprow->condition_order = ((toprow*)current_polyhedron)->condition_order+1; new_totally_neutral_child = neutral_toprow; } new_totally_neutral_child->parentconditions.insert(current_polyhedron->parentconditions.begin(),current_polyhedron->parentconditions.end()); new_totally_neutral_child->parentconditions.insert(condition_to_add); new_totally_neutral_child->my_emlig = this; new_totally_neutral_child->children.insert(new_totally_neutral_child->children.end(), current_polyhedron->totallyneutralgrandchildren.begin(), current_polyhedron->totallyneutralgrandchildren.end()); // cout << ((toprow*)current_polyhedron)->condition << endl << toadd << endl; vec cur_pos_condition = ((toprow*)current_polyhedron)->condition_sum; vec cur_neg_condition = ((toprow*)current_polyhedron)->condition_sum; if(k == number_of_parameters) { cur_pos_condition = cur_pos_condition + toadd; cur_neg_condition = cur_neg_condition - toadd; } toprow* positive_poly = new toprow(cur_pos_condition, ((toprow*)current_polyhedron)->condition_order+1); toprow* negative_poly = new toprow(cur_neg_condition, ((toprow*)current_polyhedron)->condition_order+1); positive_poly->my_emlig = this; negative_poly->my_emlig = this; positive_poly->parentconditions.insert(current_polyhedron->parentconditions.begin(),current_polyhedron->parentconditions.end()); negative_poly->parentconditions.insert(current_polyhedron->parentconditions.begin(),current_polyhedron->parentconditions.end()); for(set::iterator grand_ref = current_polyhedron->totallyneutralgrandchildren.begin(); grand_ref != current_polyhedron->totallyneutralgrandchildren.end();grand_ref++) { (*grand_ref)->parents.push_back(new_totally_neutral_child); // tohle tu nebylo. ma to tu byt? //positive_poly->totallyneutralgrandchildren.insert(*grand_ref); //negative_poly->totallyneutralgrandchildren.insert(*grand_ref); //(*grand_ref)->grandparents.insert(positive_poly); //(*grand_ref)->grandparents.insert(negative_poly); new_totally_neutral_child->vertices.insert((*grand_ref)->vertices.begin(),(*grand_ref)->vertices.end()); } positive_poly->children.push_back(new_totally_neutral_child); negative_poly->children.push_back(new_totally_neutral_child); for(list::iterator parent_ref = current_polyhedron->parents.begin();parent_ref!=current_polyhedron->parents.end();parent_ref++) { (*parent_ref)->totallyneutralgrandchildren.insert(new_totally_neutral_child); // new_totally_neutral_child->grandparents.insert(*parent_ref); (*parent_ref)->neutralchildren.remove(current_polyhedron); (*parent_ref)->children.remove(current_polyhedron); (*parent_ref)->children.push_back(positive_poly); (*parent_ref)->children.push_back(negative_poly); (*parent_ref)->positivechildren.push_back(positive_poly); (*parent_ref)->negativechildren.push_back(negative_poly); } positive_poly->parents.insert(positive_poly->parents.end(), current_polyhedron->parents.begin(), current_polyhedron->parents.end()); negative_poly->parents.insert(negative_poly->parents.end(), current_polyhedron->parents.begin(), current_polyhedron->parents.end()); new_totally_neutral_child->parents.push_back(positive_poly); new_totally_neutral_child->parents.push_back(negative_poly); for(list::iterator child_ref = current_polyhedron->positivechildren.begin();child_ref!=current_polyhedron->positivechildren.end();child_ref++) { (*child_ref)->parents.remove(current_polyhedron); (*child_ref)->parents.push_back(positive_poly); } positive_poly->children.insert(positive_poly->children.end(), current_polyhedron->positivechildren.begin(), current_polyhedron->positivechildren.end()); for(list::iterator child_ref = current_polyhedron->negativechildren.begin();child_ref!=current_polyhedron->negativechildren.end();child_ref++) { (*child_ref)->parents.remove(current_polyhedron); (*child_ref)->parents.push_back(negative_poly); } negative_poly->children.insert(negative_poly->children.end(), current_polyhedron->negativechildren.begin(), current_polyhedron->negativechildren.end()); positive_poly->vertices.insert(current_polyhedron->positiveneutralvertices.begin(),current_polyhedron->positiveneutralvertices.end()); positive_poly->vertices.insert(new_totally_neutral_child->vertices.begin(),new_totally_neutral_child->vertices.end()); negative_poly->vertices.insert(current_polyhedron->negativeneutralvertices.begin(),current_polyhedron->negativeneutralvertices.end()); negative_poly->vertices.insert(new_totally_neutral_child->vertices.begin(),new_totally_neutral_child->vertices.end()); new_totally_neutral_child->triangulate(false); normalization_factor += positive_poly->triangulate(k==for_splitting.size()-1); normalization_factor += negative_poly->triangulate(k==for_splitting.size()-1); statistic.append_polyhedron(k-1, new_totally_neutral_child); statistic.insert_polyhedron(k, positive_poly, current_polyhedron); statistic.insert_polyhedron(k, negative_poly, current_polyhedron); statistic.delete_polyhedron(k, current_polyhedron); delete current_polyhedron; } k++; } } /* vector sizevector; //sizevector.clear(); for(int s = 0;snext_poly;topr_ref=topr_ref->next_poly) { cout << ((toprow*)topr_ref)->condition << endl; } */ // step_me(101); } void set_correction_factors(int order) { for(int remaining_order = correction_factors.size();remaining_order factor_templates; multiset final_factors; my_ivec orig_template = my_ivec(); for(int i = 1;i::iterator fac_ref = factor_templates.begin(); do { my_ivec current_template; if(!in_cycle) { current_template = orig_template; in_cycle = true; } else { current_template = (*fac_ref); fac_ref++; } current_template.ins(current_template.size(),i); // cout << "template:" << current_template << endl; if(current_template.size()==remaining_order+1) { final_factors.insert(current_template); } else { factor_templates.insert(current_template); } } while(fac_ref!=factor_templates.end()); } } correction_factors.push_back(final_factors); } } pair choose_simplex() { double rnumber = randu(); // cout << "RND:" << rnumber << endl; // This could be more efficient (log n), but map::upper_bound() doesn't let me dereference returned iterator double prob_sum = 0; toprow* sampled_toprow; for(polyhedron* top_ref = statistic.rows[number_of_parameters];top_ref!=statistic.end_poly;top_ref=top_ref->next_poly) { // cout << "CDF:"<< (*top_ref).first << endl; toprow* current_toprow = ((toprow*)top_ref); prob_sum += current_toprow->probability; if(prob_sum >= rnumber*normalization_factor) { sampled_toprow = (toprow*)top_ref; break; } else { if(top_ref->next_poly==statistic.end_poly) { cout << "Error."; } } } //// cout << "Toprow/Count: " << toprow_count << "/" << ordered_toprows.size() << endl; // cout << &sampled_toprow << ";"; rnumber = randu(); set::iterator s_ref; prob_sum = 0; for(s_ref = sampled_toprow->triangulation.begin();s_ref!=sampled_toprow->triangulation.end();s_ref++) { prob_sum += (*s_ref)->probability; if(prob_sum/sampled_toprow->probability >= rnumber) break; } return pair(sampled_toprow->condition_sum,*s_ref); } pair choose_sigma(simplex* sampled_simplex) { double sigma = 0; double pg_sum; double ng_sum; do { double rnumber = randu(); double sum_g = 0; for(int i = 0;ipositive_gamma_parameters.size();i++) { for(multimap::iterator g_ref = sampled_simplex->positive_gamma_parameters[i].begin();g_ref != sampled_simplex->positive_gamma_parameters[i].end();g_ref++) { sum_g += (*g_ref).first/sampled_simplex->positive_gamma_sum; if(sum_g>rnumber) { //itpp::Gamma_RNG* gamma = new itpp::Gamma_RNG(conditions.size()-number_of_parameters,1/(*g_ref).second); //sigma = 1/(*gamma)(); GamRNG.setup(conditions.size()-number_of_parameters,(*g_ref).second); sigma = 1/GamRNG(); // cout << "Sigma mean: " << (*g_ref).second/(conditions.size()-number_of_parameters-1) << endl; break; } } if(sigma!=0) { break; } } rnumber = randu(); pg_sum = 0; for(vector>::iterator v_ref = sampled_simplex->positive_gamma_parameters.begin();v_ref!=sampled_simplex->positive_gamma_parameters.end();v_ref++) { for(multimap::iterator pg_ref = (*v_ref).begin();pg_ref!=(*v_ref).end();pg_ref++) { pg_sum += exp((sampled_simplex->min_beta-(*pg_ref).second)/sigma)*pow((*pg_ref).second/sigma,(int)conditions.size()-number_of_parameters-1)*(*pg_ref).second/fact(conditions.size()-number_of_parameters-1)*(*pg_ref).first; } } ng_sum = 0; for(vector>::iterator v_ref = sampled_simplex->negative_gamma_parameters.begin();v_ref!=sampled_simplex->negative_gamma_parameters.end();v_ref++) { for(multimap::iterator ng_ref = (*v_ref).begin();ng_ref!=(*v_ref).end();ng_ref++) { ng_sum += exp((sampled_simplex->min_beta-(*ng_ref).second)/sigma)*pow((*ng_ref).second/sigma,(int)conditions.size()-number_of_parameters-1)*(*ng_ref).second/fact(conditions.size()-number_of_parameters-1)*(*ng_ref).first; } } } while(pg_sum-ng_sum<0); return pair((pg_sum-ng_sum)/pg_sum,sigma); } mat sample_mat(int n) { /// \TODO tady je to spatne, tady nesmi byt conditions.size(), viz RARX.bayes() if(conditions.size()-2-number_of_parameters>=0) { mat sample_mat; map ordered_toprows; double sum_a = 0; //cout << "Likelihoods of toprows:" << endl; for(polyhedron* top_ref = statistic.rows[number_of_parameters];top_ref!=statistic.end_poly;top_ref=top_ref->next_poly) { toprow* current_top = (toprow*)top_ref; sum_a+=current_top->probability; /* cout << current_top->probability << " "; for(set::iterator vert_ref = (*top_ref).vertices.begin();vert_ref!=(*top_ref).vertices.end();vert_ref++) { cout << round(100*(*vert_ref)->get_coordinates())/100 << " ; "; } */ // cout << endl; ordered_toprows.insert(pair(sum_a,current_top)); } // cout << "Sum N: " << normalization_factor << endl; while(sample_mat.cols()::iterator top_ref = ordered_toprows.begin();top_ref!=ordered_toprows.end();top_ref++) { // cout << "CDF:"<< (*top_ref).first << endl; toprow_count++; if((*top_ref).first >= rnumber) { sampled_toprow = (*top_ref).second; break; } } //// cout << "Toprow/Count: " << toprow_count << "/" << ordered_toprows.size() << endl; // cout << &sampled_toprow << ";"; rnumber = randu(); set::iterator s_ref; double sum_b = 0; int simplex_count = 0; for(s_ref = sampled_toprow->triangulation.begin();s_ref!=sampled_toprow->triangulation.end();s_ref++) { simplex_count++; sum_b += (*s_ref)->probability; if(sum_b/sampled_toprow->probability >= rnumber) break; } //// cout << "Simplex/Count: " << simplex_count << "/" << sampled_toprow->triangulation.size() << endl; //// cout << "Simplex factor: " << (*s_ref)->probability << endl; //// cout << "Toprow factor: " << sampled_toprow->probability << endl; //// cout << "Emlig factor: " << normalization_factor << endl; // cout << &(*tri_ref) << endl; int number_of_runs = 0; bool have_sigma = false; double sigma = 0; do { rnumber = randu(); double sum_g = 0; for(int i = 0;i<(*s_ref)->positive_gamma_parameters.size();i++) { for(multimap::iterator g_ref = (*s_ref)->positive_gamma_parameters[i].begin();g_ref != (*s_ref)->positive_gamma_parameters[i].end();g_ref++) { sum_g += (*g_ref).first/(*s_ref)->positive_gamma_sum; if(sum_g>rnumber) { //itpp::Gamma_RNG* gamma = new itpp::Gamma_RNG(conditions.size()-number_of_parameters,1/(*g_ref).second); //sigma = 1/(*gamma)(); GamRNG.setup(conditions.size()-number_of_parameters,(*g_ref).second); sigma = 1/GamRNG(); // cout << "Sigma mean: " << (*g_ref).second/(conditions.size()-number_of_parameters-1) << endl; break; } } if(sigma!=0) { break; } } rnumber = randu(); double pg_sum = 0; for(vector>::iterator v_ref = (*s_ref)->positive_gamma_parameters.begin();v_ref!=(*s_ref)->positive_gamma_parameters.end();v_ref++) { for(multimap::iterator pg_ref = (*v_ref).begin();pg_ref!=(*v_ref).end();pg_ref++) { pg_sum += exp(((*s_ref)->min_beta-(*pg_ref).second)/sigma)*pow((*pg_ref).second/sigma,(int)conditions.size()-number_of_parameters-1)*(*pg_ref).second/fact(conditions.size()-number_of_parameters-1)*(*pg_ref).first; } } double ng_sum = 0; for(vector>::iterator v_ref = (*s_ref)->negative_gamma_parameters.begin();v_ref!=(*s_ref)->negative_gamma_parameters.end();v_ref++) { for(multimap::iterator ng_ref = (*v_ref).begin();ng_ref!=(*v_ref).end();ng_ref++) { ng_sum += exp(((*s_ref)->min_beta-(*ng_ref).second)/sigma)*pow((*ng_ref).second/sigma,(int)conditions.size()-number_of_parameters-1)*(*ng_ref).second/fact(conditions.size()-number_of_parameters-1)*(*ng_ref).first; } } if((pg_sum-ng_sum)/pg_sum>rnumber) { have_sigma = true; } number_of_runs++; } while(!have_sigma); //// cout << "Sigma: " << sigma << endl; //// cout << "Nr. of sigma runs: " << number_of_runs << endl; int dimension = (*s_ref)->vertices.size()-1; mat jacobian(dimension,dimension); vec gradient = sampled_toprow->condition_sum.right(dimension); vertex* base_vert = *(*s_ref)->vertices.begin(); //// cout << "Base vertex coords(should be close to est. param.): " << base_vert->get_coordinates() << endl; int row_count = 0; for(set::iterator vert_ref = ++(*s_ref)->vertices.begin();vert_ref!=(*s_ref)->vertices.end();vert_ref++) { vec current_coords = (*vert_ref)->get_coordinates(); //// cout << "Coords of vertex[" << row_count << "]: " << current_coords << endl; vec relative_coords = current_coords-base_vert->get_coordinates(); jacobian.set_row(row_count,relative_coords); row_count++; } //// cout << "Jacobian: " << jacobian << endl; //// cout << "Gradient before trafo:" << gradient << endl; gradient = jacobian*gradient; //// cout << "Gradient after trafo:" << gradient << endl; // vec normal_gradient = gradient/sqrt(gradient*gradient); // cout << gradient << endl; // cout << normal_gradient << endl; // cout << sqrt(gradient*gradient) << endl; mat rotation_matrix = eye(dimension); for(int i = 1;i1) { is_inside = false; } if(is_inside) { sample_coordinates = jacobian.T()*sample_coordinates+(*base_vert).get_coordinates(); sample_coordinates.ins(0,sigma); //// cout << "Sampled coordinates(parameter space):" << sample_coordinates << endl; sample_mat.ins_col(0,sample_coordinates); // cout << sample_mat.cols() << ","; } // cout << sampled_toprow->condition_sum.right(sampled_toprow->condition_sum.size()-1)*min_grad->get_coordinates()-sampled_toprow->condition_sum[0] << endl; // cout << sampled_toprow->condition_sum.right(sampled_toprow->condition_sum.size()-1)*max_grad->get_coordinates()-sampled_toprow->condition_sum[0] << endl; } cout << endl; return sample_mat; } else { throw new exception("You are trying to sample from density that is not determined (parameters can't be integrated out)!"); return 0; } } pair importance_sample(int n) { vec probabilities; mat samples; for(int i = 0;i condition_and_simplex = choose_simplex(); pair probability_and_sigma = choose_sigma(condition_and_simplex.second); int dimension = condition_and_simplex.second->vertices.size()-1; mat jacobian(dimension,dimension); vec gradient = condition_and_simplex.first.right(dimension); vertex* base_vert = *condition_and_simplex.second->vertices.begin(); //// cout << "Base vertex coords(should be close to est. param.): " << base_vert->get_coordinates() << endl; int row_count = 0; for(set::iterator vert_ref = ++condition_and_simplex.second->vertices.begin();vert_ref!=condition_and_simplex.second->vertices.end();vert_ref++) { vec current_coords = (*vert_ref)->get_coordinates(); //// cout << "Coords of vertex[" << row_count << "]: " << current_coords << endl; vec relative_coords = current_coords-base_vert->get_coordinates(); jacobian.set_row(row_count,relative_coords); row_count++; } //// cout << "Jacobian: " << jacobian << endl; /// \todo Is this correct? Are the random coordinates really jointly uniform? I don't know. vec sample_coords; double sampling_diff = 1; for(int j = 0;jprobability/pow(probability_and_sigma.second,(int)conditions.size()-number_of_parameters)*exp((-1)/probability_and_sigma.second*exponent); sample_prob *= probability_and_sigma.first; sample_coords.ins(0,probability_and_sigma.second); samples.ins_col(0,sample_coords); probabilities.ins(0,sample_prob); } return pair(probabilities,samples); } int logfact(int factor) { if(factor>1) { return log((double)factor)+logfact(factor-1); } else { return 0; } } protected: /// A method for creating plain default statistic representing only the range of the parameter space. void create_statistic(int number_of_parameters, double soft_prior_parameter) { /* for(int i = 0;imy_emlig = this; /* // As a statistic, we have to create a vector of vectors of polyhedron pointers. It will then represent the Hasse // diagram. First we create a vector of polyhedrons.. list origin_vec; // ..we fill it with the origin.. origin_vec.push_back(origin); // ..and we fill the statistic with the created vector. statistic.push_back(origin_vec); */ statistic = *(new c_statistic()); statistic.append_polyhedron(0, origin); // Now we have a statistic for a zero dimensional space. Regarding to how many dimensional space we need to // describe, we have to widen the descriptional default statistic. We use an iterative procedure as follows: for(int i=0;iget_coordinates(); // And we incorporate the nonzero coordinates into the new cooordinate vectors vec origin_coord1 = concat(origin_coord,-max_range); vec origin_coord2 = concat(origin_coord,max_range); // Now we create the points vertex* new_point1 = new vertex(origin_coord1); vertex* new_point2 = new vertex(origin_coord2); new_point1->my_emlig = this; new_point2->my_emlig = this; //********************************************************************************************************* // The algorithm for recursive build of a new Hasse diagram representing the space structure from the old // diagram works so that you create two copies of the old Hasse diagram, you shift them up one level (points // will be segments, segments will be areas etc.) and you connect each one of the original copied polyhedrons // with its offspring by a parent-child relation. Also each of the segments in the first (second) copy is // connected to the first (second) newly created vertex by a parent-child relation. //********************************************************************************************************* /* // Create the vectors of vectors of pointers to polyhedrons to hold the copies of the old Hasse diagram vector> new_statistic1; vector> new_statistic2; */ c_statistic* new_statistic1 = new c_statistic(); c_statistic* new_statistic2 = new c_statistic(); // Copy the statistic by rows for(int j=0;j supportnew_1; vector supportnew_2; new_statistic1.push_back(supportnew_1); new_statistic2.push_back(supportnew_2); */ // for each polyhedron in the given row for(polyhedron* horiz_ref = statistic.rows[j];horiz_ref!=statistic.get_end();horiz_ref=horiz_ref->next_poly) { // Append an extra zero coordinate to each of the vertices for the new dimension // If vert_ref is at the first index => we loop through vertices if(j == 0) { // cast the polyhedron pointer to a vertex pointer and push a zero to its vector of coordinates ((vertex*) horiz_ref)->push_coordinate(0); } /* else { ((toprow*) (*horiz_ref))->condition.ins(0,0); }*/ // if it has parents if(!horiz_ref->parents.empty()) { // save the relative address of this child in a vector kids_rel_addresses of all its parents. // This information will later be used for copying the whole Hasse diagram with each of the // relations contained within. for(list::iterator parent_ref = horiz_ref->parents.begin();parent_ref != horiz_ref->parents.end();parent_ref++) { (*parent_ref)->kids_rel_addresses.push_back(element_number); } } // ************************************************************************************************** // Here we begin creating a new polyhedron, which will be a copy of the old one. Each such polyhedron // will be created as a toprow, but this information will be later forgotten and only the polyhedrons // in the top row of the Hasse diagram will be considered toprow for later use. // ************************************************************************************************** // First we create vectors specifying a toprow condition. In the case of a preconstructed statistic // this condition will be a vector of zeros. There are two vectors, because we need two copies of // the original Hasse diagram. vec vec1; vec vec2; if(!horiz_ref->kids_rel_addresses.empty()) { vec1 = ((toprow*)horiz_ref)->condition_sum; vec1.ins(vec1.size(),-soft_prior_parameter); vec2 = ((toprow*)horiz_ref)->condition_sum; vec2.ins(vec2.size(),soft_prior_parameter); } else { vec1.ins(0,-soft_prior_parameter); vec2.ins(0,soft_prior_parameter); vec1.ins(0,0); vec2.ins(0,0); } // cout << vec1 << endl; // cout << vec2 << endl; // We create a new toprow with the previously specified condition. toprow* current_copy1 = new toprow(vec1, this->condition_order); toprow* current_copy2 = new toprow(vec2, this->condition_order); current_copy1->my_emlig = this; current_copy2->my_emlig = this; // The vertices of the copies will be inherited, because there will be a parent/child relation // between each polyhedron and its offspring (comming from the copy) and a parent has all the // vertices of its child plus more. for(set::iterator vertex_ref = horiz_ref->vertices.begin();vertex_ref!=horiz_ref->vertices.end();vertex_ref++) { current_copy1->vertices.insert(*vertex_ref); current_copy2->vertices.insert(*vertex_ref); } // The only new vertex of the offspring should be the newly created point. current_copy1->vertices.insert(new_point1); current_copy2->vertices.insert(new_point2); // This method guarantees that each polyhedron is already triangulated, therefore its triangulation // is only one set of vertices and it is the set of all its vertices. simplex* t_simplex1 = new simplex(current_copy1->vertices); simplex* t_simplex2 = new simplex(current_copy2->vertices); current_copy1->triangulation.insert(t_simplex1); current_copy2->triangulation.insert(t_simplex2); // Now we have copied the polyhedron and we have to copy all of its relations. Because we are copying // in the Hasse diagram from bottom up, we always have to copy the parent/child relations to all the // kids and when we do that and know the child, in the child we will remember the parent we came from. // This way all the parents/children relations are saved in both the parent and the child. if(!horiz_ref->kids_rel_addresses.empty()) { for(list::iterator kid_ref = horiz_ref->kids_rel_addresses.begin();kid_ref!=horiz_ref->kids_rel_addresses.end();kid_ref++) { polyhedron* new_kid1 = new_statistic1->rows[j-1]; polyhedron* new_kid2 = new_statistic2->rows[j-1]; // THIS IS NOT EFFECTIVE: It could be improved by having the list indexed for new_statistic, but // not indexed for statistic. Hopefully this will not cause a big slowdown - happens only offline. if(*kid_ref) { for(int k = 1;k<=(*kid_ref);k++) { new_kid1=new_kid1->next_poly; new_kid2=new_kid2->next_poly; } } // find the child and save the relation to the parent current_copy1->children.push_back(new_kid1); current_copy2->children.push_back(new_kid2); // in the child save the parents' address new_kid1->parents.push_back(current_copy1); new_kid2->parents.push_back(current_copy2); } // Here we clear the parents kids_rel_addresses vector for later use (when we need to widen the // Hasse diagram again) horiz_ref->kids_rel_addresses.clear(); } // If there were no children previously, we are copying a polyhedron that has been a vertex before. // In this case it is a segment now and it will have a relation to its mother (copywise) and to the // newly created point. Here we create the connection to the new point, again from both sides. else { // Add the address of the new point in the former vertex current_copy1->children.push_back(new_point1); current_copy2->children.push_back(new_point2); // Add the address of the former vertex in the new point new_point1->parents.push_back(current_copy1); new_point2->parents.push_back(current_copy2); } // Save the mother in its offspring current_copy1->children.push_back(horiz_ref); current_copy2->children.push_back(horiz_ref); // Save the offspring in its mother horiz_ref->parents.push_back(current_copy1); horiz_ref->parents.push_back(current_copy2); // Add the copies into the relevant statistic. The statistic will later be appended to the previous // Hasse diagram new_statistic1->append_polyhedron(j,current_copy1); new_statistic2->append_polyhedron(j,current_copy2); // Raise the count in the vector of polyhedrons element_number++; } } /* statistic.begin()->push_back(new_point1); statistic.begin()->push_back(new_point2); */ statistic.append_polyhedron(0, new_point1); statistic.append_polyhedron(0, new_point2); // Merge the new statistics into the old one. This will either be the final statistic or we will // reenter the widening loop. for(int j=0;jsize();j++) { /* if(j+1==statistic.size()) { list support; statistic.push_back(support); } (statistic.begin()+j+1)->insert((statistic.begin()+j+1)->end(),new_statistic1[j].begin(),new_statistic1[j].end()); (statistic.begin()+j+1)->insert((statistic.begin()+j+1)->end(),new_statistic2[j].begin(),new_statistic2[j].end()); */ statistic.append_polyhedron(j+1,new_statistic1->rows[j],new_statistic1->row_ends[j]); statistic.append_polyhedron(j+1,new_statistic2->rows[j],new_statistic2->row_ends[j]); } } /* vector> toprow_statistic; int line_count = 0; for(vector>::iterator polyhedron_ref = ++statistic.begin(); polyhedron_ref!=statistic.end();polyhedron_ref++) { list support_list; toprow_statistic.push_back(support_list); for(list::iterator polyhedron_ref2 = polyhedron_ref->begin(); polyhedron_ref2 != polyhedron_ref->end(); polyhedron_ref2++) { toprow* support_top = (toprow*)(*polyhedron_ref2); toprow_statistic[line_count].push_back(support_top); } line_count++; }*/ /* vector sizevector; for(int s = 0;s conditions; public: emlig* posterior; RARX(int number_of_parameters, const int window_size, bool has_constant)//:BM() { this->has_constant = has_constant; posterior = new emlig(number_of_parameters,0.01); this->window_size = window_size; }; void bayes(itpp::vec yt) { if(has_constant) { int c_size = yt.size(); yt.ins(c_size,1.0); } if(yt.size() == posterior->number_of_parameters+1) { conditions.push_back(yt); } else { throw new exception("Wrong condition size for bayesian data update!"); } //posterior->step_me(0); /// \TODO tohle je spatne, tady musi byt jiny vypocet poctu podminek, kdyby nejaka byla multiplicitni, tak tohle bude spatne if(conditions.size()>window_size && window_size!=0) { posterior->add_and_remove_condition(yt,conditions.front()); conditions.pop_front(); //posterior->step_me(1); } else { posterior->add_condition(yt); } } }; #endif //TRAGE_H