bdm::multiBM Class Reference

#include <libEF.h>

Inheritance diagram for bdm::multiBM:

Inheritance graph
[legend]

List of all members.


Detailed Description

Estimator for Multinomial density.

Public Member Functions

 multiBM ()
 Default constructor.
 multiBM (const multiBM &B)
 Copy constructor.
void set_statistics (const BM *mB0)
 Sets sufficient statistics to match that of givefrom mB0.
void bayes (const vec &dt)
 Incremental Bayes rule.
double logpred (const vec &dt) const
void flatten (const BMEF *B)
 Flatten the posterior according to the given BMEF (of the same type!).
const epdf_epdf () const
const eDirich_e () const
void set_parameters (const vec &beta0)
virtual void set_statistics (const BMEF *BM0)
 get statistics from another model
virtual void bayes (const vec &data, const double w)
 Weighted update of sufficient statistics (Bayes rule).
BMEF_copy_ (bool changerv=false)
 Flatten the posterior as if to keep nu0 data.
Constructors
virtual BM_copy_ ()
Mathematical operations
virtual void bayesB (const mat &Dt)
 Batch Bayes rule (columns of Dt are observations).
vec logpred_m (const mat &dt) const
 Matrix version of logpred.
virtual epdfepredictor () const
 Constructs a predictive density $ f(d_{t+1} |d_{t}, \ldots d_{0}) $.
virtual mpdfpredictor () const
 Constructs a conditional density 1-step ahead predictor.
Access to attributes
const RV_drv () const
void set_drv (const RV &rv)
double _ll () const
void set_evalll (bool evl0)

Protected Attributes

eDirich est
 Conjugate prior and posterior.
vec & beta
 Pointer inside est to sufficient statistics.
double frg
 forgetting factor
double last_lognc
 cached value of lognc() in the previous step (used in evaluation of ll )
RV drv
 Random variable of the data (optional).
double ll
 Logarithm of marginalized data likelihood.
bool evalll
 If true, the filter will compute likelihood of the data record and store it in ll . Set to false if you want to save computational time.

Member Function Documentation

void bdm::multiBM::bayes ( const vec &  dt  )  [inline, virtual]

Incremental Bayes rule.

Parameters:
dt vector of input data

Reimplemented from bdm::BMEF.

References beta, est, bdm::BM::evalll, bdm::BMEF::frg, bdm::BMEF::last_lognc, bdm::BM::ll, and bdm::eDirich::lognc().

double bdm::multiBM::logpred ( const vec &  dt  )  const [inline, virtual]

Evaluates predictive log-likelihood of the given data record I.e. marginal likelihood of the data with the posterior integrated out.

Reimplemented from bdm::BM.

References bdm::eDirich::_beta(), beta, est, bdm::BM::evalll, bdm::BMEF::frg, bdm::BMEF::last_lognc, and bdm::eDirich::lognc().

virtual BM* bdm::BM::_copy_ (  )  [inline, virtual, inherited]

Copy function required in vectors, Arrays of BM etc. Have to be DELETED manually! Prototype:

 BM* _copy_(){return new BM(*this);} 

Reimplemented in bdm::ARX.


The documentation for this class was generated from the following file:

Generated on Wed Feb 11 23:34:06 2009 for mixpp by  doxygen 1.5.6