/*! \file \brief Probability distributions for Mixtures of pdfs \author Vaclav Smidl. ----------------------------------- BDM++ - C++ library for Bayesian Decision Making under Uncertainty Using IT++ for numerical operations ----------------------------------- */ #ifndef MX_H #define MX_H #include "libBM.h" #include "libEF.h" //#include namespace bdm{ //this comes first because it is used inside emix! /*! \brief Class representing ratio of two densities which arise e.g. by applying the Bayes rule. It represents density in the form: \f[ f(rv|rvc) = \frac{f(rv,rvc)}{f(rvc)} \f] where \f$ f(rvc) = \int f(rv,rvc) d\ rv \f$. In particular this type of arise by conditioning of a mixture model. At present the only supported operation is evallogcond(). */ class mratio: public mpdf { protected: //! Nominator in the form of mpdf const epdf* nom; //!Denominator in the form of epdf epdf* den; //!flag for destructor bool destroynom; //!datalink between conditional and nom datalink_m2e dl; public: //!Default constructor. By default, the given epdf is not copied! //! It is assumed that this function will be used only temporarily. mratio ( const epdf* nom0, const RV &rv, bool copy=false ) :mpdf ( ), dl ( rv,rvc,nom0->_rv() ) { ep->set_rv(_rv()); set_rvc(nom0->_rv().subt ( rv ) ); if ( copy ) { // nom = nom0->_copy_(); it_error ( "todo" ); destroynom=true; } else { nom = nom0; destroynom = false; } it_assert_debug ( rvc.length() >0,"Makes no sense to use this object!" ); den = nom->marginal ( rvc ); }; double evallogcond ( const vec &val, const vec &cond ) { double tmp; vec nom_val ( ep->dimension() + dimc ); dl.pushup_cond ( nom_val,val,cond ); tmp = exp ( nom->evallog ( nom_val ) - den->evallog ( cond ) ); it_assert_debug(std::isfinite(tmp),"Infinite value"); return tmp; } //! Object takes ownership of nom and will destroy it void ownnom() {destroynom=true;} //! Default destructor ~mratio() {delete den; if ( destroynom ) {delete nom;}} }; /*! * \brief Mixture of epdfs Density function: \f[ f(x) = \sum_{i=1}^{n} w_{i} f_i(x), \quad \sum_{i=1}^n w_i = 1. \f] where \f$f_i(x)\f$ is any density on random variable \f$x\f$, called \a component, */ class emix : public epdf { protected: //! weights of the components vec w; //! Component (epdfs) Array Coms; //!Flag if owning Coms bool destroyComs; public: //!Default constructor emix ( ) : epdf ( ) {}; //! Set weights \c w and components \c Coms //!By default Coms are copied inside. Parameter \c copy can be set to false if Coms live externally. Use method ownComs() if Coms should be destroyed by the destructor. void set_parameters ( const vec &w, const Array &Coms, bool copy=false ); vec sample() const; vec mean() const { int i; vec mu = zeros ( dim); for ( i = 0;i < w.length();i++ ) {mu += w ( i ) * Coms ( i )->mean(); } return mu; } vec variance() const { //non-central moment vec mom2 = zeros(dim); for ( int i = 0;i < w.length();i++ ) {mom2 += w ( i ) * pow(Coms ( i )->mean(),2); } //central moment return mom2-pow(mean(),2); } double evallog ( const vec &val ) const { int i; double sum = 0.0; for ( i = 0;i < w.length();i++ ) {sum += w ( i ) * exp ( Coms ( i )->evallog ( val ) );} if (sum==0.0){sum=std::numeric_limits::epsilon();} double tmp=log ( sum ); it_assert_debug(std::isfinite(tmp),"Infinite"); return tmp; }; vec evallog_m ( const mat &Val ) const { vec x=zeros ( Val.cols() ); for ( int i = 0; i < w.length(); i++ ) { x+= w ( i ) *exp ( Coms ( i )->evallog_m ( Val ) ); } return log ( x ); }; //! Auxiliary function that returns pdflog for each component mat evallog_M ( const mat &Val ) const { mat X ( w.length(), Val.cols() ); for ( int i = 0; i < w.length(); i++ ) { X.set_row ( i, w ( i ) *exp ( Coms ( i )->evallog_m ( Val ) ) ); } return X; }; emix* marginal ( const RV &rv ) const; mratio* condition ( const RV &rv ) const; //why not mratio!! //Access methods //! returns a pointer to the internal mean value. Use with Care! vec& _w() {return w;} virtual ~emix() {if ( destroyComs ) {for ( int i=0;i epdfs; //! Data link for each mpdfs Array dls; //! dummy ep epdf dummy; public: /*!\brief Constructor from list of mFacs, */ mprod ( Array mFacs ) : compositepdf ( mFacs ), mpdf (), epdfs ( n ), dls ( n ) { ep=&dummy; RV rv=getrv(true); set_rv(rv);dummy.set_parameters(rv._dsize()); setrvc ( ep->_rv(),rvc ); // rv and rvc established = > we can link them with mpdfs for ( int i = 0;i < n;i++ ) { dls ( i ) = new datalink_m2m ( mpdfs ( i )->_rv(), mpdfs ( i )->_rvc(), _rv(), _rvc() ); } for ( int i=0;i_epdf() ); } }; double evallogcond ( const vec &val, const vec &cond ) { int i; double res = 0.0; for ( i = n - 1;i >= 0;i-- ) { /* if ( mpdfs(i)->_rvc().count() >0) { mpdfs ( i )->condition ( dls ( i )->get_cond ( val,cond ) ); } // add logarithms res += epdfs ( i )->evallog ( dls ( i )->pushdown ( val ) );*/ res += mpdfs ( i )->evallogcond ( dls ( i )->pushdown ( val ), dls ( i )->get_cond ( val, cond ) ); } return res; } //TODO smarter... vec samplecond ( const vec &cond ) { //! Ugly hack to help to discover if mpfs are not in proper order. Correct solution = check that explicitely. vec smp= std::numeric_limits::infinity() * ones ( ep->dimension() ); vec smpi; // Hard assumption here!!! We are going backwards, to assure that samples that are needed from smp are already generated! for ( int i = ( n - 1 );i >= 0;i-- ) { if ( mpdfs ( i )->dimensionc() ) { mpdfs ( i )->condition ( dls ( i )->get_cond ( smp ,cond ) ); // smp is val here!! } smpi = epdfs ( i )->sample(); // copy contribution of this pdf into smp dls ( i )->pushup ( smp, smpi ); // add ith likelihood contribution } return smp; } mat samplecond ( const vec &cond, int N ) { mat Smp ( dimension(),N ); for ( int i=0;i epdfs; //! Array of indeces Array dls; public: eprod ( const Array epdfs0 ) : epdf ( ),epdfs ( epdfs0 ),dls ( epdfs.length() ) { bool independent=true; for ( int i=0;i_rv() ); it_assert_debug ( independent==true, "eprod:: given components are not independent ." ); } for ( int i=0;i_rv() , rv ); } } vec mean() const { vec tmp ( dim ); for ( int i=0;imean(); dls ( i )->pushup ( tmp, pom ); } return tmp; } vec variance() const { vec tmp ( dim ); //second moment for ( int i=0;imean(); dls ( i )->pushup ( tmp, pow(pom,2) ); } return tmp-pow(mean(),2); } vec sample() const { vec tmp ( dim ); for ( int i=0;isample(); dls ( i )->pushup ( tmp, pom ); } return tmp; } double evallog ( const vec &val ) const { double tmp=0; for ( int i=0;ievallog ( dls ( i )->pushdown ( val ) ); } it_assert_debug(std::isfinite(tmp),"Infinite"); return tmp; } //!access function const epdf* operator () ( int i ) const {it_assert_debug ( i Coms; //!Internal epdf emix Epdf; public: //!Default constructor mmix ( ) : mpdf ( ), Epdf () {ep = &Epdf;}; //! Set weights \c w and components \c R void set_parameters ( const vec &w, const Array &Coms ) { Array Eps ( Coms.length() ); for ( int i = 0;i < Coms.length();i++ ) { Eps ( i ) = & ( Coms ( i )->_epdf() ); } Epdf.set_parameters ( w, Eps ); }; void condition ( const vec &cond ) { for ( int i = 0;i < Coms.length();i++ ) {Coms ( i )->condition ( cond );} }; }; } #endif //MX_H