bdm::MPF< BM_T > Class Template Reference

#include <libPF.h>

Inheritance diagram for bdm::MPF< BM_T >:

Inheritance graph
[legend]

List of all members.


Detailed Description

template<class BM_T>
class bdm::MPF< BM_T >

Marginalized Particle filter.

Trivial version: proposal = parameter evolution, observation model is not used. (it is assumed to be part of BM).

Public Member Functions

 MPF (const RV &rvlin, const RV &rvpf, mpdf &par0, mpdf &obs0, int n, const BM_T &BMcond0)
 Default constructor.
void bayes (const vec &dt)
 Incremental Bayes rule.
const epdf_epdf () const
const epdf_e () const
void set_est (const epdf &epdf0)
 Set postrior of rvc to samples from epdf0. Statistics of Bms are not re-computed! Use only for initialization!
BM_BM (int i)
 Access function.
vec * __w ()
 access function
Constructors
virtual BM_copy_ ()
Mathematical operations
virtual void bayesB (const mat &Dt)
 Batch Bayes rule (columns of Dt are observations).
virtual double logpred (const vec &dt) const
vec logpred_m (const mat &dt) const
 Matrix version of logpred.
virtual epdfepredictor () const
 Constructs a predictive density $ f(d_{t+1} |d_{t}, \ldots d_{0}) $.
virtual mpdfpredictor () const
 Constructs a conditional density 1-step ahead predictor.
Access to attributes
const RV_drv () const
void set_drv (const RV &rv)
double _ll () const
void set_evalll (bool evl0)

Protected Attributes

int n
 number of particles;
eEmp est
 posterior density
vec & _w
 pointer into eEmp
Array< vec > & _samples
 pointer into eEmp
mpdfpar
 Parameter evolution model.
mpdfobs
 Observation model.
RV drv
 Random variable of the data (optional).
double ll
 Logarithm of marginalized data likelihood.
bool evalll
 If true, the filter will compute likelihood of the data record and store it in ll . Set to false if you want to save computational time.

Classes

class  mpfepdf
 internal class for MPDF providing composition of eEmp with external components


Member Function Documentation

template<class BM_T>
void bdm::MPF< BM_T >::bayes ( const vec &  dt  )  [inline, virtual]

Incremental Bayes rule.

Parameters:
dt vector of input data

Reimplemented from bdm::PF.

References bdm::mpdf::_e(), bdm::PF::_samples, bdm::PF::_w, bdm::PF::est, bdm::epdf::evallog(), bdm::PF::n, bdm::PF::par, bdm::eEmp::resample(), and bdm::mpdf::samplecond().

virtual BM* bdm::BM::_copy_ (  )  [inline, virtual, inherited]

Copy function required in vectors, Arrays of BM etc. Have to be DELETED manually! Prototype:

 BM* _copy_(){return new BM(*this);} 

Reimplemented in bdm::ARX.

virtual double bdm::BM::logpred ( const vec &  dt  )  const [inline, virtual, inherited]

Evaluates predictive log-likelihood of the given data record I.e. marginal likelihood of the data with the posterior integrated out.

Reimplemented in bdm::ARX, bdm::MixEF, and bdm::multiBM.

Referenced by bdm::BM::logpred_m().


The documentation for this class was generated from the following file:

Generated on Wed Feb 11 23:34:02 2009 for mixpp by  doxygen 1.5.6