enorm< sq_T > Class Template Reference

Gaussian density with positive definite (decomposed) covariance matrix. More...

#include <libEF.h>

Inheritance diagram for enorm< sq_T >:

Inheritance graph
[legend]
Collaboration diagram for enorm< sq_T >:

Collaboration graph
[legend]

List of all members.

Public Member Functions

 enorm (const RV &rv)
 Default constructor.
void set_parameters (const vec &mu, const sq_T &R)
 Set mean value mu and covariance R.
void dupdate (mat &v, double nu=1.0)
 dupdate in exponential form (not really handy)
vec sample () const
 Returns a sample, $x$ from density $epdf(rv)$.
mat sample (int N) const
 TODO is it used?
double evallog_nn (const vec &val) const
 Evaluate normalized log-probability.
double lognc () const
 logarithm of the normalizing constant, $\mathcal{I}$
vec mean () const
 return expected value
mpdfcondition (const RV &rvn) const
 Return conditional density on the given RV, the remaining rvs will be in conditioning.
epdfmarginal (const RV &rv) const
 Return marginal density on the given RV, the remainig rvs are intergrated out.
vec & _mu ()
 returns a pointer to the internal mean value. Use with Care!
void set_mu (const vec mu0)
 access function
sq_T & _R ()
 returns pointers to the internal variance and its inverse. Use with Care!
const sq_T & _R () const
virtual void dupdate (mat &v)
 TODO decide if it is really needed.
virtual double evallog (const vec &val) const
 Evaluate normalized log-probability.
virtual vec evallog (const mat &Val) const
 Evaluate normalized log-probability for many samples.
virtual void pow (double p)
 Power of the density, used e.g. to flatten the density.
virtual mat sample_m (int N) const
 Returns N samples from density $epdf(rv)$.
virtual vec evallog_m (const mat &Val) const
 Compute log-probability of multiple values argument val.
const RV_rv () const
 access function, possibly dangerous!
void _renewrv (const RV &in_rv)
 modifier function - useful when copying epdfs

Protected Attributes

vec mu
 mean value
sq_T R
 Covariance matrix in decomposed form.
int dim
 dimension (redundant from rv.count() for easier coding )
RV rv
 Identified of the random variable.


Detailed Description

template<class sq_T>
class enorm< sq_T >

Gaussian density with positive definite (decomposed) covariance matrix.

More?...


The documentation for this class was generated from the following file:

Generated on Mon Jan 5 19:29:16 2009 for mixpp by  doxygen 1.5.6