bdm::KFcondQR Class Reference

#include <libKF.h>

Inheritance diagram for bdm::KFcondQR:

bdm::Kalman< ldmat > bdm::BMcond bdm::BM bdm::bdmroot bdm::bdmroot

List of all members.


Detailed Description

Kalman Filter with conditional diagonal matrices R and Q.

Public Member Functions

 KFcondQR ()
 Default constructor.
void condition (const vec &RQ)
 Substitute val for rvc.
void set_parameters (const mat &A0, const mat &B0, const mat &C0, const mat &D0, const ldmat &Q0, const ldmat &R0)
 Set parameters with check of relevance.
void set_est (const vec &mu0, const ldmat &P0)
 Set estimate values, used e.g. in initialization.
void bayes (const vec &dt)
 Here dt = [yt;ut] of appropriate dimensions.
const epdfposterior () const
 access function
const enorm< ldmat > * _e () const
mat & __K ()
 access function
vec _dP ()
 access function
const RV_rvc () const
 access function
Constructors
virtual BM_copy_ ()
Mathematical operations
virtual void bayesB (const mat &Dt)
 Batch Bayes rule (columns of Dt are observations).
virtual double logpred (const vec &dt) const
vec logpred_m (const mat &dt) const
 Matrix version of logpred.
virtual epdfepredictor () const
 Constructs a predictive density $ f(d_{t+1} |d_{t}, \ldots d_{0}) $.
virtual mpdfpredictor () const
 Constructs a conditional density 1-step ahead predictor.
Access to attributes
const RV_drv () const
void set_drv (const RV &rv)
void set_rv (const RV &rv)
double _ll () const
void set_evalll (bool evl0)

Protected Attributes

RV rvy
 Indetifier of output rv.
RV rvu
 Indetifier of exogeneous rv.
int dimx
 cache of rv.count()
int dimy
 cache of rvy.count()
int dimu
 cache of rvu.count()
mat A
 Matrix A.
mat B
 Matrix B.
mat C
 Matrix C.
mat D
 Matrix D.
ldmat Q
 Matrix Q in square-root form.
ldmat R
 Matrix R in square-root form.
enorm< ldmatest
 posterior density on $x_t$
enorm< ldmatfy
 preditive density on $y_t$
mat _K
 placeholder for Kalman gain
vec & _yp
 cache of fy.mu
ldmat_Ry
 cache of fy.R
vec & _mu
 cache of est.mu
ldmat_P
 cache of est.R
RV drv
 Random variable of the data (optional).
double ll
 Logarithm of marginalized data likelihood.
bool evalll
 If true, the filter will compute likelihood of the data record and store it in ll . Set to false if you want to save computational time.
int dimc
 dimension of the conditioning variable
RV rvc
 Identificator of the conditioning variable.

Member Function Documentation

virtual BM* bdm::BM::_copy_ (  )  [inline, virtual, inherited]

Copy function required in vectors, Arrays of BM etc. Have to be DELETED manually! Prototype:

 BM* _copy_(){return new BM(*this);} 

Reimplemented in bdm::ARX.

virtual double bdm::BM::logpred ( const vec &  dt  )  const [inline, virtual, inherited]

Evaluates predictive log-likelihood of the given data record I.e. marginal likelihood of the data with the posterior integrated out.

Reimplemented in bdm::ARX, bdm::MixEF, and bdm::multiBM.

Referenced by bdm::BM::logpred_m().


The documentation for this class was generated from the following files:

Generated on Wed Feb 18 17:39:04 2009 for mixpp by  doxygen 1.5.6