| 1 | // |
|---|
| 2 | // C++ Implementation: itpp_ext |
|---|
| 3 | // |
|---|
| 4 | // Description: |
|---|
| 5 | // |
|---|
| 6 | // |
|---|
| 7 | // Author: smidl <smidl@utia.cas.cz>, (C) 2008 |
|---|
| 8 | // |
|---|
| 9 | // Copyright: See COPYING file that comes with this distribution |
|---|
| 10 | // |
|---|
| 11 | // |
|---|
| 12 | |
|---|
| 13 | #include <itpp/itbase.h> |
|---|
| 14 | #include "itpp_ext.h" |
|---|
| 15 | |
|---|
| 16 | // from algebra/lapack.h |
|---|
| 17 | |
|---|
| 18 | extern "C" { /* QR factorization of a general matrix A */ |
|---|
| 19 | void dgeqrf_(int *m, int *n, double *a, int *lda, double *tau, double *work, |
|---|
| 20 | int *lwork, int *info); |
|---|
| 21 | }; |
|---|
| 22 | |
|---|
| 23 | namespace itpp { |
|---|
| 24 | Array<int> to_Arr(const ivec &indices) |
|---|
| 25 | { |
|---|
| 26 | Array<int> a(indices.size()); |
|---|
| 27 | for (int i = 0; i < a.size(); i++) { |
|---|
| 28 | a(i) = indices(i); |
|---|
| 29 | } |
|---|
| 30 | return a; |
|---|
| 31 | } |
|---|
| 32 | |
|---|
| 33 | //Gamma |
|---|
| 34 | |
|---|
| 35 | Gamma_RNG::Gamma_RNG(double a, double b) |
|---|
| 36 | { |
|---|
| 37 | setup(a,b); |
|---|
| 38 | } |
|---|
| 39 | |
|---|
| 40 | #define log std::log |
|---|
| 41 | #define exp std::exp |
|---|
| 42 | #define sqrt std::sqrt |
|---|
| 43 | #define R_FINITE std::isfinite |
|---|
| 44 | |
|---|
| 45 | double Gamma_RNG::sample() |
|---|
| 46 | { |
|---|
| 47 | //A copy of rgamma code from the R package!! |
|---|
| 48 | // |
|---|
| 49 | |
|---|
| 50 | /* Constants : */ |
|---|
| 51 | const static double sqrt32 = 5.656854; |
|---|
| 52 | const static double exp_m1 = 0.36787944117144232159;/* exp(-1) = 1/e */ |
|---|
| 53 | |
|---|
| 54 | /* Coefficients q[k] - for q0 = sum(q[k]*a^(-k)) |
|---|
| 55 | * Coefficients a[k] - for q = q0+(t*t/2)*sum(a[k]*v^k) |
|---|
| 56 | * Coefficients e[k] - for exp(q)-1 = sum(e[k]*q^k) |
|---|
| 57 | */ |
|---|
| 58 | const static double q1 = 0.04166669; |
|---|
| 59 | const static double q2 = 0.02083148; |
|---|
| 60 | const static double q3 = 0.00801191; |
|---|
| 61 | const static double q4 = 0.00144121; |
|---|
| 62 | const static double q5 = -7.388e-5; |
|---|
| 63 | const static double q6 = 2.4511e-4; |
|---|
| 64 | const static double q7 = 2.424e-4; |
|---|
| 65 | |
|---|
| 66 | const static double a1 = 0.3333333; |
|---|
| 67 | const static double a2 = -0.250003; |
|---|
| 68 | const static double a3 = 0.2000062; |
|---|
| 69 | const static double a4 = -0.1662921; |
|---|
| 70 | const static double a5 = 0.1423657; |
|---|
| 71 | const static double a6 = -0.1367177; |
|---|
| 72 | const static double a7 = 0.1233795; |
|---|
| 73 | |
|---|
| 74 | /* State variables [FIXME for threading!] :*/ |
|---|
| 75 | static double aa = 0.; |
|---|
| 76 | static double aaa = 0.; |
|---|
| 77 | static double s, s2, d; /* no. 1 (step 1) */ |
|---|
| 78 | static double q0, b, si, c;/* no. 2 (step 4) */ |
|---|
| 79 | |
|---|
| 80 | double e, p, q, r, t, u, v, w, x, ret_val; |
|---|
| 81 | double a=alpha; |
|---|
| 82 | double scale=1.0/beta; |
|---|
| 83 | |
|---|
| 84 | if (!R_FINITE(a) || !R_FINITE(scale) || a < 0.0 || scale <= 0.0) |
|---|
| 85 | it_error("Gamma_RNG wrong parameters"); |
|---|
| 86 | |
|---|
| 87 | if (a < 1.) { /* GS algorithm for parameters a < 1 */ |
|---|
| 88 | if(a == 0) |
|---|
| 89 | return 0.; |
|---|
| 90 | e = 1.0 + exp_m1 * a; |
|---|
| 91 | for(;;) { //VS repeat |
|---|
| 92 | p = e * unif_rand(); |
|---|
| 93 | if (p >= 1.0) { |
|---|
| 94 | x = -log((e - p) / a); |
|---|
| 95 | if (exp_rand() >= (1.0 - a) * log(x)) |
|---|
| 96 | break; |
|---|
| 97 | } else { |
|---|
| 98 | x = exp(log(p) / a); |
|---|
| 99 | if (exp_rand() >= x) |
|---|
| 100 | break; |
|---|
| 101 | } |
|---|
| 102 | } |
|---|
| 103 | return scale * x; |
|---|
| 104 | } |
|---|
| 105 | |
|---|
| 106 | /* --- a >= 1 : GD algorithm --- */ |
|---|
| 107 | |
|---|
| 108 | /* Step 1: Recalculations of s2, s, d if a has changed */ |
|---|
| 109 | if (a != aa) { |
|---|
| 110 | aa = a; |
|---|
| 111 | s2 = a - 0.5; |
|---|
| 112 | s = sqrt(s2); |
|---|
| 113 | d = sqrt32 - s * 12.0; |
|---|
| 114 | } |
|---|
| 115 | /* Step 2: t = standard normal deviate, |
|---|
| 116 | x = (s,1/2) -normal deviate. */ |
|---|
| 117 | |
|---|
| 118 | /* immediate acceptance (i) */ |
|---|
| 119 | t = norm_rand(); |
|---|
| 120 | x = s + 0.5 * t; |
|---|
| 121 | ret_val = x * x; |
|---|
| 122 | if (t >= 0.0) |
|---|
| 123 | return scale * ret_val; |
|---|
| 124 | |
|---|
| 125 | /* Step 3: u = 0,1 - uniform sample. squeeze acceptance (s) */ |
|---|
| 126 | u = unif_rand(); |
|---|
| 127 | if ((d * u) <= (t * t * t)) |
|---|
| 128 | return scale * ret_val; |
|---|
| 129 | |
|---|
| 130 | /* Step 4: recalculations of q0, b, si, c if necessary */ |
|---|
| 131 | |
|---|
| 132 | if (a != aaa) { |
|---|
| 133 | aaa = a; |
|---|
| 134 | r = 1.0 / a; |
|---|
| 135 | q0 = ((((((q7 * r + q6) * r + q5) * r + q4) * r + q3) * r |
|---|
| 136 | + q2) * r + q1) * r; |
|---|
| 137 | |
|---|
| 138 | /* Approximation depending on size of parameter a */ |
|---|
| 139 | /* The constants in the expressions for b, si and c */ |
|---|
| 140 | /* were established by numerical experiments */ |
|---|
| 141 | |
|---|
| 142 | if (a <= 3.686) { |
|---|
| 143 | b = 0.463 + s + 0.178 * s2; |
|---|
| 144 | si = 1.235; |
|---|
| 145 | c = 0.195 / s - 0.079 + 0.16 * s; |
|---|
| 146 | } else if (a <= 13.022) { |
|---|
| 147 | b = 1.654 + 0.0076 * s2; |
|---|
| 148 | si = 1.68 / s + 0.275; |
|---|
| 149 | c = 0.062 / s + 0.024; |
|---|
| 150 | } else { |
|---|
| 151 | b = 1.77; |
|---|
| 152 | si = 0.75; |
|---|
| 153 | c = 0.1515 / s; |
|---|
| 154 | } |
|---|
| 155 | } |
|---|
| 156 | /* Step 5: no quotient test if x not positive */ |
|---|
| 157 | |
|---|
| 158 | if (x > 0.0) { |
|---|
| 159 | /* Step 6: calculation of v and quotient q */ |
|---|
| 160 | v = t / (s + s); |
|---|
| 161 | if (fabs(v) <= 0.25) |
|---|
| 162 | q = q0 + 0.5 * t * t * ((((((a7 * v + a6) * v + a5) * v + a4) * v |
|---|
| 163 | + a3) * v + a2) * v + a1) * v; |
|---|
| 164 | else |
|---|
| 165 | q = q0 - s * t + 0.25 * t * t + (s2 + s2) * log(1.0 + v); |
|---|
| 166 | |
|---|
| 167 | |
|---|
| 168 | /* Step 7: quotient acceptance (q) */ |
|---|
| 169 | if (log(1.0 - u) <= q) |
|---|
| 170 | return scale * ret_val; |
|---|
| 171 | } |
|---|
| 172 | |
|---|
| 173 | for(;;) { //VS repeat |
|---|
| 174 | /* Step 8: e = standard exponential deviate |
|---|
| 175 | * u = 0,1 -uniform deviate |
|---|
| 176 | * t = (b,si)-double exponential (laplace) sample */ |
|---|
| 177 | e = exp_rand(); |
|---|
| 178 | u = unif_rand(); |
|---|
| 179 | u = u + u - 1.0; |
|---|
| 180 | if (u < 0.0) |
|---|
| 181 | t = b - si * e; |
|---|
| 182 | else |
|---|
| 183 | t = b + si * e; |
|---|
| 184 | /* Step 9: rejection if t < tau(1) = -0.71874483771719 */ |
|---|
| 185 | if (t >= -0.71874483771719) { |
|---|
| 186 | /* Step 10: calculation of v and quotient q */ |
|---|
| 187 | v = t / (s + s); |
|---|
| 188 | if (fabs(v) <= 0.25) |
|---|
| 189 | q = q0 + 0.5 * t * t * |
|---|
| 190 | ((((((a7 * v + a6) * v + a5) * v + a4) * v + a3) * v |
|---|
| 191 | + a2) * v + a1) * v; |
|---|
| 192 | else |
|---|
| 193 | q = q0 - s * t + 0.25 * t * t + (s2 + s2) * log(1.0 + v); |
|---|
| 194 | /* Step 11: hat acceptance (h) */ |
|---|
| 195 | /* (if q not positive go to step 8) */ |
|---|
| 196 | if (q > 0.0) { |
|---|
| 197 | // TODO: w = expm1(q); |
|---|
| 198 | w = exp(q)-1; |
|---|
| 199 | /* ^^^^^ original code had approximation with rel.err < 2e-7 */ |
|---|
| 200 | /* if t is rejected sample again at step 8 */ |
|---|
| 201 | if ((c * fabs(u)) <= (w * exp(e - 0.5 * t * t))) |
|---|
| 202 | break; |
|---|
| 203 | } |
|---|
| 204 | } |
|---|
| 205 | } /* repeat .. until `t' is accepted */ |
|---|
| 206 | x = s + 0.5 * t; |
|---|
| 207 | return scale * x * x; |
|---|
| 208 | } |
|---|
| 209 | |
|---|
| 210 | |
|---|
| 211 | bool qr(const mat &A, mat &R) |
|---|
| 212 | { |
|---|
| 213 | int info; |
|---|
| 214 | int m = A.rows(); |
|---|
| 215 | int n = A.cols(); |
|---|
| 216 | int lwork = n; |
|---|
| 217 | int k = std::min(m, n); |
|---|
| 218 | vec tau(k); |
|---|
| 219 | vec work(lwork); |
|---|
| 220 | |
|---|
| 221 | R = A; |
|---|
| 222 | |
|---|
| 223 | // perform workspace query for optimum lwork value |
|---|
| 224 | int lwork_tmp = -1; |
|---|
| 225 | dgeqrf_(&m, &n, R._data(), &m, tau._data(), work._data(), &lwork_tmp, |
|---|
| 226 | &info); |
|---|
| 227 | if (info == 0) { |
|---|
| 228 | lwork = static_cast<int>(work(0)); |
|---|
| 229 | work.set_size(lwork, false); |
|---|
| 230 | } |
|---|
| 231 | dgeqrf_(&m, &n, R._data(), &m, tau._data(), work._data(), &lwork, &info); |
|---|
| 232 | |
|---|
| 233 | // construct R |
|---|
| 234 | for (int i=0; i<m; i++) |
|---|
| 235 | for (int j=0; j<std::min(i,n); j++) |
|---|
| 236 | R(i,j) = 0; |
|---|
| 237 | |
|---|
| 238 | return (info==0); |
|---|
| 239 | } |
|---|
| 240 | |
|---|
| 241 | } |
|---|