| 1 | /*! |
|---|
| 2 | \file |
|---|
| 3 | \brief Robust Bayesian auto-regression model |
|---|
| 4 | \author Jan Sindelar. |
|---|
| 5 | */ |
|---|
| 6 | |
|---|
| 7 | #ifndef ROBUST_H |
|---|
| 8 | #define ROBUST_H |
|---|
| 9 | |
|---|
| 10 | #include <stat/exp_family.h> |
|---|
| 11 | #include <limits> |
|---|
| 12 | #include <vector> |
|---|
| 13 | #include <algorithm> |
|---|
| 14 | |
|---|
| 15 | using namespace bdm; |
|---|
| 16 | using namespace std; |
|---|
| 17 | |
|---|
| 18 | const double max_range = numeric_limits<double>::max()/10e-5; |
|---|
| 19 | |
|---|
| 20 | class polyhedron; |
|---|
| 21 | class vertex; |
|---|
| 22 | |
|---|
| 23 | /// A class describing a single polyhedron of the split complex. From a collection of such classes a Hasse diagram |
|---|
| 24 | /// of the structure in the exponent of a Laplace-Inverse-Gamma density will be created. |
|---|
| 25 | class polyhedron |
|---|
| 26 | { |
|---|
| 27 | /// A property having a value of 1 usually, with higher value only if the polyhedron arises as a coincidence of |
|---|
| 28 | /// more than just the necessary number of conditions. For example if a newly created line passes through an already |
|---|
| 29 | /// existing point, the points multiplicity will rise by 1. |
|---|
| 30 | int multiplicity; |
|---|
| 31 | |
|---|
| 32 | public: |
|---|
| 33 | /// A list of polyhedrons parents within the Hasse diagram. |
|---|
| 34 | vector<polyhedron*> parents; |
|---|
| 35 | |
|---|
| 36 | /// A list of polyhedrons children withing the Hasse diagram. |
|---|
| 37 | vector<polyhedron*> children; |
|---|
| 38 | |
|---|
| 39 | /// All the vertices of the given polyhedron |
|---|
| 40 | vector<vertex*> vertices; |
|---|
| 41 | |
|---|
| 42 | /// A list used for storing children that lie in the positive region related to a certain condition |
|---|
| 43 | vector<polyhedron*> positivechildren; |
|---|
| 44 | |
|---|
| 45 | /// A list used for storing children that lie in the negative region related to a certain condition |
|---|
| 46 | vector<polyhedron*> negativechildren; |
|---|
| 47 | |
|---|
| 48 | /// Children intersecting the condition |
|---|
| 49 | vector<polyhedron*> neutralchildren; |
|---|
| 50 | |
|---|
| 51 | /// List of triangulation polyhedrons of the polyhedron given by their relative vertices. |
|---|
| 52 | vector<vector<vertex*>> triangulations; |
|---|
| 53 | |
|---|
| 54 | /// A list of relative addresses serving for Hasse diagram construction. |
|---|
| 55 | vector<int> kids_rel_addresses; |
|---|
| 56 | |
|---|
| 57 | /// Default constructor |
|---|
| 58 | polyhedron() |
|---|
| 59 | { |
|---|
| 60 | multiplicity = 1; |
|---|
| 61 | } |
|---|
| 62 | |
|---|
| 63 | /// Setter for raising multiplicity |
|---|
| 64 | void RaiseMultiplicity() |
|---|
| 65 | { |
|---|
| 66 | multiplicity++; |
|---|
| 67 | } |
|---|
| 68 | |
|---|
| 69 | /// Setter for lowering multiplicity |
|---|
| 70 | void LowerMultiplicity() |
|---|
| 71 | { |
|---|
| 72 | multiplicity--; |
|---|
| 73 | } |
|---|
| 74 | |
|---|
| 75 | /// An obligatory operator, when the class is used within a C++ STL structure like a vector |
|---|
| 76 | int operator==(polyhedron polyhedron2) |
|---|
| 77 | { |
|---|
| 78 | return true; |
|---|
| 79 | } |
|---|
| 80 | |
|---|
| 81 | /// An obligatory operator, when the class is used within a C++ STL structure like a vector |
|---|
| 82 | int operator<(polyhedron polyhedron2) |
|---|
| 83 | { |
|---|
| 84 | return false; |
|---|
| 85 | } |
|---|
| 86 | }; |
|---|
| 87 | |
|---|
| 88 | /// A class for representing 0-dimensional polyhedron - a vertex. It will be located in the bottom row of the Hasse |
|---|
| 89 | /// diagram representing a complex of polyhedrons. It has its coordinates in the parameter space. |
|---|
| 90 | class vertex : public polyhedron |
|---|
| 91 | { |
|---|
| 92 | /// A dynamic array representing coordinates of the vertex |
|---|
| 93 | vector<double> coordinates; |
|---|
| 94 | |
|---|
| 95 | public: |
|---|
| 96 | |
|---|
| 97 | /// Default constructor |
|---|
| 98 | vertex(); |
|---|
| 99 | |
|---|
| 100 | /// Constructor of a vertex from a set of coordinates |
|---|
| 101 | vertex(vector<double> coordinates) |
|---|
| 102 | { |
|---|
| 103 | this->coordinates = coordinates; |
|---|
| 104 | } |
|---|
| 105 | |
|---|
| 106 | /// A method that widens the set of coordinates of given vertex. It is used when a complex in a parameter |
|---|
| 107 | /// space of certain dimension is established, but the dimension is not known when the vertex is created. |
|---|
| 108 | void push_coordinate(double coordinate) |
|---|
| 109 | { |
|---|
| 110 | coordinates.push_back(coordinate); |
|---|
| 111 | } |
|---|
| 112 | |
|---|
| 113 | /// A method obtaining the set of coordinates of a vertex. These coordinates are not obtained as a pointer |
|---|
| 114 | /// (not given by reference), but a new copy is created (they are given by value). |
|---|
| 115 | vector<double> get_coordinates() |
|---|
| 116 | { |
|---|
| 117 | vector<double> returned_vec; |
|---|
| 118 | |
|---|
| 119 | for(int i = 0;i<coordinates.size();i++) |
|---|
| 120 | { |
|---|
| 121 | returned_vec.push_back(coordinates[i]); |
|---|
| 122 | } |
|---|
| 123 | |
|---|
| 124 | return returned_vec; |
|---|
| 125 | } |
|---|
| 126 | }; |
|---|
| 127 | |
|---|
| 128 | /// A class representing a polyhedron in a top row of the complex. Such polyhedron has a condition that differitiates |
|---|
| 129 | /// it from polyhedrons in other rows. |
|---|
| 130 | class toprow : public polyhedron |
|---|
| 131 | { |
|---|
| 132 | /// A condition used for determining the function of a Laplace-Inverse-Gamma density resulting from Bayesian estimation |
|---|
| 133 | vector<double> condition; |
|---|
| 134 | |
|---|
| 135 | public: |
|---|
| 136 | |
|---|
| 137 | /// Default constructor |
|---|
| 138 | toprow(); |
|---|
| 139 | |
|---|
| 140 | /// Constructor creating a toprow from the condition |
|---|
| 141 | toprow(vector<double> condition) |
|---|
| 142 | { |
|---|
| 143 | this->condition = condition; |
|---|
| 144 | } |
|---|
| 145 | |
|---|
| 146 | }; |
|---|
| 147 | |
|---|
| 148 | |
|---|
| 149 | |
|---|
| 150 | |
|---|
| 151 | //! Conditional(e) Multicriteria-Laplace-Inverse-Gamma distribution density |
|---|
| 152 | class emlig // : eEF |
|---|
| 153 | { |
|---|
| 154 | |
|---|
| 155 | /// A statistic in a form of a Hasse diagram representing a complex of convex polyhedrons obtained as a result |
|---|
| 156 | /// of data update from Bayesian estimation or set by the user if this emlig is a prior density |
|---|
| 157 | vector<vector<polyhedron*>> statistic; |
|---|
| 158 | |
|---|
| 159 | public: |
|---|
| 160 | |
|---|
| 161 | /// A default constructor creates an emlig with predefined statistic representing only the range of the given |
|---|
| 162 | /// parametric space, where the number of parameters of the needed model is given as a parameter to the constructor. |
|---|
| 163 | emlig(int number_of_parameters) |
|---|
| 164 | { |
|---|
| 165 | create_statistic(number_of_parameters); |
|---|
| 166 | } |
|---|
| 167 | |
|---|
| 168 | /// A constructor for creating an emlig when the user wants to create the statistic by himself. The creation of a |
|---|
| 169 | /// statistic is needed outside the constructor. Used for a user defined prior distribution on the parameters. |
|---|
| 170 | emlig(vector<vector<polyhedron*>> statistic) |
|---|
| 171 | { |
|---|
| 172 | this->statistic = statistic; |
|---|
| 173 | } |
|---|
| 174 | |
|---|
| 175 | protected: |
|---|
| 176 | |
|---|
| 177 | /// A method for creating plain default statistic representing only the range of the parameter space. |
|---|
| 178 | void create_statistic(int number_of_parameters) |
|---|
| 179 | { |
|---|
| 180 | // An empty vector of coordinates. |
|---|
| 181 | vector<double> origin_coord; |
|---|
| 182 | |
|---|
| 183 | // We create an origin - this point will have all the coordinates zero, but now it has an empty vector of coords. |
|---|
| 184 | vertex *origin = new vertex(origin_coord); |
|---|
| 185 | |
|---|
| 186 | // It has itself as a vertex. There will be a nice use for this when the vertices of its parents are searched in |
|---|
| 187 | // the recursive creation procedure below. |
|---|
| 188 | origin->vertices.push_back(origin); |
|---|
| 189 | |
|---|
| 190 | // As a statistic, we have to create a vector of vectors of polyhedron pointers. It will then represent the Hasse |
|---|
| 191 | // diagram. First we create a vector of polyhedrons.. |
|---|
| 192 | vector<polyhedron*> origin_vec; |
|---|
| 193 | |
|---|
| 194 | // ..we fill it with the origin.. |
|---|
| 195 | origin_vec.push_back(origin); |
|---|
| 196 | |
|---|
| 197 | // ..and we fill the statistic with the created vector. |
|---|
| 198 | statistic.push_back(origin_vec); |
|---|
| 199 | |
|---|
| 200 | // Now we have a statistic for a zero dimensional space. Regarding to how many dimensional space we need to |
|---|
| 201 | // describe, we have to widen the descriptional default statistic. We use an iterative procedure as follows: |
|---|
| 202 | for(int i=0;i<number_of_parameters;i++) |
|---|
| 203 | { |
|---|
| 204 | // We first will create two new vertices. These will be the borders of the parameter space in the dimension |
|---|
| 205 | // of newly added parameter. Therefore they will have all coordinates except the last one zero. We get the |
|---|
| 206 | // right amount of zero cooridnates by reading them from the origin |
|---|
| 207 | vector<double> origin_coord1 = origin->get_coordinates(); |
|---|
| 208 | vector<double> origin_coord2 = origin->get_coordinates(); |
|---|
| 209 | |
|---|
| 210 | // And we incorporate the nonzero coordinates into the new cooordinate vectors |
|---|
| 211 | origin_coord1.push_back(max_range); |
|---|
| 212 | origin_coord2.push_back(-max_range); |
|---|
| 213 | |
|---|
| 214 | // Now we create the points |
|---|
| 215 | vertex *new_point1 = new vertex(origin_coord1); |
|---|
| 216 | vertex *new_point2 = new vertex(origin_coord2); |
|---|
| 217 | |
|---|
| 218 | //********************************************************************************************************* |
|---|
| 219 | // The algorithm for recursive build of a new Hasse diagram representing the space structure from the old |
|---|
| 220 | // diagram works so that you create two copies of the old Hasse diagram, you shift them up one level (points |
|---|
| 221 | // will be segments, segments will be areas etc.) and you connect each one of the original copied polyhedrons |
|---|
| 222 | // with its offspring by a parent-child relation. Also each of the segments in the first (second) copy is |
|---|
| 223 | // connected to the first (second) newly created vertex by a parent-child relation. |
|---|
| 224 | //********************************************************************************************************* |
|---|
| 225 | |
|---|
| 226 | |
|---|
| 227 | // Create the vectors of vectors of pointers to polyhedrons to hold the copies of the old Hasse diagram |
|---|
| 228 | vector<vector<polyhedron*>> new_statistic1; |
|---|
| 229 | vector<vector<polyhedron*>> new_statistic2; |
|---|
| 230 | |
|---|
| 231 | // Copy the statistic by rows |
|---|
| 232 | for(int j=0;j<statistic.size();j++) |
|---|
| 233 | { |
|---|
| 234 | // an element counter |
|---|
| 235 | int element_number = 0; |
|---|
| 236 | |
|---|
| 237 | vector<polyhedron*> supportnew_1; |
|---|
| 238 | vector<polyhedron*> supportnew_2; |
|---|
| 239 | |
|---|
| 240 | new_statistic1.push_back(supportnew_1); |
|---|
| 241 | new_statistic2.push_back(supportnew_2); |
|---|
| 242 | |
|---|
| 243 | // for each polyhedron in the given row |
|---|
| 244 | for(vector<polyhedron*>::iterator horiz_ref = statistic[j].begin();horiz_ref<statistic[j].end();horiz_ref++) |
|---|
| 245 | { |
|---|
| 246 | // Append an extra zero coordinate to each of the vertices for the new dimension |
|---|
| 247 | // If j==0 => we loop through vertices |
|---|
| 248 | if(j == 0) |
|---|
| 249 | { |
|---|
| 250 | // cast the polyhedron pointer to a vertex pointer and push a zero to its vector of coordinates |
|---|
| 251 | ((vertex*) (*horiz_ref))->push_coordinate(0); |
|---|
| 252 | } |
|---|
| 253 | |
|---|
| 254 | // if it has parents |
|---|
| 255 | if(!(*horiz_ref)->parents.empty()) |
|---|
| 256 | { |
|---|
| 257 | // save the relative address of this child in a vector kids_rel_addresses of all its parents. |
|---|
| 258 | // This information will later be used for copying the whole Hasse diagram with each of the |
|---|
| 259 | // relations contained within. |
|---|
| 260 | for(vector<polyhedron*>::iterator parent_ref = (*horiz_ref)->parents.begin();parent_ref < (*horiz_ref)->parents.end();parent_ref++) |
|---|
| 261 | { |
|---|
| 262 | (*parent_ref)->kids_rel_addresses.push_back(element_number); |
|---|
| 263 | } |
|---|
| 264 | } |
|---|
| 265 | |
|---|
| 266 | // ************************************************************************************************** |
|---|
| 267 | // Here we begin creating a new polyhedron, which will be a copy of the old one. Each such polyhedron |
|---|
| 268 | // will be created as a toprow, but this information will be later forgotten and only the polyhedrons |
|---|
| 269 | // in the top row of the Hasse diagram will be considered toprow for later use. |
|---|
| 270 | // ************************************************************************************************** |
|---|
| 271 | |
|---|
| 272 | // First we create vectors specifying a toprow condition. In the case of a preconstructed statistic |
|---|
| 273 | // this condition will be a vector of zeros. There are two vectors, because we need two copies of |
|---|
| 274 | // the original Hasse diagram. |
|---|
| 275 | vector<double> vec1(i+2,0); |
|---|
| 276 | vector<double> vec2(i+2,0); |
|---|
| 277 | |
|---|
| 278 | // We create a new toprow with the previously specified condition. |
|---|
| 279 | toprow *current_copy1 = new toprow(vec1); |
|---|
| 280 | toprow *current_copy2 = new toprow(vec2); |
|---|
| 281 | |
|---|
| 282 | // The vertices of the copies will be inherited, because there will be a parent/child relation |
|---|
| 283 | // between each polyhedron and its offspring (comming from the copy) and a parent has all the |
|---|
| 284 | // vertices of its child plus more. |
|---|
| 285 | for(vector<vertex*>::iterator vert_ref = (*horiz_ref)->vertices.begin();vert_ref<(*horiz_ref)->vertices.end();vert_ref++) |
|---|
| 286 | { |
|---|
| 287 | current_copy1->vertices.push_back(*vert_ref); |
|---|
| 288 | current_copy2->vertices.push_back(*vert_ref); |
|---|
| 289 | } |
|---|
| 290 | |
|---|
| 291 | // The only new vertex of the offspring should be the newly created point. |
|---|
| 292 | current_copy1->vertices.push_back(new_point1); |
|---|
| 293 | current_copy2->vertices.push_back(new_point2); |
|---|
| 294 | |
|---|
| 295 | // This method guarantees that each polyhedron is already triangulated, therefore its triangulation |
|---|
| 296 | // is only one set of vertices and it is the set of all its vertices. |
|---|
| 297 | current_copy1->triangulations.push_back(current_copy1->vertices); |
|---|
| 298 | current_copy2->triangulations.push_back(current_copy2->vertices); |
|---|
| 299 | |
|---|
| 300 | // Now we have copied the polyhedron and we have to copy all of its relations. Because we are copying |
|---|
| 301 | // in the Hasse diagram from bottom up, we always have to copy the parent/child relations to all the |
|---|
| 302 | // kids and when we do that and know the child, in the child we will remember the parent we came from. |
|---|
| 303 | // This way all the parents/children relations are saved in both the parent and the child. |
|---|
| 304 | if(!(*horiz_ref)->kids_rel_addresses.empty()) |
|---|
| 305 | { |
|---|
| 306 | for(vector<int>::iterator kid_ref = (*horiz_ref)->kids_rel_addresses.begin();kid_ref<(*horiz_ref)->kids_rel_addresses.end();kid_ref++) |
|---|
| 307 | { |
|---|
| 308 | // find the child and save the relation to the parent |
|---|
| 309 | current_copy1->children.push_back(new_statistic1[j-1][(*kid_ref)]); |
|---|
| 310 | current_copy2->children.push_back(new_statistic2[j-1][(*kid_ref)]); |
|---|
| 311 | |
|---|
| 312 | // in the child save the parents' address |
|---|
| 313 | new_statistic1[j-1][(*kid_ref)]->parents.push_back(current_copy1); |
|---|
| 314 | new_statistic2[j-1][(*kid_ref)]->parents.push_back(current_copy2); |
|---|
| 315 | } |
|---|
| 316 | |
|---|
| 317 | // Here we clear the parents kids_rel_addresses vector for later use (when we need to widen the |
|---|
| 318 | // Hasse diagram again) |
|---|
| 319 | (*horiz_ref)->kids_rel_addresses.clear(); |
|---|
| 320 | } |
|---|
| 321 | // If there were no children previously, we are copying a polyhedron that has been a vertex before. |
|---|
| 322 | // In this case it is a segment now and it will have a relation to its mother (copywise) and to the |
|---|
| 323 | // newly created point. Here we create the connection to the new point, again from both sides. |
|---|
| 324 | else |
|---|
| 325 | { |
|---|
| 326 | // Add the address of the new point in the former vertex |
|---|
| 327 | current_copy1->children.push_back(new_point1); |
|---|
| 328 | current_copy2->children.push_back(new_point2); |
|---|
| 329 | |
|---|
| 330 | // Add the address of the former vertex in the new point |
|---|
| 331 | new_point1->parents.push_back(current_copy1); |
|---|
| 332 | new_point2->parents.push_back(current_copy2); |
|---|
| 333 | } |
|---|
| 334 | |
|---|
| 335 | // Save the mother in its offspring |
|---|
| 336 | current_copy1->children.push_back(*horiz_ref); |
|---|
| 337 | current_copy2->children.push_back(*horiz_ref); |
|---|
| 338 | |
|---|
| 339 | // Save the offspring in its mother |
|---|
| 340 | (*horiz_ref)->parents.push_back(current_copy1); |
|---|
| 341 | (*horiz_ref)->parents.push_back(current_copy2); |
|---|
| 342 | |
|---|
| 343 | |
|---|
| 344 | // Add the copies into the relevant statistic. The statistic will later be appended to the previous |
|---|
| 345 | // Hasse diagram |
|---|
| 346 | new_statistic1[j].push_back(current_copy1); |
|---|
| 347 | new_statistic2[j].push_back(current_copy2); |
|---|
| 348 | |
|---|
| 349 | // Raise the count in the vector of polyhedrons |
|---|
| 350 | element_number++; |
|---|
| 351 | |
|---|
| 352 | } |
|---|
| 353 | } |
|---|
| 354 | |
|---|
| 355 | statistic[0].push_back(new_point1); |
|---|
| 356 | statistic[0].push_back(new_point2); |
|---|
| 357 | |
|---|
| 358 | // Merge the new statistics into the old one. This will either be the final statistic or we will |
|---|
| 359 | // reenter the widening loop. |
|---|
| 360 | for(int j=0;j<new_statistic1.size();j++) |
|---|
| 361 | { |
|---|
| 362 | if(j+1==statistic.size()) |
|---|
| 363 | { |
|---|
| 364 | vector<polyhedron*> support; |
|---|
| 365 | statistic.push_back(support); |
|---|
| 366 | } |
|---|
| 367 | |
|---|
| 368 | statistic[j+1].insert(statistic[j+1].end(),new_statistic1[j].begin(),new_statistic1[j].end()); |
|---|
| 369 | statistic[j+1].insert(statistic[j+1].end(),new_statistic2[j].begin(),new_statistic2[j].end()); |
|---|
| 370 | } |
|---|
| 371 | } |
|---|
| 372 | } |
|---|
| 373 | |
|---|
| 374 | |
|---|
| 375 | |
|---|
| 376 | |
|---|
| 377 | }; |
|---|
| 378 | |
|---|
| 379 | //! Robust Bayesian AR model for Multicriteria-Laplace-Inverse-Gamma density |
|---|
| 380 | class RARX : public BMEF{ |
|---|
| 381 | }; |
|---|
| 382 | |
|---|
| 383 | |
|---|
| 384 | #endif //TRAGE_H |
|---|