bdm::PF Class Reference

#include <libPF.h>

Inheritance diagram for bdm::PF:

bdm::BM bdm::bdmroot bdm::MPF< BM_T >

List of all members.


Detailed Description

Trivial particle filter with proposal density equal to parameter evolution model.

Posterior density is represented by a weighted empirical density (eEmp ).

Public Member Functions

void set_est (const epdf &epdf0)
void bayes (const vec &dt)
 Incremental Bayes rule.
vec * __w ()
 access function
Constructors
 PF ()
 PF (mpdf *par0, mpdf *obs0, epdf *epdf0, int n0)
void set_parameters (mpdf *par0, mpdf *obs0, int n0)
void set_statistics (const vec w0, epdf *epdf0)
Constructors
virtual BM_copy_ ()
Mathematical operations
virtual void bayesB (const mat &Dt)
 Batch Bayes rule (columns of Dt are observations).
virtual double logpred (const vec &dt) const
vec logpred_m (const mat &dt) const
 Matrix version of logpred.
virtual epdfepredictor () const
 Constructs a predictive density $ f(d_{t+1} |d_{t}, \ldots d_{0}) $.
virtual mpdfpredictor () const
 Constructs a conditional density 1-step ahead predictor.
Access to attributes
const RV_drv () const
void set_drv (const RV &rv)
void set_rv (const RV &rv)
double _ll () const
void set_evalll (bool evl0)
virtual const epdfposterior () const =0
virtual const epdf_e () const =0

Protected Attributes

int n
 number of particles;
eEmp est
 posterior density
vec & _w
 pointer into eEmp
Array< vec > & _samples
 pointer into eEmp
mpdfpar
 Parameter evolution model.
mpdfobs
 Observation model.
RV drv
 Random variable of the data (optional).
double ll
 Logarithm of marginalized data likelihood.
bool evalll
 If true, the filter will compute likelihood of the data record and store it in ll . Set to false if you want to save computational time.


Member Function Documentation

void bdm::PF::set_est ( const epdf epdf0  ) 

Set posterior density by sampling from epdf0

Reimplemented in bdm::MPF< BM_T >.

References _samples, n, and bdm::epdf::sample().

Referenced by bdm::MPF< BM_T >::set_est().

void bdm::PF::bayes ( const vec &  dt  )  [virtual]

Incremental Bayes rule.

Parameters:
dt vector of input data

Implements bdm::BM.

Reimplemented in bdm::MPF< BM_T >.

References bdm::mpdf::_e(), _samples, _w, est, bdm::epdf::evallog(), bdm::mpdf::evallogcond(), n, obs, par, bdm::eEmp::resample(), and bdm::mpdf::samplecond().

virtual BM* bdm::BM::_copy_ (  )  [inline, virtual, inherited]

Copy function required in vectors, Arrays of BM etc. Have to be DELETED manually! Prototype:

 BM* _copy_(){return new BM(*this);} 

Reimplemented in bdm::ARX.

virtual double bdm::BM::logpred ( const vec &  dt  )  const [inline, virtual, inherited]

Evaluates predictive log-likelihood of the given data record I.e. marginal likelihood of the data with the posterior integrated out.

Reimplemented in bdm::ARX, bdm::MixEF, and bdm::multiBM.

Referenced by bdm::BM::logpred_m().


The documentation for this class was generated from the following files:

Generated on Mon Feb 16 10:06:34 2009 for mixpp by  doxygen 1.5.6