| 1 | /*! |
|---|
| 2 | \file |
|---|
| 3 | \brief Robust Bayesian auto-regression model |
|---|
| 4 | \author Jan Sindelar. |
|---|
| 5 | */ |
|---|
| 6 | |
|---|
| 7 | #ifndef ROBUST_H |
|---|
| 8 | #define ROBUST_H |
|---|
| 9 | |
|---|
| 10 | //#include <stat/exp_family.h> |
|---|
| 11 | #include <itpp/itbase.h> |
|---|
| 12 | #include <map> |
|---|
| 13 | #include <limits> |
|---|
| 14 | #include <vector> |
|---|
| 15 | #include <list> |
|---|
| 16 | #include <set> |
|---|
| 17 | #include <algorithm> |
|---|
| 18 | |
|---|
| 19 | //using namespace bdm; |
|---|
| 20 | using namespace std; |
|---|
| 21 | using namespace itpp; |
|---|
| 22 | |
|---|
| 23 | const double max_range = 100;//numeric_limits<double>::max()/10e-10; |
|---|
| 24 | |
|---|
| 25 | /// An enumeration of possible actions performed on the polyhedrons. We can merge them or split them. |
|---|
| 26 | enum actions {MERGE, SPLIT}; |
|---|
| 27 | |
|---|
| 28 | // Forward declaration of polyhedron, vertex and emlig |
|---|
| 29 | class polyhedron; |
|---|
| 30 | class vertex; |
|---|
| 31 | class emlig; |
|---|
| 32 | |
|---|
| 33 | /* |
|---|
| 34 | class t_simplex |
|---|
| 35 | { |
|---|
| 36 | public: |
|---|
| 37 | set<vertex*> minima; |
|---|
| 38 | |
|---|
| 39 | set<vertex*> simplex; |
|---|
| 40 | |
|---|
| 41 | t_simplex(vertex* origin_vertex) |
|---|
| 42 | { |
|---|
| 43 | simplex.insert(origin_vertex); |
|---|
| 44 | minima.insert(origin_vertex); |
|---|
| 45 | } |
|---|
| 46 | };*/ |
|---|
| 47 | |
|---|
| 48 | /// A class representing a single condition that can be added to the emlig. A condition represents data entries in a statistical model. |
|---|
| 49 | class condition |
|---|
| 50 | { |
|---|
| 51 | public: |
|---|
| 52 | /// Value of the condition representing the data |
|---|
| 53 | vec value; |
|---|
| 54 | |
|---|
| 55 | /// Mulitplicity of the given condition may represent multiple occurences of same data entry. |
|---|
| 56 | int multiplicity; |
|---|
| 57 | |
|---|
| 58 | /// Default constructor of condition class takes the value of data entry and creates a condition with multiplicity 1 (first occurence of the data). |
|---|
| 59 | condition(vec value) |
|---|
| 60 | { |
|---|
| 61 | this->value = value; |
|---|
| 62 | multiplicity = 1; |
|---|
| 63 | } |
|---|
| 64 | }; |
|---|
| 65 | |
|---|
| 66 | |
|---|
| 67 | /// A class describing a single polyhedron of the split complex. From a collection of such classes a Hasse diagram |
|---|
| 68 | /// of the structure in the exponent of a Laplace-Inverse-Gamma density will be created. |
|---|
| 69 | class polyhedron |
|---|
| 70 | { |
|---|
| 71 | /// A property having a value of 1 usually, with higher value only if the polyhedron arises as a coincidence of |
|---|
| 72 | /// more than just the necessary number of conditions. For example if a newly created line passes through an already |
|---|
| 73 | /// existing point, the points multiplicity will rise by 1. |
|---|
| 74 | int multiplicity; |
|---|
| 75 | |
|---|
| 76 | /// A property representing the position of the polyhedron related to current condition with relation to which we |
|---|
| 77 | /// are splitting the parameter space (new data has arrived). This property is setup within a classification procedure and |
|---|
| 78 | /// is only valid while the new condition is being added. It has to be reset when new condition is added and new classification |
|---|
| 79 | /// has to be performed. |
|---|
| 80 | int split_state; |
|---|
| 81 | |
|---|
| 82 | /// A property representing the position of the polyhedron related to current condition with relation to which we |
|---|
| 83 | /// are merging the parameter space (data is being deleted usually due to a moving window model which is more adaptive and |
|---|
| 84 | /// steps in for the forgetting in a classical Gaussian AR model). This property is setup within a classification procedure and |
|---|
| 85 | /// is only valid while the new condition is being removed. It has to be reset when new condition is removed and new classification |
|---|
| 86 | /// has to be performed. |
|---|
| 87 | int merge_state; |
|---|
| 88 | |
|---|
| 89 | |
|---|
| 90 | |
|---|
| 91 | public: |
|---|
| 92 | /// A pointer to the multi-Laplace inverse gamma distribution this polyhedron belongs to. |
|---|
| 93 | emlig* my_emlig; |
|---|
| 94 | |
|---|
| 95 | /// A list of polyhedrons parents within the Hasse diagram. |
|---|
| 96 | list<polyhedron*> parents; |
|---|
| 97 | |
|---|
| 98 | /// A list of polyhedrons children withing the Hasse diagram. |
|---|
| 99 | list<polyhedron*> children; |
|---|
| 100 | |
|---|
| 101 | /// All the vertices of the given polyhedron |
|---|
| 102 | set<vertex*> vertices; |
|---|
| 103 | |
|---|
| 104 | /// The conditions that gave birth to the polyhedron. If some of them is removed, the polyhedron ceases to exist. |
|---|
| 105 | set<condition*> parentconditions; |
|---|
| 106 | |
|---|
| 107 | /// A list used for storing children that lie in the positive region related to a certain condition |
|---|
| 108 | list<polyhedron*> positivechildren; |
|---|
| 109 | |
|---|
| 110 | /// A list used for storing children that lie in the negative region related to a certain condition |
|---|
| 111 | list<polyhedron*> negativechildren; |
|---|
| 112 | |
|---|
| 113 | /// Children intersecting the condition |
|---|
| 114 | list<polyhedron*> neutralchildren; |
|---|
| 115 | |
|---|
| 116 | /// A set of grandchildren of the polyhedron that when new condition is added lie exactly on the condition hyperplane. These grandchildren |
|---|
| 117 | /// behave differently from other grandchildren, when the polyhedron is split. New grandchild is not necessarily created on the crossection of |
|---|
| 118 | /// the polyhedron and new condition. |
|---|
| 119 | set<polyhedron*> totallyneutralgrandchildren; |
|---|
| 120 | |
|---|
| 121 | /// A set of children of the polyhedron that when new condition is added lie exactly on the condition hyperplane. These children |
|---|
| 122 | /// behave differently from other children, when the polyhedron is split. New child is not necessarily created on the crossection of |
|---|
| 123 | /// the polyhedron and new condition. |
|---|
| 124 | set<polyhedron*> totallyneutralchildren; |
|---|
| 125 | |
|---|
| 126 | /// Reverse relation to the totallyneutralgrandchildren set is needed for merging of already existing polyhedrons to keep |
|---|
| 127 | /// totallyneutralgrandchildren list up to date. |
|---|
| 128 | set<polyhedron*> grandparents; |
|---|
| 129 | |
|---|
| 130 | /// Vertices of the polyhedron classified as positive related to an added condition. When the polyhderon is split by the new condition, |
|---|
| 131 | /// these vertices will belong to the positive part of the splitted polyhedron. |
|---|
| 132 | set<vertex*> positiveneutralvertices; |
|---|
| 133 | |
|---|
| 134 | /// Vertices of the polyhedron classified as negative related to an added condition. When the polyhderon is split by the new condition, |
|---|
| 135 | /// these vertices will belong to the negative part of the splitted polyhedron. |
|---|
| 136 | set<vertex*> negativeneutralvertices; |
|---|
| 137 | |
|---|
| 138 | /// A bool specifying if the polyhedron lies exactly on the newly added condition or not. |
|---|
| 139 | bool totally_neutral; |
|---|
| 140 | |
|---|
| 141 | /// When two polyhedrons are merged, there always exists a child lying on the former border of the polyhedrons. This child manages the merge |
|---|
| 142 | /// of the two polyhedrons. This property gives us the address of the mediator child. |
|---|
| 143 | polyhedron* mergechild; |
|---|
| 144 | |
|---|
| 145 | /// If the polyhedron serves as a mergechild for two of its parents, we need to have the address of the parents to access them. This |
|---|
| 146 | /// is the pointer to the positive parent being merged. |
|---|
| 147 | polyhedron* positiveparent; |
|---|
| 148 | |
|---|
| 149 | /// If the polyhedron serves as a mergechild for two of its parents, we need to have the address of the parents to access them. This |
|---|
| 150 | /// is the pointer to the negative parent being merged. |
|---|
| 151 | polyhedron* negativeparent; |
|---|
| 152 | |
|---|
| 153 | /// Adressing withing the statistic. Next_poly is a pointer to the next polyhedron in the statistic on the same level (if this is a point, |
|---|
| 154 | /// next_poly will be a point etc.). |
|---|
| 155 | polyhedron* next_poly; |
|---|
| 156 | |
|---|
| 157 | /// Adressing withing the statistic. Prev_poly is a pointer to the previous polyhedron in the statistic on the same level (if this is a point, |
|---|
| 158 | /// next_poly will be a point etc.). |
|---|
| 159 | polyhedron* prev_poly; |
|---|
| 160 | |
|---|
| 161 | /// A property counting the number of messages obtained from children within a classification procedure of position of the polyhedron related |
|---|
| 162 | /// an added/removed condition. If the message counter reaches the number of children, we know the polyhedrons' position has been fully classified. |
|---|
| 163 | int message_counter; |
|---|
| 164 | |
|---|
| 165 | /// List of triangulation polyhedrons of the polyhedron given by their relative vertices. |
|---|
| 166 | list<set<vertex*>> triangulation; |
|---|
| 167 | |
|---|
| 168 | /// A list of relative addresses serving for Hasse diagram construction. |
|---|
| 169 | list<int> kids_rel_addresses; |
|---|
| 170 | |
|---|
| 171 | /// Default constructor |
|---|
| 172 | polyhedron() |
|---|
| 173 | { |
|---|
| 174 | multiplicity = 1; |
|---|
| 175 | |
|---|
| 176 | message_counter = 0; |
|---|
| 177 | |
|---|
| 178 | totally_neutral = NULL; |
|---|
| 179 | |
|---|
| 180 | mergechild = NULL; |
|---|
| 181 | } |
|---|
| 182 | |
|---|
| 183 | /// Setter for raising multiplicity |
|---|
| 184 | void raise_multiplicity() |
|---|
| 185 | { |
|---|
| 186 | multiplicity++; |
|---|
| 187 | } |
|---|
| 188 | |
|---|
| 189 | /// Setter for lowering multiplicity |
|---|
| 190 | void lower_multiplicity() |
|---|
| 191 | { |
|---|
| 192 | multiplicity--; |
|---|
| 193 | } |
|---|
| 194 | |
|---|
| 195 | int get_multiplicity() |
|---|
| 196 | { |
|---|
| 197 | return multiplicity; |
|---|
| 198 | } |
|---|
| 199 | |
|---|
| 200 | /// An obligatory operator, when the class is used within a C++ STL structure like a vector |
|---|
| 201 | int operator==(polyhedron polyhedron2) |
|---|
| 202 | { |
|---|
| 203 | return true; |
|---|
| 204 | } |
|---|
| 205 | |
|---|
| 206 | /// An obligatory operator, when the class is used within a C++ STL structure like a vector |
|---|
| 207 | int operator<(polyhedron polyhedron2) |
|---|
| 208 | { |
|---|
| 209 | return false; |
|---|
| 210 | } |
|---|
| 211 | |
|---|
| 212 | |
|---|
| 213 | /// A setter of state of current polyhedron relative to the action specified in the argument. The three possible states of the |
|---|
| 214 | /// polyhedron are -1 - NEGATIVE, 0 - NEUTRAL, 1 - POSITIVE. Neutral state means that either the state has been reset or the polyhedron is |
|---|
| 215 | /// ready to be split/merged. |
|---|
| 216 | int set_state(double state_indicator, actions action) |
|---|
| 217 | { |
|---|
| 218 | switch(action) |
|---|
| 219 | { |
|---|
| 220 | case MERGE: |
|---|
| 221 | merge_state = (int)sign(state_indicator); |
|---|
| 222 | return merge_state; |
|---|
| 223 | case SPLIT: |
|---|
| 224 | split_state = (int)sign(state_indicator); |
|---|
| 225 | return split_state; |
|---|
| 226 | } |
|---|
| 227 | } |
|---|
| 228 | |
|---|
| 229 | /// A getter of state of current polyhedron relative to the action specified in the argument. The three possible states of the |
|---|
| 230 | /// polyhedron are -1 - NEGATIVE, 0 - NEUTRAL, 1 - POSITIVE. Neutral state means that either the state has been reset or the polyhedron is |
|---|
| 231 | /// ready to be split/merged. |
|---|
| 232 | int get_state(actions action) |
|---|
| 233 | { |
|---|
| 234 | switch(action) |
|---|
| 235 | { |
|---|
| 236 | case MERGE: |
|---|
| 237 | return merge_state; |
|---|
| 238 | break; |
|---|
| 239 | case SPLIT: |
|---|
| 240 | return split_state; |
|---|
| 241 | break; |
|---|
| 242 | } |
|---|
| 243 | } |
|---|
| 244 | |
|---|
| 245 | /// Method for obtaining the number of children of given polyhedron. |
|---|
| 246 | int number_of_children() |
|---|
| 247 | { |
|---|
| 248 | return children.size(); |
|---|
| 249 | } |
|---|
| 250 | |
|---|
| 251 | /// A method for triangulation of given polyhedron. |
|---|
| 252 | void triangulate(bool should_integrate); |
|---|
| 253 | }; |
|---|
| 254 | |
|---|
| 255 | |
|---|
| 256 | /// A class for representing 0-dimensional polyhedron - a vertex. It will be located in the bottom row of the Hasse |
|---|
| 257 | /// diagram representing a complex of polyhedrons. It has its coordinates in the parameter space. |
|---|
| 258 | class vertex : public polyhedron |
|---|
| 259 | { |
|---|
| 260 | /// A dynamic array representing coordinates of the vertex |
|---|
| 261 | vec coordinates; |
|---|
| 262 | |
|---|
| 263 | public: |
|---|
| 264 | /// A property specifying the value of the density (ted nevim, jestli je to jakoby log nebo ne) above the vertex. |
|---|
| 265 | double function_value; |
|---|
| 266 | |
|---|
| 267 | /// Default constructor |
|---|
| 268 | vertex(); |
|---|
| 269 | |
|---|
| 270 | /// Constructor of a vertex from a set of coordinates |
|---|
| 271 | vertex(vec coordinates) |
|---|
| 272 | { |
|---|
| 273 | this->coordinates = coordinates; |
|---|
| 274 | |
|---|
| 275 | vertices.insert(this); |
|---|
| 276 | |
|---|
| 277 | set<vertex*> vert_simplex; |
|---|
| 278 | |
|---|
| 279 | vert_simplex.insert(this); |
|---|
| 280 | |
|---|
| 281 | triangulation.push_back(vert_simplex); |
|---|
| 282 | } |
|---|
| 283 | |
|---|
| 284 | /// A method that widens the set of coordinates of given vertex. It is used when a complex in a parameter |
|---|
| 285 | /// space of certain dimension is established, but the dimension is not known when the vertex is created. |
|---|
| 286 | void push_coordinate(double coordinate) |
|---|
| 287 | { |
|---|
| 288 | coordinates = concat(coordinates,coordinate); |
|---|
| 289 | } |
|---|
| 290 | |
|---|
| 291 | /// A method obtaining the set of coordinates of a vertex. These coordinates are not obtained as a pointer |
|---|
| 292 | /// (not given by reference), but a new copy is created (they are given by value). |
|---|
| 293 | vec get_coordinates() |
|---|
| 294 | { |
|---|
| 295 | return coordinates; |
|---|
| 296 | } |
|---|
| 297 | |
|---|
| 298 | }; |
|---|
| 299 | |
|---|
| 300 | |
|---|
| 301 | /// A class representing a polyhedron in a top row of the complex. Such polyhedron has a condition that differen tiates |
|---|
| 302 | /// it from polyhedrons in other rows. |
|---|
| 303 | class toprow : public polyhedron |
|---|
| 304 | { |
|---|
| 305 | |
|---|
| 306 | public: |
|---|
| 307 | double probability; |
|---|
| 308 | |
|---|
| 309 | vertex* minimal_vertex; |
|---|
| 310 | |
|---|
| 311 | /// A condition used for determining the function of a Laplace-Inverse-Gamma density resulting from Bayesian estimation |
|---|
| 312 | vec condition_sum; |
|---|
| 313 | |
|---|
| 314 | int condition_order; |
|---|
| 315 | |
|---|
| 316 | /// Default constructor |
|---|
| 317 | toprow(){}; |
|---|
| 318 | |
|---|
| 319 | /// Constructor creating a toprow from the condition |
|---|
| 320 | toprow(condition *condition, int condition_order) |
|---|
| 321 | { |
|---|
| 322 | this->condition_sum = condition->value; |
|---|
| 323 | this->condition_order = condition_order; |
|---|
| 324 | } |
|---|
| 325 | |
|---|
| 326 | toprow(vec condition_sum, int condition_order) |
|---|
| 327 | { |
|---|
| 328 | this->condition_sum = condition_sum; |
|---|
| 329 | this->condition_order = condition_order; |
|---|
| 330 | } |
|---|
| 331 | |
|---|
| 332 | double integrate_simplex(set<vertex*> simplex, char c); |
|---|
| 333 | |
|---|
| 334 | }; |
|---|
| 335 | |
|---|
| 336 | |
|---|
| 337 | |
|---|
| 338 | |
|---|
| 339 | |
|---|
| 340 | |
|---|
| 341 | class c_statistic |
|---|
| 342 | { |
|---|
| 343 | |
|---|
| 344 | public: |
|---|
| 345 | polyhedron* end_poly; |
|---|
| 346 | polyhedron* start_poly; |
|---|
| 347 | |
|---|
| 348 | vector<polyhedron*> rows; |
|---|
| 349 | |
|---|
| 350 | vector<polyhedron*> row_ends; |
|---|
| 351 | |
|---|
| 352 | c_statistic() |
|---|
| 353 | { |
|---|
| 354 | end_poly = new polyhedron(); |
|---|
| 355 | start_poly = new polyhedron(); |
|---|
| 356 | }; |
|---|
| 357 | |
|---|
| 358 | void append_polyhedron(int row, polyhedron* appended_start, polyhedron* appended_end) |
|---|
| 359 | { |
|---|
| 360 | if(row>((int)rows.size())-1) |
|---|
| 361 | { |
|---|
| 362 | if(row>rows.size()) |
|---|
| 363 | { |
|---|
| 364 | throw new exception("You are trying to append a polyhedron whose children are not in the statistic yet!"); |
|---|
| 365 | return; |
|---|
| 366 | } |
|---|
| 367 | |
|---|
| 368 | rows.push_back(end_poly); |
|---|
| 369 | row_ends.push_back(end_poly); |
|---|
| 370 | } |
|---|
| 371 | |
|---|
| 372 | // POSSIBLE FAILURE: the function is not checking if start and end are connected |
|---|
| 373 | |
|---|
| 374 | if(rows[row] != end_poly) |
|---|
| 375 | { |
|---|
| 376 | appended_start->prev_poly = row_ends[row]; |
|---|
| 377 | row_ends[row]->next_poly = appended_start; |
|---|
| 378 | |
|---|
| 379 | } |
|---|
| 380 | else if((row>0 && rows[row-1]!=end_poly)||row==0) |
|---|
| 381 | { |
|---|
| 382 | appended_start->prev_poly = start_poly; |
|---|
| 383 | rows[row]= appended_start; |
|---|
| 384 | } |
|---|
| 385 | else |
|---|
| 386 | { |
|---|
| 387 | throw new exception("Wrong polyhedron insertion into statistic: missing intermediary polyhedron!"); |
|---|
| 388 | } |
|---|
| 389 | |
|---|
| 390 | appended_end->next_poly = end_poly; |
|---|
| 391 | row_ends[row] = appended_end; |
|---|
| 392 | } |
|---|
| 393 | |
|---|
| 394 | void append_polyhedron(int row, polyhedron* appended_poly) |
|---|
| 395 | { |
|---|
| 396 | append_polyhedron(row,appended_poly,appended_poly); |
|---|
| 397 | } |
|---|
| 398 | |
|---|
| 399 | void insert_polyhedron(int row, polyhedron* inserted_poly, polyhedron* following_poly) |
|---|
| 400 | { |
|---|
| 401 | if(following_poly != end_poly) |
|---|
| 402 | { |
|---|
| 403 | inserted_poly->next_poly = following_poly; |
|---|
| 404 | inserted_poly->prev_poly = following_poly->prev_poly; |
|---|
| 405 | |
|---|
| 406 | if(following_poly->prev_poly == start_poly) |
|---|
| 407 | { |
|---|
| 408 | rows[row] = inserted_poly; |
|---|
| 409 | } |
|---|
| 410 | else |
|---|
| 411 | { |
|---|
| 412 | inserted_poly->prev_poly->next_poly = inserted_poly; |
|---|
| 413 | } |
|---|
| 414 | |
|---|
| 415 | following_poly->prev_poly = inserted_poly; |
|---|
| 416 | } |
|---|
| 417 | else |
|---|
| 418 | { |
|---|
| 419 | this->append_polyhedron(row, inserted_poly); |
|---|
| 420 | } |
|---|
| 421 | |
|---|
| 422 | } |
|---|
| 423 | |
|---|
| 424 | |
|---|
| 425 | |
|---|
| 426 | |
|---|
| 427 | void delete_polyhedron(int row, polyhedron* deleted_poly) |
|---|
| 428 | { |
|---|
| 429 | if(deleted_poly->prev_poly != start_poly) |
|---|
| 430 | { |
|---|
| 431 | deleted_poly->prev_poly->next_poly = deleted_poly->next_poly; |
|---|
| 432 | } |
|---|
| 433 | else |
|---|
| 434 | { |
|---|
| 435 | rows[row] = deleted_poly->next_poly; |
|---|
| 436 | } |
|---|
| 437 | |
|---|
| 438 | if(deleted_poly->next_poly!=end_poly) |
|---|
| 439 | { |
|---|
| 440 | deleted_poly->next_poly->prev_poly = deleted_poly->prev_poly; |
|---|
| 441 | } |
|---|
| 442 | else |
|---|
| 443 | { |
|---|
| 444 | row_ends[row] = deleted_poly->prev_poly; |
|---|
| 445 | } |
|---|
| 446 | |
|---|
| 447 | |
|---|
| 448 | |
|---|
| 449 | deleted_poly->next_poly = NULL; |
|---|
| 450 | deleted_poly->prev_poly = NULL; |
|---|
| 451 | } |
|---|
| 452 | |
|---|
| 453 | int size() |
|---|
| 454 | { |
|---|
| 455 | return rows.size(); |
|---|
| 456 | } |
|---|
| 457 | |
|---|
| 458 | polyhedron* get_end() |
|---|
| 459 | { |
|---|
| 460 | return end_poly; |
|---|
| 461 | } |
|---|
| 462 | |
|---|
| 463 | polyhedron* get_start() |
|---|
| 464 | { |
|---|
| 465 | return start_poly; |
|---|
| 466 | } |
|---|
| 467 | |
|---|
| 468 | int row_size(int row) |
|---|
| 469 | { |
|---|
| 470 | if(this->size()>row && row>=0) |
|---|
| 471 | { |
|---|
| 472 | int row_size = 0; |
|---|
| 473 | |
|---|
| 474 | for(polyhedron* row_poly = rows[row]; row_poly!=end_poly; row_poly=row_poly->next_poly) |
|---|
| 475 | { |
|---|
| 476 | row_size++; |
|---|
| 477 | } |
|---|
| 478 | |
|---|
| 479 | return row_size; |
|---|
| 480 | } |
|---|
| 481 | else |
|---|
| 482 | { |
|---|
| 483 | throw new exception("There is no row to obtain size from!"); |
|---|
| 484 | } |
|---|
| 485 | } |
|---|
| 486 | }; |
|---|
| 487 | |
|---|
| 488 | |
|---|
| 489 | class my_ivec : public ivec |
|---|
| 490 | { |
|---|
| 491 | public: |
|---|
| 492 | my_ivec():ivec(){}; |
|---|
| 493 | |
|---|
| 494 | my_ivec(ivec origin):ivec() |
|---|
| 495 | { |
|---|
| 496 | this->ins(0,origin); |
|---|
| 497 | } |
|---|
| 498 | |
|---|
| 499 | bool operator>(const my_ivec &second) const |
|---|
| 500 | { |
|---|
| 501 | return max(*this)>max(second); |
|---|
| 502 | |
|---|
| 503 | /* |
|---|
| 504 | int size1 = this->size(); |
|---|
| 505 | int size2 = second.size(); |
|---|
| 506 | |
|---|
| 507 | int counter1 = 0; |
|---|
| 508 | while(0==0) |
|---|
| 509 | { |
|---|
| 510 | if((*this)[counter1]==0) |
|---|
| 511 | { |
|---|
| 512 | size1--; |
|---|
| 513 | } |
|---|
| 514 | |
|---|
| 515 | if((*this)[counter1]!=0) |
|---|
| 516 | break; |
|---|
| 517 | |
|---|
| 518 | counter1++; |
|---|
| 519 | } |
|---|
| 520 | |
|---|
| 521 | int counter2 = 0; |
|---|
| 522 | while(0==0) |
|---|
| 523 | { |
|---|
| 524 | if(second[counter2]==0) |
|---|
| 525 | { |
|---|
| 526 | size2--; |
|---|
| 527 | } |
|---|
| 528 | |
|---|
| 529 | if(second[counter2]!=0) |
|---|
| 530 | break; |
|---|
| 531 | |
|---|
| 532 | counter2++; |
|---|
| 533 | } |
|---|
| 534 | |
|---|
| 535 | if(size1!=size2) |
|---|
| 536 | { |
|---|
| 537 | return size1>size2; |
|---|
| 538 | } |
|---|
| 539 | else |
|---|
| 540 | { |
|---|
| 541 | for(int i = 0;i<size1;i++) |
|---|
| 542 | { |
|---|
| 543 | if((*this)[counter1+i]!=second[counter2+i]) |
|---|
| 544 | { |
|---|
| 545 | return (*this)[counter1+i]>second[counter2+i]; |
|---|
| 546 | } |
|---|
| 547 | } |
|---|
| 548 | |
|---|
| 549 | return false; |
|---|
| 550 | }*/ |
|---|
| 551 | } |
|---|
| 552 | |
|---|
| 553 | |
|---|
| 554 | bool operator==(const my_ivec &second) const |
|---|
| 555 | { |
|---|
| 556 | return max(*this)==max(second); |
|---|
| 557 | |
|---|
| 558 | /* |
|---|
| 559 | int size1 = this->size(); |
|---|
| 560 | int size2 = second.size(); |
|---|
| 561 | |
|---|
| 562 | int counter = 0; |
|---|
| 563 | while(0==0) |
|---|
| 564 | { |
|---|
| 565 | if((*this)[counter]==0) |
|---|
| 566 | { |
|---|
| 567 | size1--; |
|---|
| 568 | } |
|---|
| 569 | |
|---|
| 570 | if((*this)[counter]!=0) |
|---|
| 571 | break; |
|---|
| 572 | |
|---|
| 573 | counter++; |
|---|
| 574 | } |
|---|
| 575 | |
|---|
| 576 | counter = 0; |
|---|
| 577 | while(0==0) |
|---|
| 578 | { |
|---|
| 579 | if(second[counter]==0) |
|---|
| 580 | { |
|---|
| 581 | size2--; |
|---|
| 582 | } |
|---|
| 583 | |
|---|
| 584 | if(second[counter]!=0) |
|---|
| 585 | break; |
|---|
| 586 | |
|---|
| 587 | counter++; |
|---|
| 588 | } |
|---|
| 589 | |
|---|
| 590 | if(size1!=size2) |
|---|
| 591 | { |
|---|
| 592 | return false; |
|---|
| 593 | } |
|---|
| 594 | else |
|---|
| 595 | { |
|---|
| 596 | for(int i=0;i<size1;i++) |
|---|
| 597 | { |
|---|
| 598 | if((*this)[size()-1-i]!=second[second.size()-1-i]) |
|---|
| 599 | { |
|---|
| 600 | return false; |
|---|
| 601 | } |
|---|
| 602 | } |
|---|
| 603 | |
|---|
| 604 | return true; |
|---|
| 605 | }*/ |
|---|
| 606 | } |
|---|
| 607 | |
|---|
| 608 | bool operator<(const my_ivec &second) const |
|---|
| 609 | { |
|---|
| 610 | return !(((*this)>second)||((*this)==second)); |
|---|
| 611 | } |
|---|
| 612 | |
|---|
| 613 | bool operator!=(const my_ivec &second) const |
|---|
| 614 | { |
|---|
| 615 | return !((*this)==second); |
|---|
| 616 | } |
|---|
| 617 | |
|---|
| 618 | bool operator<=(const my_ivec &second) const |
|---|
| 619 | { |
|---|
| 620 | return !((*this)>second); |
|---|
| 621 | } |
|---|
| 622 | |
|---|
| 623 | bool operator>=(const my_ivec &second) const |
|---|
| 624 | { |
|---|
| 625 | return !((*this)<second); |
|---|
| 626 | } |
|---|
| 627 | |
|---|
| 628 | my_ivec right(my_ivec original) |
|---|
| 629 | { |
|---|
| 630 | |
|---|
| 631 | } |
|---|
| 632 | }; |
|---|
| 633 | |
|---|
| 634 | |
|---|
| 635 | |
|---|
| 636 | |
|---|
| 637 | |
|---|
| 638 | |
|---|
| 639 | |
|---|
| 640 | //! Conditional(e) Multicriteria-Laplace-Inverse-Gamma distribution density |
|---|
| 641 | class emlig // : eEF |
|---|
| 642 | { |
|---|
| 643 | |
|---|
| 644 | /// A statistic in a form of a Hasse diagram representing a complex of convex polyhedrons obtained as a result |
|---|
| 645 | /// of data update from Bayesian estimation or set by the user if this emlig is a prior density |
|---|
| 646 | |
|---|
| 647 | |
|---|
| 648 | vector<list<polyhedron*>> for_splitting; |
|---|
| 649 | |
|---|
| 650 | vector<list<polyhedron*>> for_merging; |
|---|
| 651 | |
|---|
| 652 | list<condition*> conditions; |
|---|
| 653 | |
|---|
| 654 | double normalization_factor; |
|---|
| 655 | |
|---|
| 656 | |
|---|
| 657 | |
|---|
| 658 | void alter_toprow_conditions(condition *condition, bool should_be_added) |
|---|
| 659 | { |
|---|
| 660 | for(polyhedron* horiz_ref = statistic.rows[statistic.size()-1];horiz_ref!=statistic.get_end();horiz_ref=horiz_ref->next_poly) |
|---|
| 661 | { |
|---|
| 662 | set<vertex*>::iterator vertex_ref = horiz_ref->vertices.begin(); |
|---|
| 663 | |
|---|
| 664 | do |
|---|
| 665 | { |
|---|
| 666 | vertex_ref++; |
|---|
| 667 | } |
|---|
| 668 | while((*vertex_ref)->parentconditions.find(condition)==(*vertex_ref)->parentconditions.end()); |
|---|
| 669 | |
|---|
| 670 | double product = (*vertex_ref)->get_coordinates()*condition->value; |
|---|
| 671 | |
|---|
| 672 | if(should_be_added) |
|---|
| 673 | { |
|---|
| 674 | ((toprow*) horiz_ref)->condition_order++; |
|---|
| 675 | |
|---|
| 676 | if(product>0) |
|---|
| 677 | { |
|---|
| 678 | ((toprow*) horiz_ref)->condition_sum += condition->value; |
|---|
| 679 | } |
|---|
| 680 | else |
|---|
| 681 | { |
|---|
| 682 | ((toprow*) horiz_ref)->condition_sum -= condition->value; |
|---|
| 683 | } |
|---|
| 684 | } |
|---|
| 685 | else |
|---|
| 686 | { |
|---|
| 687 | ((toprow*) horiz_ref)->condition_order--; |
|---|
| 688 | |
|---|
| 689 | if(product<0) |
|---|
| 690 | { |
|---|
| 691 | ((toprow*) horiz_ref)->condition_sum += condition->value; |
|---|
| 692 | } |
|---|
| 693 | else |
|---|
| 694 | { |
|---|
| 695 | ((toprow*) horiz_ref)->condition_sum -= condition->value; |
|---|
| 696 | } |
|---|
| 697 | } |
|---|
| 698 | } |
|---|
| 699 | } |
|---|
| 700 | |
|---|
| 701 | |
|---|
| 702 | |
|---|
| 703 | void send_state_message(polyhedron* sender, condition *toadd, condition *toremove, int level) |
|---|
| 704 | { |
|---|
| 705 | |
|---|
| 706 | bool shouldmerge = (toremove != NULL); |
|---|
| 707 | bool shouldsplit = (toadd != NULL); |
|---|
| 708 | |
|---|
| 709 | if(shouldsplit||shouldmerge) |
|---|
| 710 | { |
|---|
| 711 | for(list<polyhedron*>::iterator parent_iterator = sender->parents.begin();parent_iterator!=sender->parents.end();parent_iterator++) |
|---|
| 712 | { |
|---|
| 713 | polyhedron* current_parent = *parent_iterator; |
|---|
| 714 | |
|---|
| 715 | current_parent->message_counter++; |
|---|
| 716 | |
|---|
| 717 | bool is_last = (current_parent->message_counter == current_parent->number_of_children()); |
|---|
| 718 | bool is_first = (current_parent->message_counter == 1); |
|---|
| 719 | |
|---|
| 720 | if(shouldmerge) |
|---|
| 721 | { |
|---|
| 722 | int child_state = sender->get_state(MERGE); |
|---|
| 723 | int parent_state = current_parent->get_state(MERGE); |
|---|
| 724 | |
|---|
| 725 | if(parent_state == 0||is_first) |
|---|
| 726 | { |
|---|
| 727 | parent_state = current_parent->set_state(child_state, MERGE); |
|---|
| 728 | } |
|---|
| 729 | |
|---|
| 730 | if(child_state == 0) |
|---|
| 731 | { |
|---|
| 732 | if(current_parent->mergechild == NULL) |
|---|
| 733 | { |
|---|
| 734 | current_parent->mergechild = sender; |
|---|
| 735 | } |
|---|
| 736 | } |
|---|
| 737 | |
|---|
| 738 | if(is_last) |
|---|
| 739 | { |
|---|
| 740 | if(current_parent->mergechild != NULL) |
|---|
| 741 | { |
|---|
| 742 | if(current_parent->mergechild->get_multiplicity()==1) |
|---|
| 743 | { |
|---|
| 744 | if(parent_state > 0) |
|---|
| 745 | { |
|---|
| 746 | current_parent->mergechild->positiveparent = current_parent; |
|---|
| 747 | } |
|---|
| 748 | |
|---|
| 749 | if(parent_state < 0) |
|---|
| 750 | { |
|---|
| 751 | current_parent->mergechild->negativeparent = current_parent; |
|---|
| 752 | } |
|---|
| 753 | } |
|---|
| 754 | } |
|---|
| 755 | else |
|---|
| 756 | { |
|---|
| 757 | if(parent_state == 1) |
|---|
| 758 | { |
|---|
| 759 | ((toprow*)current_parent)->condition_sum-=toremove->value; |
|---|
| 760 | ((toprow*)current_parent)->condition_order--; |
|---|
| 761 | } |
|---|
| 762 | |
|---|
| 763 | if(parent_state == -1) |
|---|
| 764 | { |
|---|
| 765 | ((toprow*)current_parent)->condition_sum+=toremove->value; |
|---|
| 766 | ((toprow*)current_parent)->condition_order--; |
|---|
| 767 | } |
|---|
| 768 | |
|---|
| 769 | //current_parent->set_state(0,MERGE); |
|---|
| 770 | |
|---|
| 771 | if(level == number_of_parameters - 1) |
|---|
| 772 | { |
|---|
| 773 | toprow* cur_par_toprow = ((toprow*)current_parent); |
|---|
| 774 | cur_par_toprow->probability = 0.0; |
|---|
| 775 | |
|---|
| 776 | for(list<set<vertex*>>::iterator t_ref = current_parent->triangulation.begin();t_ref!=current_parent->triangulation.end();t_ref++) |
|---|
| 777 | { |
|---|
| 778 | cur_par_toprow->probability += cur_par_toprow->integrate_simplex(*t_ref,'C'); |
|---|
| 779 | } |
|---|
| 780 | } |
|---|
| 781 | } |
|---|
| 782 | |
|---|
| 783 | if(parent_state == 0) |
|---|
| 784 | { |
|---|
| 785 | for_merging[level+1].push_back(current_parent); |
|---|
| 786 | // current_parent->parentconditions.erase(toremove); |
|---|
| 787 | } |
|---|
| 788 | |
|---|
| 789 | |
|---|
| 790 | } |
|---|
| 791 | } |
|---|
| 792 | |
|---|
| 793 | if(shouldsplit) |
|---|
| 794 | { |
|---|
| 795 | current_parent->totallyneutralgrandchildren.insert(sender->totallyneutralchildren.begin(),sender->totallyneutralchildren.end()); |
|---|
| 796 | |
|---|
| 797 | for(set<polyhedron*>::iterator tot_child_ref = sender->totallyneutralchildren.begin();tot_child_ref!=sender->totallyneutralchildren.end();tot_child_ref++) |
|---|
| 798 | { |
|---|
| 799 | (*tot_child_ref)->grandparents.insert(current_parent); |
|---|
| 800 | } |
|---|
| 801 | |
|---|
| 802 | switch(sender->get_state(SPLIT)) |
|---|
| 803 | { |
|---|
| 804 | case 1: |
|---|
| 805 | current_parent->positivechildren.push_back(sender); |
|---|
| 806 | current_parent->positiveneutralvertices.insert(sender->vertices.begin(),sender->vertices.end()); |
|---|
| 807 | break; |
|---|
| 808 | case 0: |
|---|
| 809 | current_parent->neutralchildren.push_back(sender); |
|---|
| 810 | current_parent->positiveneutralvertices.insert(sender->positiveneutralvertices.begin(),sender->positiveneutralvertices.end()); |
|---|
| 811 | current_parent->negativeneutralvertices.insert(sender->negativeneutralvertices.begin(),sender->negativeneutralvertices.end()); |
|---|
| 812 | |
|---|
| 813 | if(current_parent->totally_neutral == NULL) |
|---|
| 814 | { |
|---|
| 815 | current_parent->totally_neutral = sender->totally_neutral; |
|---|
| 816 | } |
|---|
| 817 | else |
|---|
| 818 | { |
|---|
| 819 | current_parent->totally_neutral = current_parent->totally_neutral && sender->totally_neutral; |
|---|
| 820 | } |
|---|
| 821 | |
|---|
| 822 | if(sender->totally_neutral) |
|---|
| 823 | { |
|---|
| 824 | current_parent->totallyneutralchildren.insert(sender); |
|---|
| 825 | } |
|---|
| 826 | |
|---|
| 827 | break; |
|---|
| 828 | case -1: |
|---|
| 829 | current_parent->negativechildren.push_back(sender); |
|---|
| 830 | current_parent->negativeneutralvertices.insert(sender->vertices.begin(),sender->vertices.end()); |
|---|
| 831 | break; |
|---|
| 832 | } |
|---|
| 833 | |
|---|
| 834 | if(is_last) |
|---|
| 835 | { |
|---|
| 836 | |
|---|
| 837 | /// \TODO Nechapu druhou podminku, zda se mi ze je to spatne.. Nemela by byt jen prvni? Nebo se jedna o nastaveni totalni neutrality? |
|---|
| 838 | if((current_parent->negativechildren.size()>0&¤t_parent->positivechildren.size()>0)|| |
|---|
| 839 | (current_parent->neutralchildren.size()>0&¤t_parent->totally_neutral==false)) |
|---|
| 840 | { |
|---|
| 841 | for_splitting[level+1].push_back(current_parent); |
|---|
| 842 | |
|---|
| 843 | current_parent->set_state(0, SPLIT); |
|---|
| 844 | } |
|---|
| 845 | else |
|---|
| 846 | { |
|---|
| 847 | |
|---|
| 848 | |
|---|
| 849 | if(current_parent->negativechildren.size()>0) |
|---|
| 850 | { |
|---|
| 851 | current_parent->set_state(-1, SPLIT); |
|---|
| 852 | |
|---|
| 853 | ((toprow*)current_parent)->condition_sum-=toadd->value; |
|---|
| 854 | |
|---|
| 855 | |
|---|
| 856 | } |
|---|
| 857 | else if(current_parent->positivechildren.size()>0) |
|---|
| 858 | { |
|---|
| 859 | current_parent->set_state(1, SPLIT); |
|---|
| 860 | |
|---|
| 861 | ((toprow*)current_parent)->condition_sum+=toadd->value; |
|---|
| 862 | } |
|---|
| 863 | else |
|---|
| 864 | { |
|---|
| 865 | current_parent->raise_multiplicity(); |
|---|
| 866 | } |
|---|
| 867 | |
|---|
| 868 | ((toprow*)current_parent)->condition_order++; |
|---|
| 869 | |
|---|
| 870 | if(level == number_of_parameters - 1) |
|---|
| 871 | { |
|---|
| 872 | toprow* cur_par_toprow = ((toprow*)current_parent); |
|---|
| 873 | cur_par_toprow->probability = 0.0; |
|---|
| 874 | |
|---|
| 875 | for(list<set<vertex*>>::iterator t_ref = current_parent->triangulation.begin();t_ref!=current_parent->triangulation.end();t_ref++) |
|---|
| 876 | { |
|---|
| 877 | cur_par_toprow->probability += cur_par_toprow->integrate_simplex(*t_ref,'C'); |
|---|
| 878 | } |
|---|
| 879 | } |
|---|
| 880 | |
|---|
| 881 | if(current_parent->mergechild == NULL) |
|---|
| 882 | { |
|---|
| 883 | current_parent->positivechildren.clear(); |
|---|
| 884 | current_parent->negativechildren.clear(); |
|---|
| 885 | current_parent->neutralchildren.clear(); |
|---|
| 886 | current_parent->totallyneutralchildren.clear(); |
|---|
| 887 | current_parent->totallyneutralgrandchildren.clear(); |
|---|
| 888 | // current_parent->grandparents.clear(); |
|---|
| 889 | current_parent->positiveneutralvertices.clear(); |
|---|
| 890 | current_parent->negativeneutralvertices.clear(); |
|---|
| 891 | current_parent->totally_neutral = NULL; |
|---|
| 892 | current_parent->kids_rel_addresses.clear(); |
|---|
| 893 | } |
|---|
| 894 | } |
|---|
| 895 | } |
|---|
| 896 | } |
|---|
| 897 | |
|---|
| 898 | if(is_last) |
|---|
| 899 | { |
|---|
| 900 | current_parent->mergechild = NULL; |
|---|
| 901 | current_parent->message_counter = 0; |
|---|
| 902 | |
|---|
| 903 | send_state_message(current_parent,toadd,toremove,level+1); |
|---|
| 904 | } |
|---|
| 905 | |
|---|
| 906 | } |
|---|
| 907 | |
|---|
| 908 | } |
|---|
| 909 | } |
|---|
| 910 | |
|---|
| 911 | public: |
|---|
| 912 | c_statistic statistic; |
|---|
| 913 | |
|---|
| 914 | vertex* minimal_vertex; |
|---|
| 915 | |
|---|
| 916 | double likelihood_value; |
|---|
| 917 | |
|---|
| 918 | vector<multiset<my_ivec>> correction_factors; |
|---|
| 919 | |
|---|
| 920 | int number_of_parameters; |
|---|
| 921 | |
|---|
| 922 | /// A default constructor creates an emlig with predefined statistic representing only the range of the given |
|---|
| 923 | /// parametric space, where the number of parameters of the needed model is given as a parameter to the constructor. |
|---|
| 924 | emlig(int number_of_parameters) |
|---|
| 925 | { |
|---|
| 926 | this->number_of_parameters = number_of_parameters; |
|---|
| 927 | |
|---|
| 928 | create_statistic(number_of_parameters); |
|---|
| 929 | |
|---|
| 930 | likelihood_value = numeric_limits<double>::max(); |
|---|
| 931 | } |
|---|
| 932 | |
|---|
| 933 | /// A constructor for creating an emlig when the user wants to create the statistic by himself. The creation of a |
|---|
| 934 | /// statistic is needed outside the constructor. Used for a user defined prior distribution on the parameters. |
|---|
| 935 | emlig(c_statistic statistic) |
|---|
| 936 | { |
|---|
| 937 | this->statistic = statistic; |
|---|
| 938 | |
|---|
| 939 | likelihood_value = numeric_limits<double>::max(); |
|---|
| 940 | } |
|---|
| 941 | |
|---|
| 942 | void step_me(int marker) |
|---|
| 943 | { |
|---|
| 944 | |
|---|
| 945 | for(int i = 0;i<statistic.size();i++) |
|---|
| 946 | { |
|---|
| 947 | for(polyhedron* horiz_ref = statistic.rows[i];horiz_ref!=statistic.get_end();horiz_ref=horiz_ref->next_poly) |
|---|
| 948 | { |
|---|
| 949 | |
|---|
| 950 | /* |
|---|
| 951 | if(i==statistic.size()-1) |
|---|
| 952 | { |
|---|
| 953 | //cout << ((toprow*)horiz_ref)->condition_sum << " " << ((toprow*)horiz_ref)->probability << endl; |
|---|
| 954 | cout << "Order:" << ((toprow*)horiz_ref)->condition_order << endl; |
|---|
| 955 | } |
|---|
| 956 | if(i==0) |
|---|
| 957 | { |
|---|
| 958 | cout << ((vertex*)horiz_ref)->get_coordinates() << endl; |
|---|
| 959 | } |
|---|
| 960 | */ |
|---|
| 961 | |
|---|
| 962 | char* string = "Checkpoint"; |
|---|
| 963 | } |
|---|
| 964 | } |
|---|
| 965 | |
|---|
| 966 | |
|---|
| 967 | /* |
|---|
| 968 | list<vec> table_entries; |
|---|
| 969 | for(polyhedron* horiz_ref = statistic.rows[statistic.size()-1];horiz_ref!=statistic.row_ends[statistic.size()-1];horiz_ref=horiz_ref->next_poly) |
|---|
| 970 | { |
|---|
| 971 | toprow *current_toprow = (toprow*)(horiz_ref); |
|---|
| 972 | for(list<set<vertex*>>::iterator tri_ref = current_toprow->triangulation.begin();tri_ref!=current_toprow->triangulation.end();tri_ref++) |
|---|
| 973 | { |
|---|
| 974 | for(set<vertex*>::iterator vert_ref = (*tri_ref).begin();vert_ref!=(*tri_ref).end();vert_ref++) |
|---|
| 975 | { |
|---|
| 976 | vec table_entry = vec(); |
|---|
| 977 | |
|---|
| 978 | table_entry.ins(0,(*vert_ref)->get_coordinates()*current_toprow->condition.get(1,current_toprow->condition.size()-1)-current_toprow->condition.get(0,0)); |
|---|
| 979 | |
|---|
| 980 | table_entry.ins(0,(*vert_ref)->get_coordinates()); |
|---|
| 981 | |
|---|
| 982 | table_entries.push_back(table_entry); |
|---|
| 983 | } |
|---|
| 984 | } |
|---|
| 985 | } |
|---|
| 986 | |
|---|
| 987 | unique(table_entries.begin(),table_entries.end()); |
|---|
| 988 | |
|---|
| 989 | |
|---|
| 990 | |
|---|
| 991 | for(list<vec>::iterator entry_ref = table_entries.begin();entry_ref!=table_entries.end();entry_ref++) |
|---|
| 992 | { |
|---|
| 993 | ofstream myfile; |
|---|
| 994 | myfile.open("robust_data.txt", ios::out | ios::app); |
|---|
| 995 | if (myfile.is_open()) |
|---|
| 996 | { |
|---|
| 997 | for(int i = 0;i<(*entry_ref).size();i++) |
|---|
| 998 | { |
|---|
| 999 | myfile << (*entry_ref)[i] << ";"; |
|---|
| 1000 | } |
|---|
| 1001 | myfile << endl; |
|---|
| 1002 | |
|---|
| 1003 | myfile.close(); |
|---|
| 1004 | } |
|---|
| 1005 | else |
|---|
| 1006 | { |
|---|
| 1007 | cout << "File problem." << endl; |
|---|
| 1008 | } |
|---|
| 1009 | } |
|---|
| 1010 | */ |
|---|
| 1011 | |
|---|
| 1012 | |
|---|
| 1013 | return; |
|---|
| 1014 | } |
|---|
| 1015 | |
|---|
| 1016 | int statistic_rowsize(int row) |
|---|
| 1017 | { |
|---|
| 1018 | return statistic.row_size(row); |
|---|
| 1019 | } |
|---|
| 1020 | |
|---|
| 1021 | void add_condition(vec toadd) |
|---|
| 1022 | { |
|---|
| 1023 | vec null_vector = ""; |
|---|
| 1024 | |
|---|
| 1025 | add_and_remove_condition(toadd, null_vector); |
|---|
| 1026 | } |
|---|
| 1027 | |
|---|
| 1028 | |
|---|
| 1029 | void remove_condition(vec toremove) |
|---|
| 1030 | { |
|---|
| 1031 | vec null_vector = ""; |
|---|
| 1032 | |
|---|
| 1033 | add_and_remove_condition(null_vector, toremove); |
|---|
| 1034 | |
|---|
| 1035 | } |
|---|
| 1036 | |
|---|
| 1037 | void add_and_remove_condition(vec toadd, vec toremove) |
|---|
| 1038 | { |
|---|
| 1039 | likelihood_value = numeric_limits<double>::max(); |
|---|
| 1040 | |
|---|
| 1041 | bool should_remove = (toremove.size() != 0); |
|---|
| 1042 | bool should_add = (toadd.size() != 0); |
|---|
| 1043 | |
|---|
| 1044 | for_splitting.clear(); |
|---|
| 1045 | for_merging.clear(); |
|---|
| 1046 | |
|---|
| 1047 | for(int i = 0;i<statistic.size();i++) |
|---|
| 1048 | { |
|---|
| 1049 | list<polyhedron*> empty_split; |
|---|
| 1050 | list<polyhedron*> empty_merge; |
|---|
| 1051 | |
|---|
| 1052 | for_splitting.push_back(empty_split); |
|---|
| 1053 | for_merging.push_back(empty_merge); |
|---|
| 1054 | } |
|---|
| 1055 | |
|---|
| 1056 | list<condition*>::iterator toremove_ref = conditions.end(); |
|---|
| 1057 | bool condition_should_be_added = should_add; |
|---|
| 1058 | |
|---|
| 1059 | for(list<condition*>::iterator ref = conditions.begin();ref!=conditions.end();ref++) |
|---|
| 1060 | { |
|---|
| 1061 | if(should_remove) |
|---|
| 1062 | { |
|---|
| 1063 | if((*ref)->value == toremove) |
|---|
| 1064 | { |
|---|
| 1065 | if((*ref)->multiplicity>1) |
|---|
| 1066 | { |
|---|
| 1067 | (*ref)->multiplicity--; |
|---|
| 1068 | |
|---|
| 1069 | alter_toprow_conditions(*ref,false); |
|---|
| 1070 | |
|---|
| 1071 | should_remove = false; |
|---|
| 1072 | } |
|---|
| 1073 | else |
|---|
| 1074 | { |
|---|
| 1075 | toremove_ref = ref; |
|---|
| 1076 | } |
|---|
| 1077 | } |
|---|
| 1078 | } |
|---|
| 1079 | |
|---|
| 1080 | if(should_add) |
|---|
| 1081 | { |
|---|
| 1082 | if((*ref)->value == toadd) |
|---|
| 1083 | { |
|---|
| 1084 | (*ref)->multiplicity++; |
|---|
| 1085 | |
|---|
| 1086 | alter_toprow_conditions(*ref,true); |
|---|
| 1087 | |
|---|
| 1088 | should_add = false; |
|---|
| 1089 | |
|---|
| 1090 | condition_should_be_added = false; |
|---|
| 1091 | } |
|---|
| 1092 | } |
|---|
| 1093 | } |
|---|
| 1094 | |
|---|
| 1095 | condition* condition_to_remove = NULL; |
|---|
| 1096 | |
|---|
| 1097 | if(toremove_ref!=conditions.end()) |
|---|
| 1098 | { |
|---|
| 1099 | condition_to_remove = *toremove_ref; |
|---|
| 1100 | conditions.erase(toremove_ref); |
|---|
| 1101 | } |
|---|
| 1102 | |
|---|
| 1103 | condition* condition_to_add = NULL; |
|---|
| 1104 | |
|---|
| 1105 | if(condition_should_be_added) |
|---|
| 1106 | { |
|---|
| 1107 | condition* new_condition = new condition(toadd); |
|---|
| 1108 | |
|---|
| 1109 | conditions.push_back(new_condition); |
|---|
| 1110 | condition_to_add = new_condition; |
|---|
| 1111 | } |
|---|
| 1112 | |
|---|
| 1113 | for(polyhedron* horizontal_position = statistic.rows[0];horizontal_position!=statistic.get_end();horizontal_position=horizontal_position->next_poly) |
|---|
| 1114 | { |
|---|
| 1115 | vertex* current_vertex = (vertex*)horizontal_position; |
|---|
| 1116 | |
|---|
| 1117 | if(should_add||should_remove) |
|---|
| 1118 | { |
|---|
| 1119 | vec appended_coords = current_vertex->get_coordinates(); |
|---|
| 1120 | appended_coords.ins(0,-1.0); |
|---|
| 1121 | |
|---|
| 1122 | if(should_add) |
|---|
| 1123 | { |
|---|
| 1124 | double local_condition = 0;// = toadd*(appended_coords.first/=appended_coords.second); |
|---|
| 1125 | |
|---|
| 1126 | local_condition = appended_coords*toadd; |
|---|
| 1127 | |
|---|
| 1128 | current_vertex->set_state(local_condition,SPLIT); |
|---|
| 1129 | |
|---|
| 1130 | /// \TODO There should be a rounding error tolerance used here to insure we are not having too many points because of rounding error. |
|---|
| 1131 | if(local_condition == 0) |
|---|
| 1132 | { |
|---|
| 1133 | current_vertex->totally_neutral = true; |
|---|
| 1134 | |
|---|
| 1135 | current_vertex->raise_multiplicity(); |
|---|
| 1136 | |
|---|
| 1137 | current_vertex->negativeneutralvertices.insert(current_vertex); |
|---|
| 1138 | current_vertex->positiveneutralvertices.insert(current_vertex); |
|---|
| 1139 | } |
|---|
| 1140 | } |
|---|
| 1141 | |
|---|
| 1142 | if(should_remove) |
|---|
| 1143 | { |
|---|
| 1144 | set<condition*>::iterator cond_ref; |
|---|
| 1145 | |
|---|
| 1146 | for(cond_ref = current_vertex->parentconditions.begin();cond_ref!=current_vertex->parentconditions.end();cond_ref++) |
|---|
| 1147 | { |
|---|
| 1148 | if(*cond_ref == condition_to_remove) |
|---|
| 1149 | { |
|---|
| 1150 | break; |
|---|
| 1151 | } |
|---|
| 1152 | } |
|---|
| 1153 | |
|---|
| 1154 | if(cond_ref!=current_vertex->parentconditions.end()) |
|---|
| 1155 | { |
|---|
| 1156 | current_vertex->parentconditions.erase(cond_ref); |
|---|
| 1157 | current_vertex->set_state(0,MERGE); |
|---|
| 1158 | for_merging[0].push_back(current_vertex); |
|---|
| 1159 | } |
|---|
| 1160 | else |
|---|
| 1161 | { |
|---|
| 1162 | double local_condition = toremove*appended_coords; |
|---|
| 1163 | current_vertex->set_state(local_condition,MERGE); |
|---|
| 1164 | } |
|---|
| 1165 | } |
|---|
| 1166 | } |
|---|
| 1167 | |
|---|
| 1168 | send_state_message(current_vertex, condition_to_add, condition_to_remove, 0); |
|---|
| 1169 | |
|---|
| 1170 | } |
|---|
| 1171 | |
|---|
| 1172 | |
|---|
| 1173 | |
|---|
| 1174 | if(should_remove) |
|---|
| 1175 | { |
|---|
| 1176 | for(int i = 0;i<for_merging.size();i++) |
|---|
| 1177 | { |
|---|
| 1178 | for(list<polyhedron*>::iterator merge_ref = for_merging[i].begin();merge_ref!=for_merging[i].end();merge_ref++) |
|---|
| 1179 | { |
|---|
| 1180 | cout << (*merge_ref)->get_state(MERGE) << ","; |
|---|
| 1181 | } |
|---|
| 1182 | |
|---|
| 1183 | cout << endl; |
|---|
| 1184 | } |
|---|
| 1185 | |
|---|
| 1186 | set<vertex*> vertices_to_be_reduced; |
|---|
| 1187 | |
|---|
| 1188 | int k = 1; |
|---|
| 1189 | |
|---|
| 1190 | for(vector<list<polyhedron*>>::iterator vert_ref = for_merging.begin();vert_ref<for_merging.end();vert_ref++) |
|---|
| 1191 | { |
|---|
| 1192 | for(list<polyhedron*>::reverse_iterator merge_ref = vert_ref->rbegin();merge_ref!=vert_ref->rend();merge_ref++) |
|---|
| 1193 | { |
|---|
| 1194 | if((*merge_ref)->get_multiplicity()>1) |
|---|
| 1195 | { |
|---|
| 1196 | if(k==1) |
|---|
| 1197 | { |
|---|
| 1198 | vertices_to_be_reduced.insert((vertex*)(*merge_ref)); |
|---|
| 1199 | } |
|---|
| 1200 | else |
|---|
| 1201 | { |
|---|
| 1202 | (*merge_ref)->lower_multiplicity(); |
|---|
| 1203 | } |
|---|
| 1204 | } |
|---|
| 1205 | else |
|---|
| 1206 | { |
|---|
| 1207 | toprow* current_positive = (toprow*)(*merge_ref)->positiveparent; |
|---|
| 1208 | toprow* current_negative = (toprow*)(*merge_ref)->negativeparent; |
|---|
| 1209 | |
|---|
| 1210 | current_positive->condition_sum -= toremove; |
|---|
| 1211 | current_positive->condition_order--; |
|---|
| 1212 | |
|---|
| 1213 | current_positive->children.insert(current_positive->children.end(),current_negative->children.begin(),current_negative->children.end()); |
|---|
| 1214 | current_positive->children.remove(*merge_ref); |
|---|
| 1215 | |
|---|
| 1216 | for(list<polyhedron*>::iterator child_ref = current_negative->children.begin();child_ref!=current_negative->children.end();child_ref++) |
|---|
| 1217 | { |
|---|
| 1218 | (*child_ref)->parents.remove(current_negative); |
|---|
| 1219 | (*child_ref)->parents.push_back(current_positive); |
|---|
| 1220 | } |
|---|
| 1221 | |
|---|
| 1222 | // current_positive->parents.insert(current_positive->parents.begin(),current_negative->parents.begin(),current_negative->parents.end()); |
|---|
| 1223 | // unique(current_positive->parents.begin(),current_positive->parents.end()); |
|---|
| 1224 | |
|---|
| 1225 | for(list<polyhedron*>::iterator parent_ref = current_negative->parents.begin();parent_ref!=current_negative->parents.end();parent_ref++) |
|---|
| 1226 | { |
|---|
| 1227 | (*parent_ref)->children.remove(current_negative); |
|---|
| 1228 | |
|---|
| 1229 | switch(current_negative->get_state(SPLIT)) |
|---|
| 1230 | { |
|---|
| 1231 | case -1: |
|---|
| 1232 | (*parent_ref)->negativechildren.remove(current_negative); |
|---|
| 1233 | break; |
|---|
| 1234 | case 0: |
|---|
| 1235 | (*parent_ref)->neutralchildren.remove(current_negative); |
|---|
| 1236 | break; |
|---|
| 1237 | case 1: |
|---|
| 1238 | (*parent_ref)->positivechildren.remove(current_negative); |
|---|
| 1239 | break; |
|---|
| 1240 | } |
|---|
| 1241 | //(*parent_ref)->children.push_back(current_positive); |
|---|
| 1242 | } |
|---|
| 1243 | |
|---|
| 1244 | if(current_positive->get_state(SPLIT)!=0||current_negative->get_state(SPLIT)==0) |
|---|
| 1245 | { |
|---|
| 1246 | for(list<polyhedron*>::iterator parent_ref = current_positive->parents.begin();parent_ref!=current_positive->parents.end();parent_ref++) |
|---|
| 1247 | { |
|---|
| 1248 | if(current_positive->get_state(SPLIT)==1) |
|---|
| 1249 | { |
|---|
| 1250 | (*parent_ref)->positivechildren.remove(current_positive); |
|---|
| 1251 | } |
|---|
| 1252 | else |
|---|
| 1253 | { |
|---|
| 1254 | (*parent_ref)->negativechildren.remove(current_positive); |
|---|
| 1255 | } |
|---|
| 1256 | |
|---|
| 1257 | (*parent_ref)->neutralchildren.push_back(current_positive); |
|---|
| 1258 | } |
|---|
| 1259 | |
|---|
| 1260 | current_positive->set_state(0,SPLIT); |
|---|
| 1261 | } |
|---|
| 1262 | |
|---|
| 1263 | if((current_positive->get_state(SPLIT)==0&&!current_positive->totally_neutral)||(current_negative->get_state(SPLIT)==0&&!current_negative->totally_neutral)) |
|---|
| 1264 | { |
|---|
| 1265 | current_positive->negativechildren.insert(current_positive->negativechildren.end(),current_negative->negativechildren.begin(),current_negative->negativechildren.end()); |
|---|
| 1266 | |
|---|
| 1267 | current_positive->positivechildren.insert(current_positive->positivechildren.end(),current_negative->positivechildren.begin(),current_negative->positivechildren.end()); |
|---|
| 1268 | |
|---|
| 1269 | current_positive->neutralchildren.insert(current_positive->neutralchildren.end(),current_negative->neutralchildren.begin(),current_negative->neutralchildren.end()); |
|---|
| 1270 | |
|---|
| 1271 | switch((*merge_ref)->get_state(SPLIT)) |
|---|
| 1272 | { |
|---|
| 1273 | case -1: |
|---|
| 1274 | current_positive->negativechildren.remove(*merge_ref); |
|---|
| 1275 | break; |
|---|
| 1276 | case 0: |
|---|
| 1277 | current_positive->neutralchildren.remove(*merge_ref); |
|---|
| 1278 | break; |
|---|
| 1279 | case 1: |
|---|
| 1280 | current_positive->positivechildren.remove(*merge_ref); |
|---|
| 1281 | break; |
|---|
| 1282 | } |
|---|
| 1283 | |
|---|
| 1284 | current_positive->totallyneutralchildren.insert(current_negative->totallyneutralchildren.begin(),current_negative->totallyneutralchildren.end()); |
|---|
| 1285 | |
|---|
| 1286 | current_positive->totallyneutralchildren.erase(*merge_ref); |
|---|
| 1287 | |
|---|
| 1288 | current_positive->totallyneutralgrandchildren.insert(current_negative->totallyneutralgrandchildren.begin(),current_negative->totallyneutralgrandchildren.end()); |
|---|
| 1289 | |
|---|
| 1290 | current_positive->negativeneutralvertices.insert(current_negative->negativeneutralvertices.begin(),current_negative->negativeneutralvertices.end()); |
|---|
| 1291 | current_positive->positiveneutralvertices.insert(current_negative->positiveneutralvertices.begin(),current_negative->positiveneutralvertices.end()); |
|---|
| 1292 | } |
|---|
| 1293 | else |
|---|
| 1294 | { |
|---|
| 1295 | if(!current_positive->totally_neutral) |
|---|
| 1296 | { |
|---|
| 1297 | current_positive->positivechildren.clear(); |
|---|
| 1298 | current_positive->negativechildren.clear(); |
|---|
| 1299 | current_positive->neutralchildren.clear(); |
|---|
| 1300 | current_positive->totallyneutralchildren.clear(); |
|---|
| 1301 | current_positive->totallyneutralgrandchildren.clear(); |
|---|
| 1302 | current_positive->positiveneutralvertices.clear(); |
|---|
| 1303 | current_positive->negativeneutralvertices.clear(); |
|---|
| 1304 | current_positive->totally_neutral = NULL; |
|---|
| 1305 | current_positive->kids_rel_addresses.clear(); |
|---|
| 1306 | } |
|---|
| 1307 | |
|---|
| 1308 | } |
|---|
| 1309 | |
|---|
| 1310 | |
|---|
| 1311 | |
|---|
| 1312 | current_positive->vertices.insert(current_negative->vertices.begin(),current_negative->vertices.end()); |
|---|
| 1313 | |
|---|
| 1314 | |
|---|
| 1315 | for(set<vertex*>::iterator vert_ref = (*merge_ref)->vertices.begin();vert_ref!=(*merge_ref)->vertices.end();vert_ref++) |
|---|
| 1316 | { |
|---|
| 1317 | if((*vert_ref)->get_multiplicity()==1) |
|---|
| 1318 | { |
|---|
| 1319 | current_positive->vertices.erase(*vert_ref); |
|---|
| 1320 | |
|---|
| 1321 | if((current_positive->get_state(SPLIT)==0&&!current_positive->totally_neutral)||(current_negative->get_state(SPLIT)==0&&!current_negative->totally_neutral)) |
|---|
| 1322 | { |
|---|
| 1323 | current_positive->negativeneutralvertices.erase(*vert_ref); |
|---|
| 1324 | current_positive->positiveneutralvertices.erase(*vert_ref); |
|---|
| 1325 | } |
|---|
| 1326 | } |
|---|
| 1327 | } |
|---|
| 1328 | |
|---|
| 1329 | if(current_negative->get_state(SPLIT)==0&&!current_negative->totally_neutral) |
|---|
| 1330 | { |
|---|
| 1331 | for_splitting[k].remove(current_negative); |
|---|
| 1332 | |
|---|
| 1333 | if(current_positive->get_state(SPLIT)!=0||current_positive->totally_neutral) |
|---|
| 1334 | { |
|---|
| 1335 | for_splitting[k].push_back(current_positive); |
|---|
| 1336 | } |
|---|
| 1337 | } |
|---|
| 1338 | |
|---|
| 1339 | if(current_positive->totally_neutral) |
|---|
| 1340 | { |
|---|
| 1341 | if(!current_negative->totally_neutral) |
|---|
| 1342 | { |
|---|
| 1343 | for(set<polyhedron*>::iterator grand_ref = current_positive->grandparents.begin();grand_ref!=current_positive->grandparents.end();grand_ref++) |
|---|
| 1344 | { |
|---|
| 1345 | (*grand_ref)->totallyneutralgrandchildren.erase(current_positive); |
|---|
| 1346 | } |
|---|
| 1347 | } |
|---|
| 1348 | else |
|---|
| 1349 | { |
|---|
| 1350 | for(set<polyhedron*>::iterator grand_ref = current_negative->grandparents.begin();grand_ref!=current_negative->grandparents.end();grand_ref++) |
|---|
| 1351 | { |
|---|
| 1352 | (*grand_ref)->totallyneutralgrandchildren.erase(current_negative); |
|---|
| 1353 | (*grand_ref)->totallyneutralgrandchildren.insert(current_positive); |
|---|
| 1354 | } |
|---|
| 1355 | } |
|---|
| 1356 | } |
|---|
| 1357 | else |
|---|
| 1358 | { |
|---|
| 1359 | if(current_negative->totally_neutral) |
|---|
| 1360 | { |
|---|
| 1361 | for(set<polyhedron*>::iterator grand_ref = current_negative->grandparents.begin();grand_ref!=current_negative->grandparents.end();grand_ref++) |
|---|
| 1362 | { |
|---|
| 1363 | (*grand_ref)->totallyneutralgrandchildren.erase(current_negative); |
|---|
| 1364 | } |
|---|
| 1365 | } |
|---|
| 1366 | } |
|---|
| 1367 | |
|---|
| 1368 | current_positive->grandparents.clear(); |
|---|
| 1369 | |
|---|
| 1370 | |
|---|
| 1371 | |
|---|
| 1372 | current_positive->totally_neutral = (current_positive->totally_neutral && current_negative->totally_neutral); |
|---|
| 1373 | |
|---|
| 1374 | current_positive->triangulate(k==for_splitting.size()-1); |
|---|
| 1375 | |
|---|
| 1376 | statistic.delete_polyhedron(k,current_negative); |
|---|
| 1377 | |
|---|
| 1378 | delete current_negative; |
|---|
| 1379 | |
|---|
| 1380 | for(list<polyhedron*>::iterator child_ref = (*merge_ref)->children.begin();child_ref!=(*merge_ref)->children.end();child_ref++) |
|---|
| 1381 | { |
|---|
| 1382 | (*child_ref)->parents.remove(*merge_ref); |
|---|
| 1383 | } |
|---|
| 1384 | |
|---|
| 1385 | /* |
|---|
| 1386 | for(list<polyhedron*>::iterator parent_ref = (*merge_ref)->parents.begin();parent_ref!=(*merge_ref)->parents.end();parent_ref++) |
|---|
| 1387 | { |
|---|
| 1388 | (*parent_ref)->positivechildren.remove(*merge_ref); |
|---|
| 1389 | (*parent_ref)->negativechildren.remove(*merge_ref); |
|---|
| 1390 | (*parent_ref)->neutralchildren.remove(*merge_ref); |
|---|
| 1391 | (*parent_ref)->children.remove(*merge_ref); |
|---|
| 1392 | } |
|---|
| 1393 | */ |
|---|
| 1394 | |
|---|
| 1395 | for(set<polyhedron*>::iterator grand_ch_ref = (*merge_ref)->totallyneutralgrandchildren.begin();grand_ch_ref!=(*merge_ref)->totallyneutralgrandchildren.end();grand_ch_ref++) |
|---|
| 1396 | { |
|---|
| 1397 | (*grand_ch_ref)->grandparents.erase(*merge_ref); |
|---|
| 1398 | } |
|---|
| 1399 | |
|---|
| 1400 | |
|---|
| 1401 | for(set<polyhedron*>::iterator grand_p_ref = (*merge_ref)->grandparents.begin();grand_p_ref!=(*merge_ref)->grandparents.end();grand_p_ref++) |
|---|
| 1402 | { |
|---|
| 1403 | (*grand_p_ref)->totallyneutralgrandchildren.erase(*merge_ref); |
|---|
| 1404 | } |
|---|
| 1405 | |
|---|
| 1406 | for_splitting[k-1].remove(*merge_ref); |
|---|
| 1407 | |
|---|
| 1408 | statistic.delete_polyhedron(k-1,*merge_ref); |
|---|
| 1409 | |
|---|
| 1410 | if(k==1) |
|---|
| 1411 | { |
|---|
| 1412 | vertices_to_be_reduced.insert((vertex*)(*merge_ref)); |
|---|
| 1413 | } |
|---|
| 1414 | else |
|---|
| 1415 | { |
|---|
| 1416 | delete *merge_ref; |
|---|
| 1417 | } |
|---|
| 1418 | } |
|---|
| 1419 | } |
|---|
| 1420 | |
|---|
| 1421 | k++; |
|---|
| 1422 | |
|---|
| 1423 | } |
|---|
| 1424 | |
|---|
| 1425 | for(set<vertex*>::iterator vert_ref = vertices_to_be_reduced.begin();vert_ref!=vertices_to_be_reduced.end();vert_ref++) |
|---|
| 1426 | { |
|---|
| 1427 | if((*vert_ref)->get_multiplicity()>1) |
|---|
| 1428 | { |
|---|
| 1429 | (*vert_ref)->lower_multiplicity(); |
|---|
| 1430 | } |
|---|
| 1431 | else |
|---|
| 1432 | { |
|---|
| 1433 | delete *vert_ref; |
|---|
| 1434 | } |
|---|
| 1435 | } |
|---|
| 1436 | } |
|---|
| 1437 | |
|---|
| 1438 | step_me(0); |
|---|
| 1439 | |
|---|
| 1440 | if(should_add) |
|---|
| 1441 | { |
|---|
| 1442 | int k = 1; |
|---|
| 1443 | |
|---|
| 1444 | vector<list<polyhedron*>>::iterator beginning_ref = ++for_splitting.begin(); |
|---|
| 1445 | |
|---|
| 1446 | for(vector<list<polyhedron*>>::iterator vert_ref = beginning_ref;vert_ref<for_splitting.end();vert_ref++) |
|---|
| 1447 | { |
|---|
| 1448 | |
|---|
| 1449 | for(list<polyhedron*>::reverse_iterator split_ref = vert_ref->rbegin();split_ref != vert_ref->rend();split_ref++) |
|---|
| 1450 | { |
|---|
| 1451 | polyhedron* new_totally_neutral_child; |
|---|
| 1452 | |
|---|
| 1453 | polyhedron* current_polyhedron = (*split_ref); |
|---|
| 1454 | |
|---|
| 1455 | if(vert_ref == beginning_ref) |
|---|
| 1456 | { |
|---|
| 1457 | vec coordinates1 = ((vertex*)(*(current_polyhedron->children.begin())))->get_coordinates(); |
|---|
| 1458 | vec coordinates2 = ((vertex*)(*(++current_polyhedron->children.begin())))->get_coordinates(); |
|---|
| 1459 | |
|---|
| 1460 | vec extended_coord2 = coordinates2; |
|---|
| 1461 | extended_coord2.ins(0,-1.0); |
|---|
| 1462 | |
|---|
| 1463 | double t = (-toadd*extended_coord2)/(toadd(1,toadd.size()-1)*(coordinates1-coordinates2)); |
|---|
| 1464 | |
|---|
| 1465 | vec new_coordinates = (1-t)*coordinates2+t*coordinates1; |
|---|
| 1466 | |
|---|
| 1467 | // cout << "c1:" << coordinates1 << endl << "c2:" << coordinates2 << endl << "nc:" << new_coordinates << endl; |
|---|
| 1468 | |
|---|
| 1469 | vertex* neutral_vertex = new vertex(new_coordinates); |
|---|
| 1470 | |
|---|
| 1471 | new_totally_neutral_child = neutral_vertex; |
|---|
| 1472 | } |
|---|
| 1473 | else |
|---|
| 1474 | { |
|---|
| 1475 | toprow* neutral_toprow = new toprow(); |
|---|
| 1476 | |
|---|
| 1477 | neutral_toprow->condition_sum = ((toprow*)current_polyhedron)->condition_sum; // tohle tu bylo driv: zeros(number_of_parameters+1); |
|---|
| 1478 | neutral_toprow->condition_order = ((toprow*)current_polyhedron)->condition_order+1; |
|---|
| 1479 | |
|---|
| 1480 | new_totally_neutral_child = neutral_toprow; |
|---|
| 1481 | } |
|---|
| 1482 | |
|---|
| 1483 | new_totally_neutral_child->parentconditions.insert(current_polyhedron->parentconditions.begin(),current_polyhedron->parentconditions.end()); |
|---|
| 1484 | new_totally_neutral_child->parentconditions.insert(condition_to_add); |
|---|
| 1485 | |
|---|
| 1486 | new_totally_neutral_child->my_emlig = this; |
|---|
| 1487 | |
|---|
| 1488 | new_totally_neutral_child->children.insert(new_totally_neutral_child->children.end(), |
|---|
| 1489 | current_polyhedron->totallyneutralgrandchildren.begin(), |
|---|
| 1490 | current_polyhedron->totallyneutralgrandchildren.end()); |
|---|
| 1491 | |
|---|
| 1492 | |
|---|
| 1493 | |
|---|
| 1494 | // cout << ((toprow*)current_polyhedron)->condition << endl << toadd << endl; |
|---|
| 1495 | |
|---|
| 1496 | toprow* positive_poly = new toprow(((toprow*)current_polyhedron)->condition_sum+toadd, ((toprow*)current_polyhedron)->condition_order+1); |
|---|
| 1497 | toprow* negative_poly = new toprow(((toprow*)current_polyhedron)->condition_sum-toadd, ((toprow*)current_polyhedron)->condition_order+1); |
|---|
| 1498 | |
|---|
| 1499 | positive_poly->my_emlig = this; |
|---|
| 1500 | negative_poly->my_emlig = this; |
|---|
| 1501 | |
|---|
| 1502 | for(set<polyhedron*>::iterator grand_ref = current_polyhedron->totallyneutralgrandchildren.begin(); grand_ref != current_polyhedron->totallyneutralgrandchildren.end();grand_ref++) |
|---|
| 1503 | { |
|---|
| 1504 | (*grand_ref)->parents.push_back(new_totally_neutral_child); |
|---|
| 1505 | |
|---|
| 1506 | // tohle tu nebylo. ma to tu byt? |
|---|
| 1507 | //positive_poly->totallyneutralgrandchildren.insert(*grand_ref); |
|---|
| 1508 | //negative_poly->totallyneutralgrandchildren.insert(*grand_ref); |
|---|
| 1509 | |
|---|
| 1510 | //(*grand_ref)->grandparents.insert(positive_poly); |
|---|
| 1511 | //(*grand_ref)->grandparents.insert(negative_poly); |
|---|
| 1512 | |
|---|
| 1513 | new_totally_neutral_child->vertices.insert((*grand_ref)->vertices.begin(),(*grand_ref)->vertices.end()); |
|---|
| 1514 | } |
|---|
| 1515 | |
|---|
| 1516 | positive_poly->children.push_back(new_totally_neutral_child); |
|---|
| 1517 | negative_poly->children.push_back(new_totally_neutral_child); |
|---|
| 1518 | |
|---|
| 1519 | |
|---|
| 1520 | for(list<polyhedron*>::iterator parent_ref = current_polyhedron->parents.begin();parent_ref!=current_polyhedron->parents.end();parent_ref++) |
|---|
| 1521 | { |
|---|
| 1522 | (*parent_ref)->totallyneutralgrandchildren.insert(new_totally_neutral_child); |
|---|
| 1523 | // new_totally_neutral_child->grandparents.insert(*parent_ref); |
|---|
| 1524 | |
|---|
| 1525 | (*parent_ref)->neutralchildren.remove(current_polyhedron); |
|---|
| 1526 | (*parent_ref)->children.remove(current_polyhedron); |
|---|
| 1527 | |
|---|
| 1528 | (*parent_ref)->children.push_back(positive_poly); |
|---|
| 1529 | (*parent_ref)->children.push_back(negative_poly); |
|---|
| 1530 | (*parent_ref)->positivechildren.push_back(positive_poly); |
|---|
| 1531 | (*parent_ref)->negativechildren.push_back(negative_poly); |
|---|
| 1532 | } |
|---|
| 1533 | |
|---|
| 1534 | positive_poly->parents.insert(positive_poly->parents.end(), |
|---|
| 1535 | current_polyhedron->parents.begin(), |
|---|
| 1536 | current_polyhedron->parents.end()); |
|---|
| 1537 | |
|---|
| 1538 | negative_poly->parents.insert(negative_poly->parents.end(), |
|---|
| 1539 | current_polyhedron->parents.begin(), |
|---|
| 1540 | current_polyhedron->parents.end()); |
|---|
| 1541 | |
|---|
| 1542 | |
|---|
| 1543 | |
|---|
| 1544 | new_totally_neutral_child->parents.push_back(positive_poly); |
|---|
| 1545 | new_totally_neutral_child->parents.push_back(negative_poly); |
|---|
| 1546 | |
|---|
| 1547 | for(list<polyhedron*>::iterator child_ref = current_polyhedron->positivechildren.begin();child_ref!=current_polyhedron->positivechildren.end();child_ref++) |
|---|
| 1548 | { |
|---|
| 1549 | (*child_ref)->parents.remove(current_polyhedron); |
|---|
| 1550 | (*child_ref)->parents.push_back(positive_poly); |
|---|
| 1551 | } |
|---|
| 1552 | |
|---|
| 1553 | positive_poly->children.insert(positive_poly->children.end(), |
|---|
| 1554 | current_polyhedron->positivechildren.begin(), |
|---|
| 1555 | current_polyhedron->positivechildren.end()); |
|---|
| 1556 | |
|---|
| 1557 | for(list<polyhedron*>::iterator child_ref = current_polyhedron->negativechildren.begin();child_ref!=current_polyhedron->negativechildren.end();child_ref++) |
|---|
| 1558 | { |
|---|
| 1559 | (*child_ref)->parents.remove(current_polyhedron); |
|---|
| 1560 | (*child_ref)->parents.push_back(negative_poly); |
|---|
| 1561 | } |
|---|
| 1562 | |
|---|
| 1563 | negative_poly->children.insert(negative_poly->children.end(), |
|---|
| 1564 | current_polyhedron->negativechildren.begin(), |
|---|
| 1565 | current_polyhedron->negativechildren.end()); |
|---|
| 1566 | |
|---|
| 1567 | positive_poly->vertices.insert(current_polyhedron->positiveneutralvertices.begin(),current_polyhedron->positiveneutralvertices.end()); |
|---|
| 1568 | positive_poly->vertices.insert(new_totally_neutral_child->vertices.begin(),new_totally_neutral_child->vertices.end()); |
|---|
| 1569 | |
|---|
| 1570 | negative_poly->vertices.insert(current_polyhedron->negativeneutralvertices.begin(),current_polyhedron->negativeneutralvertices.end()); |
|---|
| 1571 | negative_poly->vertices.insert(new_totally_neutral_child->vertices.begin(),new_totally_neutral_child->vertices.end()); |
|---|
| 1572 | |
|---|
| 1573 | new_totally_neutral_child->triangulate(false); |
|---|
| 1574 | |
|---|
| 1575 | positive_poly->triangulate(k==for_splitting.size()-1); |
|---|
| 1576 | negative_poly->triangulate(k==for_splitting.size()-1); |
|---|
| 1577 | |
|---|
| 1578 | statistic.append_polyhedron(k-1, new_totally_neutral_child); |
|---|
| 1579 | |
|---|
| 1580 | statistic.insert_polyhedron(k, positive_poly, current_polyhedron); |
|---|
| 1581 | statistic.insert_polyhedron(k, negative_poly, current_polyhedron); |
|---|
| 1582 | |
|---|
| 1583 | statistic.delete_polyhedron(k, current_polyhedron); |
|---|
| 1584 | |
|---|
| 1585 | delete current_polyhedron; |
|---|
| 1586 | } |
|---|
| 1587 | |
|---|
| 1588 | k++; |
|---|
| 1589 | } |
|---|
| 1590 | } |
|---|
| 1591 | |
|---|
| 1592 | /* |
|---|
| 1593 | vector<int> sizevector; |
|---|
| 1594 | for(int s = 0;s<statistic.size();s++) |
|---|
| 1595 | { |
|---|
| 1596 | sizevector.push_back(statistic.row_size(s)); |
|---|
| 1597 | cout << statistic.row_size(s) << ", "; |
|---|
| 1598 | } |
|---|
| 1599 | */ |
|---|
| 1600 | |
|---|
| 1601 | cout << endl; |
|---|
| 1602 | |
|---|
| 1603 | /* |
|---|
| 1604 | for(polyhedron* topr_ref = statistic.rows[statistic.size()-1];topr_ref!=statistic.row_ends[statistic.size()-1]->next_poly;topr_ref=topr_ref->next_poly) |
|---|
| 1605 | { |
|---|
| 1606 | cout << ((toprow*)topr_ref)->condition << endl; |
|---|
| 1607 | } |
|---|
| 1608 | */ |
|---|
| 1609 | |
|---|
| 1610 | } |
|---|
| 1611 | |
|---|
| 1612 | void set_correction_factors(int order) |
|---|
| 1613 | { |
|---|
| 1614 | for(int remaining_order = correction_factors.size();remaining_order<order;remaining_order++) |
|---|
| 1615 | { |
|---|
| 1616 | multiset<my_ivec> factor_templates; |
|---|
| 1617 | multiset<my_ivec> final_factors; |
|---|
| 1618 | |
|---|
| 1619 | my_ivec orig_template = my_ivec(); |
|---|
| 1620 | |
|---|
| 1621 | for(int i = 1;i<number_of_parameters-remaining_order+1;i++) |
|---|
| 1622 | { |
|---|
| 1623 | bool in_cycle = false; |
|---|
| 1624 | for(int j = 0;j<=remaining_order;j++) { |
|---|
| 1625 | |
|---|
| 1626 | multiset<my_ivec>::iterator fac_ref = factor_templates.begin(); |
|---|
| 1627 | |
|---|
| 1628 | do |
|---|
| 1629 | { |
|---|
| 1630 | my_ivec current_template; |
|---|
| 1631 | if(!in_cycle) |
|---|
| 1632 | { |
|---|
| 1633 | current_template = orig_template; |
|---|
| 1634 | in_cycle = true; |
|---|
| 1635 | } |
|---|
| 1636 | else |
|---|
| 1637 | { |
|---|
| 1638 | current_template = (*fac_ref); |
|---|
| 1639 | fac_ref++; |
|---|
| 1640 | } |
|---|
| 1641 | |
|---|
| 1642 | current_template.ins(current_template.size(),i); |
|---|
| 1643 | |
|---|
| 1644 | // cout << "template:" << current_template << endl; |
|---|
| 1645 | |
|---|
| 1646 | if(current_template.size()==remaining_order+1) |
|---|
| 1647 | { |
|---|
| 1648 | final_factors.insert(current_template); |
|---|
| 1649 | } |
|---|
| 1650 | else |
|---|
| 1651 | { |
|---|
| 1652 | factor_templates.insert(current_template); |
|---|
| 1653 | } |
|---|
| 1654 | } |
|---|
| 1655 | while(fac_ref!=factor_templates.end()); |
|---|
| 1656 | } |
|---|
| 1657 | } |
|---|
| 1658 | |
|---|
| 1659 | correction_factors.push_back(final_factors); |
|---|
| 1660 | |
|---|
| 1661 | } |
|---|
| 1662 | } |
|---|
| 1663 | |
|---|
| 1664 | protected: |
|---|
| 1665 | |
|---|
| 1666 | /// A method for creating plain default statistic representing only the range of the parameter space. |
|---|
| 1667 | void create_statistic(int number_of_parameters) |
|---|
| 1668 | { |
|---|
| 1669 | /* |
|---|
| 1670 | for(int i = 0;i<number_of_parameters;i++) |
|---|
| 1671 | { |
|---|
| 1672 | vec condition_vec = zeros(number_of_parameters+1); |
|---|
| 1673 | condition_vec[i+1] = 1; |
|---|
| 1674 | |
|---|
| 1675 | condition* new_condition = new condition(condition_vec); |
|---|
| 1676 | |
|---|
| 1677 | conditions.push_back(new_condition); |
|---|
| 1678 | } |
|---|
| 1679 | */ |
|---|
| 1680 | |
|---|
| 1681 | // An empty vector of coordinates. |
|---|
| 1682 | vec origin_coord; |
|---|
| 1683 | |
|---|
| 1684 | // We create an origin - this point will have all the coordinates zero, but now it has an empty vector of coords. |
|---|
| 1685 | vertex *origin = new vertex(origin_coord); |
|---|
| 1686 | |
|---|
| 1687 | origin->my_emlig = this; |
|---|
| 1688 | |
|---|
| 1689 | /* |
|---|
| 1690 | // As a statistic, we have to create a vector of vectors of polyhedron pointers. It will then represent the Hasse |
|---|
| 1691 | // diagram. First we create a vector of polyhedrons.. |
|---|
| 1692 | list<polyhedron*> origin_vec; |
|---|
| 1693 | |
|---|
| 1694 | // ..we fill it with the origin.. |
|---|
| 1695 | origin_vec.push_back(origin); |
|---|
| 1696 | |
|---|
| 1697 | // ..and we fill the statistic with the created vector. |
|---|
| 1698 | statistic.push_back(origin_vec); |
|---|
| 1699 | */ |
|---|
| 1700 | |
|---|
| 1701 | statistic = *(new c_statistic()); |
|---|
| 1702 | |
|---|
| 1703 | statistic.append_polyhedron(0, origin); |
|---|
| 1704 | |
|---|
| 1705 | // Now we have a statistic for a zero dimensional space. Regarding to how many dimensional space we need to |
|---|
| 1706 | // describe, we have to widen the descriptional default statistic. We use an iterative procedure as follows: |
|---|
| 1707 | for(int i=0;i<number_of_parameters;i++) |
|---|
| 1708 | { |
|---|
| 1709 | // We first will create two new vertices. These will be the borders of the parameter space in the dimension |
|---|
| 1710 | // of newly added parameter. Therefore they will have all coordinates except the last one zero. We get the |
|---|
| 1711 | // right amount of zero cooridnates by reading them from the origin |
|---|
| 1712 | vec origin_coord = origin->get_coordinates(); |
|---|
| 1713 | |
|---|
| 1714 | // And we incorporate the nonzero coordinates into the new cooordinate vectors |
|---|
| 1715 | vec origin_coord1 = concat(origin_coord,-max_range); |
|---|
| 1716 | vec origin_coord2 = concat(origin_coord,max_range); |
|---|
| 1717 | |
|---|
| 1718 | |
|---|
| 1719 | // Now we create the points |
|---|
| 1720 | vertex* new_point1 = new vertex(origin_coord1); |
|---|
| 1721 | vertex* new_point2 = new vertex(origin_coord2); |
|---|
| 1722 | |
|---|
| 1723 | new_point1->my_emlig = this; |
|---|
| 1724 | new_point2->my_emlig = this; |
|---|
| 1725 | |
|---|
| 1726 | //********************************************************************************************************* |
|---|
| 1727 | // The algorithm for recursive build of a new Hasse diagram representing the space structure from the old |
|---|
| 1728 | // diagram works so that you create two copies of the old Hasse diagram, you shift them up one level (points |
|---|
| 1729 | // will be segments, segments will be areas etc.) and you connect each one of the original copied polyhedrons |
|---|
| 1730 | // with its offspring by a parent-child relation. Also each of the segments in the first (second) copy is |
|---|
| 1731 | // connected to the first (second) newly created vertex by a parent-child relation. |
|---|
| 1732 | //********************************************************************************************************* |
|---|
| 1733 | |
|---|
| 1734 | |
|---|
| 1735 | /* |
|---|
| 1736 | // Create the vectors of vectors of pointers to polyhedrons to hold the copies of the old Hasse diagram |
|---|
| 1737 | vector<vector<polyhedron*>> new_statistic1; |
|---|
| 1738 | vector<vector<polyhedron*>> new_statistic2; |
|---|
| 1739 | */ |
|---|
| 1740 | |
|---|
| 1741 | c_statistic* new_statistic1 = new c_statistic(); |
|---|
| 1742 | c_statistic* new_statistic2 = new c_statistic(); |
|---|
| 1743 | |
|---|
| 1744 | |
|---|
| 1745 | // Copy the statistic by rows |
|---|
| 1746 | for(int j=0;j<statistic.size();j++) |
|---|
| 1747 | { |
|---|
| 1748 | |
|---|
| 1749 | |
|---|
| 1750 | // an element counter |
|---|
| 1751 | int element_number = 0; |
|---|
| 1752 | |
|---|
| 1753 | /* |
|---|
| 1754 | vector<polyhedron*> supportnew_1; |
|---|
| 1755 | vector<polyhedron*> supportnew_2; |
|---|
| 1756 | |
|---|
| 1757 | new_statistic1.push_back(supportnew_1); |
|---|
| 1758 | new_statistic2.push_back(supportnew_2); |
|---|
| 1759 | */ |
|---|
| 1760 | |
|---|
| 1761 | // for each polyhedron in the given row |
|---|
| 1762 | for(polyhedron* horiz_ref = statistic.rows[j];horiz_ref!=statistic.get_end();horiz_ref=horiz_ref->next_poly) |
|---|
| 1763 | { |
|---|
| 1764 | // Append an extra zero coordinate to each of the vertices for the new dimension |
|---|
| 1765 | // If vert_ref is at the first index => we loop through vertices |
|---|
| 1766 | if(j == 0) |
|---|
| 1767 | { |
|---|
| 1768 | // cast the polyhedron pointer to a vertex pointer and push a zero to its vector of coordinates |
|---|
| 1769 | ((vertex*) horiz_ref)->push_coordinate(0); |
|---|
| 1770 | } |
|---|
| 1771 | /* |
|---|
| 1772 | else |
|---|
| 1773 | { |
|---|
| 1774 | ((toprow*) (*horiz_ref))->condition.ins(0,0); |
|---|
| 1775 | }*/ |
|---|
| 1776 | |
|---|
| 1777 | // if it has parents |
|---|
| 1778 | if(!horiz_ref->parents.empty()) |
|---|
| 1779 | { |
|---|
| 1780 | // save the relative address of this child in a vector kids_rel_addresses of all its parents. |
|---|
| 1781 | // This information will later be used for copying the whole Hasse diagram with each of the |
|---|
| 1782 | // relations contained within. |
|---|
| 1783 | for(list<polyhedron*>::iterator parent_ref = horiz_ref->parents.begin();parent_ref != horiz_ref->parents.end();parent_ref++) |
|---|
| 1784 | { |
|---|
| 1785 | (*parent_ref)->kids_rel_addresses.push_back(element_number); |
|---|
| 1786 | } |
|---|
| 1787 | } |
|---|
| 1788 | |
|---|
| 1789 | // ************************************************************************************************** |
|---|
| 1790 | // Here we begin creating a new polyhedron, which will be a copy of the old one. Each such polyhedron |
|---|
| 1791 | // will be created as a toprow, but this information will be later forgotten and only the polyhedrons |
|---|
| 1792 | // in the top row of the Hasse diagram will be considered toprow for later use. |
|---|
| 1793 | // ************************************************************************************************** |
|---|
| 1794 | |
|---|
| 1795 | // First we create vectors specifying a toprow condition. In the case of a preconstructed statistic |
|---|
| 1796 | // this condition will be a vector of zeros. There are two vectors, because we need two copies of |
|---|
| 1797 | // the original Hasse diagram. |
|---|
| 1798 | vec vec1(number_of_parameters+1); |
|---|
| 1799 | vec1.zeros(); |
|---|
| 1800 | |
|---|
| 1801 | vec vec2(number_of_parameters+1); |
|---|
| 1802 | vec2.zeros(); |
|---|
| 1803 | |
|---|
| 1804 | // We create a new toprow with the previously specified condition. |
|---|
| 1805 | toprow* current_copy1 = new toprow(vec1, 0); |
|---|
| 1806 | toprow* current_copy2 = new toprow(vec2, 0); |
|---|
| 1807 | |
|---|
| 1808 | current_copy1->my_emlig = this; |
|---|
| 1809 | current_copy2->my_emlig = this; |
|---|
| 1810 | |
|---|
| 1811 | // The vertices of the copies will be inherited, because there will be a parent/child relation |
|---|
| 1812 | // between each polyhedron and its offspring (comming from the copy) and a parent has all the |
|---|
| 1813 | // vertices of its child plus more. |
|---|
| 1814 | for(set<vertex*>::iterator vertex_ref = horiz_ref->vertices.begin();vertex_ref!=horiz_ref->vertices.end();vertex_ref++) |
|---|
| 1815 | { |
|---|
| 1816 | current_copy1->vertices.insert(*vertex_ref); |
|---|
| 1817 | current_copy2->vertices.insert(*vertex_ref); |
|---|
| 1818 | } |
|---|
| 1819 | |
|---|
| 1820 | // The only new vertex of the offspring should be the newly created point. |
|---|
| 1821 | current_copy1->vertices.insert(new_point1); |
|---|
| 1822 | current_copy2->vertices.insert(new_point2); |
|---|
| 1823 | |
|---|
| 1824 | // This method guarantees that each polyhedron is already triangulated, therefore its triangulation |
|---|
| 1825 | // is only one set of vertices and it is the set of all its vertices. |
|---|
| 1826 | set<vertex*> t_simplex1; |
|---|
| 1827 | set<vertex*> t_simplex2; |
|---|
| 1828 | |
|---|
| 1829 | t_simplex1.insert(current_copy1->vertices.begin(),current_copy1->vertices.end()); |
|---|
| 1830 | t_simplex2.insert(current_copy2->vertices.begin(),current_copy2->vertices.end()); |
|---|
| 1831 | |
|---|
| 1832 | current_copy1->triangulation.push_back(t_simplex1); |
|---|
| 1833 | current_copy2->triangulation.push_back(t_simplex2); |
|---|
| 1834 | |
|---|
| 1835 | // Now we have copied the polyhedron and we have to copy all of its relations. Because we are copying |
|---|
| 1836 | // in the Hasse diagram from bottom up, we always have to copy the parent/child relations to all the |
|---|
| 1837 | // kids and when we do that and know the child, in the child we will remember the parent we came from. |
|---|
| 1838 | // This way all the parents/children relations are saved in both the parent and the child. |
|---|
| 1839 | if(!horiz_ref->kids_rel_addresses.empty()) |
|---|
| 1840 | { |
|---|
| 1841 | for(list<int>::iterator kid_ref = horiz_ref->kids_rel_addresses.begin();kid_ref!=horiz_ref->kids_rel_addresses.end();kid_ref++) |
|---|
| 1842 | { |
|---|
| 1843 | polyhedron* new_kid1 = new_statistic1->rows[j-1]; |
|---|
| 1844 | polyhedron* new_kid2 = new_statistic2->rows[j-1]; |
|---|
| 1845 | |
|---|
| 1846 | // THIS IS NOT EFFECTIVE: It could be improved by having the list indexed for new_statistic, but |
|---|
| 1847 | // not indexed for statistic. Hopefully this will not cause a big slowdown - happens only offline. |
|---|
| 1848 | if(*kid_ref) |
|---|
| 1849 | { |
|---|
| 1850 | for(int k = 1;k<=(*kid_ref);k++) |
|---|
| 1851 | { |
|---|
| 1852 | new_kid1=new_kid1->next_poly; |
|---|
| 1853 | new_kid2=new_kid2->next_poly; |
|---|
| 1854 | } |
|---|
| 1855 | } |
|---|
| 1856 | |
|---|
| 1857 | // find the child and save the relation to the parent |
|---|
| 1858 | current_copy1->children.push_back(new_kid1); |
|---|
| 1859 | current_copy2->children.push_back(new_kid2); |
|---|
| 1860 | |
|---|
| 1861 | // in the child save the parents' address |
|---|
| 1862 | new_kid1->parents.push_back(current_copy1); |
|---|
| 1863 | new_kid2->parents.push_back(current_copy2); |
|---|
| 1864 | } |
|---|
| 1865 | |
|---|
| 1866 | // Here we clear the parents kids_rel_addresses vector for later use (when we need to widen the |
|---|
| 1867 | // Hasse diagram again) |
|---|
| 1868 | horiz_ref->kids_rel_addresses.clear(); |
|---|
| 1869 | } |
|---|
| 1870 | // If there were no children previously, we are copying a polyhedron that has been a vertex before. |
|---|
| 1871 | // In this case it is a segment now and it will have a relation to its mother (copywise) and to the |
|---|
| 1872 | // newly created point. Here we create the connection to the new point, again from both sides. |
|---|
| 1873 | else |
|---|
| 1874 | { |
|---|
| 1875 | // Add the address of the new point in the former vertex |
|---|
| 1876 | current_copy1->children.push_back(new_point1); |
|---|
| 1877 | current_copy2->children.push_back(new_point2); |
|---|
| 1878 | |
|---|
| 1879 | // Add the address of the former vertex in the new point |
|---|
| 1880 | new_point1->parents.push_back(current_copy1); |
|---|
| 1881 | new_point2->parents.push_back(current_copy2); |
|---|
| 1882 | } |
|---|
| 1883 | |
|---|
| 1884 | // Save the mother in its offspring |
|---|
| 1885 | current_copy1->children.push_back(horiz_ref); |
|---|
| 1886 | current_copy2->children.push_back(horiz_ref); |
|---|
| 1887 | |
|---|
| 1888 | // Save the offspring in its mother |
|---|
| 1889 | horiz_ref->parents.push_back(current_copy1); |
|---|
| 1890 | horiz_ref->parents.push_back(current_copy2); |
|---|
| 1891 | |
|---|
| 1892 | |
|---|
| 1893 | // Add the copies into the relevant statistic. The statistic will later be appended to the previous |
|---|
| 1894 | // Hasse diagram |
|---|
| 1895 | new_statistic1->append_polyhedron(j,current_copy1); |
|---|
| 1896 | new_statistic2->append_polyhedron(j,current_copy2); |
|---|
| 1897 | |
|---|
| 1898 | // Raise the count in the vector of polyhedrons |
|---|
| 1899 | element_number++; |
|---|
| 1900 | |
|---|
| 1901 | } |
|---|
| 1902 | |
|---|
| 1903 | } |
|---|
| 1904 | |
|---|
| 1905 | /* |
|---|
| 1906 | statistic.begin()->push_back(new_point1); |
|---|
| 1907 | statistic.begin()->push_back(new_point2); |
|---|
| 1908 | */ |
|---|
| 1909 | |
|---|
| 1910 | statistic.append_polyhedron(0, new_point1); |
|---|
| 1911 | statistic.append_polyhedron(0, new_point2); |
|---|
| 1912 | |
|---|
| 1913 | // Merge the new statistics into the old one. This will either be the final statistic or we will |
|---|
| 1914 | // reenter the widening loop. |
|---|
| 1915 | for(int j=0;j<new_statistic1->size();j++) |
|---|
| 1916 | { |
|---|
| 1917 | /* |
|---|
| 1918 | if(j+1==statistic.size()) |
|---|
| 1919 | { |
|---|
| 1920 | list<polyhedron*> support; |
|---|
| 1921 | statistic.push_back(support); |
|---|
| 1922 | } |
|---|
| 1923 | |
|---|
| 1924 | (statistic.begin()+j+1)->insert((statistic.begin()+j+1)->end(),new_statistic1[j].begin(),new_statistic1[j].end()); |
|---|
| 1925 | (statistic.begin()+j+1)->insert((statistic.begin()+j+1)->end(),new_statistic2[j].begin(),new_statistic2[j].end()); |
|---|
| 1926 | */ |
|---|
| 1927 | statistic.append_polyhedron(j+1,new_statistic1->rows[j],new_statistic1->row_ends[j]); |
|---|
| 1928 | statistic.append_polyhedron(j+1,new_statistic2->rows[j],new_statistic2->row_ends[j]); |
|---|
| 1929 | } |
|---|
| 1930 | } |
|---|
| 1931 | |
|---|
| 1932 | /* |
|---|
| 1933 | vector<list<toprow*>> toprow_statistic; |
|---|
| 1934 | int line_count = 0; |
|---|
| 1935 | |
|---|
| 1936 | for(vector<list<polyhedron*>>::iterator polyhedron_ref = ++statistic.begin(); polyhedron_ref!=statistic.end();polyhedron_ref++) |
|---|
| 1937 | { |
|---|
| 1938 | list<toprow*> support_list; |
|---|
| 1939 | toprow_statistic.push_back(support_list); |
|---|
| 1940 | |
|---|
| 1941 | for(list<polyhedron*>::iterator polyhedron_ref2 = polyhedron_ref->begin(); polyhedron_ref2 != polyhedron_ref->end(); polyhedron_ref2++) |
|---|
| 1942 | { |
|---|
| 1943 | toprow* support_top = (toprow*)(*polyhedron_ref2); |
|---|
| 1944 | |
|---|
| 1945 | toprow_statistic[line_count].push_back(support_top); |
|---|
| 1946 | } |
|---|
| 1947 | |
|---|
| 1948 | line_count++; |
|---|
| 1949 | }*/ |
|---|
| 1950 | |
|---|
| 1951 | /* |
|---|
| 1952 | vector<int> sizevector; |
|---|
| 1953 | for(int s = 0;s<statistic.size();s++) |
|---|
| 1954 | { |
|---|
| 1955 | sizevector.push_back(statistic.row_size(s)); |
|---|
| 1956 | } |
|---|
| 1957 | */ |
|---|
| 1958 | |
|---|
| 1959 | } |
|---|
| 1960 | |
|---|
| 1961 | |
|---|
| 1962 | |
|---|
| 1963 | |
|---|
| 1964 | }; |
|---|
| 1965 | |
|---|
| 1966 | |
|---|
| 1967 | |
|---|
| 1968 | //! Robust Bayesian AR model for Multicriteria-Laplace-Inverse-Gamma density |
|---|
| 1969 | class RARX //: public BM |
|---|
| 1970 | { |
|---|
| 1971 | private: |
|---|
| 1972 | |
|---|
| 1973 | |
|---|
| 1974 | |
|---|
| 1975 | int window_size; |
|---|
| 1976 | |
|---|
| 1977 | list<vec> conditions; |
|---|
| 1978 | |
|---|
| 1979 | public: |
|---|
| 1980 | emlig* posterior; |
|---|
| 1981 | |
|---|
| 1982 | RARX(int number_of_parameters, const int window_size)//:BM() |
|---|
| 1983 | { |
|---|
| 1984 | posterior = new emlig(number_of_parameters); |
|---|
| 1985 | |
|---|
| 1986 | this->window_size = window_size; |
|---|
| 1987 | }; |
|---|
| 1988 | |
|---|
| 1989 | void bayes(const itpp::vec &yt, const itpp::vec &cond = "") |
|---|
| 1990 | { |
|---|
| 1991 | conditions.push_back(yt); |
|---|
| 1992 | |
|---|
| 1993 | //posterior->step_me(0); |
|---|
| 1994 | |
|---|
| 1995 | if(conditions.size()>window_size && window_size!=0) |
|---|
| 1996 | { |
|---|
| 1997 | posterior->add_and_remove_condition(yt,conditions.front()); |
|---|
| 1998 | conditions.pop_front(); |
|---|
| 1999 | |
|---|
| 2000 | //posterior->step_me(1); |
|---|
| 2001 | } |
|---|
| 2002 | else |
|---|
| 2003 | { |
|---|
| 2004 | posterior->add_condition(yt); |
|---|
| 2005 | } |
|---|
| 2006 | |
|---|
| 2007 | } |
|---|
| 2008 | |
|---|
| 2009 | }; |
|---|
| 2010 | |
|---|
| 2011 | |
|---|
| 2012 | |
|---|
| 2013 | #endif //TRAGE_H |
|---|