[323] | 1 | \form#0:$x$ |
---|
| 2 | \form#1:$\omega$ |
---|
| 3 | \form#2:\[ y_t = \theta_1 \psi_1 + \theta_2 + \psi_2 +\ldots + \theta_n \psi_n + r e_t \] |
---|
| 4 | \form#3:$[\theta r]$ |
---|
| 5 | \form#4:$\psi=\psi(y_{1:t},u_{1:t})$ |
---|
| 6 | \form#5:$u_t$ |
---|
| 7 | \form#6:$e_t$ |
---|
| 8 | \form#7:\[ e_t \sim \mathcal{N}(0,1). \] |
---|
| 9 | \form#8:$ y_t $ |
---|
| 10 | \form#9:$\theta,r$ |
---|
| 11 | \form#10:$ dt = [y_t psi_t] $ |
---|
| 12 | \form#11:\[ x_t = A x_{t-1} + B u_t + Q^{1/2} e_t \] |
---|
| 13 | \form#12:\[ y_t = C x_{t-1} + C u_t + Q^{1/2} w_t. \] |
---|
| 14 | \form#13:\[ \left[\begin{array}{cc} R^{0.5}\\ P_{t|t-1}^{0.5}C' & P_{t|t-1}^{0.5}CA'\\ & Q^{0.5}\end{array}\right]<\mathrm{orth.oper.}>=\left[\begin{array}{cc} R_{y}^{0.5} & KA'\\ & P_{t+1|t}^{0.5}\\ \\\end{array}\right]\] |
---|
| 15 | \form#14:\[ f(y_t|\psi_t, \Theta) = \sum_{i=1}^{n} w_i f(y_t|\psi_t, \theta_i) \] |
---|
| 16 | \form#15:$\psi$ |
---|
| 17 | \form#16:$w=[w_1,\ldots,w_n]$ |
---|
| 18 | \form#17:$\theta_i$ |
---|
| 19 | \form#18:$\Theta$ |
---|
| 20 | \form#19:$\Theta = [\theta_1,\ldots,\theta_n,w]$ |
---|
| 21 | \form#20:$A=Ch' Ch$ |
---|
| 22 | \form#21:$Ch$ |
---|
| 23 | \form#22:\[M = L'DL\] |
---|
| 24 | \form#23:$L$ |
---|
| 25 | \form#24:$D$ |
---|
| 26 | \form#25:$V = V + w v v'$ |
---|
| 27 | \form#26:$C$ |
---|
| 28 | \form#27:$V = C*V*C'$ |
---|
| 29 | \form#28:$V = C'*V*C$ |
---|
| 30 | \form#29:$V$ |
---|
| 31 | \form#30:$x= v'*V*v$ |
---|
| 32 | \form#31:$x= v'*inv(V)*v$ |
---|
| 33 | \form#32:$U$ |
---|
| 34 | \form#33:$A'D0 A$ |
---|
| 35 | \form#34:$L'DL$ |
---|
| 36 | \form#35:$A'*diag(D)*A = self.L'*diag(self.D)*self.L$ |
---|
| 37 | \form#36:\[ f(rv|rvc) = \frac{f(rv,rvc)}{f(rvc)} \] |
---|
| 38 | \form#37:$ f(rvc) = \int f(rv,rvc) d\ rv $ |
---|
| 39 | \form#38:\[ f(x) = \sum_{i=1}^{n} w_{i} f_i(x), \quad \sum_{i=1}^n w_i = 1. \] |
---|
| 40 | \form#39:$f_i(x)$ |
---|
| 41 | \form#40:$f(x)$ |
---|
| 42 | \form#41:\[ f(\theta_t | d_1,\ldots,d_t) = \frac{f(y_t|\theta_t,\cdot) f(\theta_t|d_1,\ldots,d_{t-1})}{f(y_t|d_1,\ldots,d_{t-1})} \] |
---|
| 43 | \form#42:$y_t$ |
---|
| 44 | \form#43:$ c_t $ |
---|
| 45 | \form#44:\[ f(\theta_t | c_t, d_1,\ldots,d_t) \propto f(y_t,\theta_t|c_t,\cdot, d_1,\ldots,d_{t-1}) \] |
---|
| 46 | \form#45:$x=$ |
---|
| 47 | \form#46:$ x $ |
---|
| 48 | \form#47:$ f_x()$ |
---|
| 49 | \form#48:$ [x_1 , x_2 , \ldots \ $ |
---|
| 50 | \form#49:$ f_x(rv)$ |
---|
| 51 | \form#50:$x \sim epdf(rv|cond)$ |
---|
| 52 | \form#51:$ t $ |
---|
| 53 | \form#52:$ t+1 $ |
---|
| 54 | \form#53:$ f(d_{t+1} |d_{t}, \ldots d_{0}) $ |
---|
| 55 | \form#54:$t$ |
---|
| 56 | \form#55:$[y_{t} y_{t-1} ...]$ |
---|
| 57 | \form#56:$[y_t, u_t, y_{t-1 }, u_{t-1}, \ldots]$ |
---|
| 58 | \form#57:$ f(x_t|x_{t-1}) $ |
---|
| 59 | \form#58:$ f(d_t|x_t) $ |
---|
| 60 | \form#59:$p$ |
---|
| 61 | \form#60:$p\times$ |
---|
| 62 | \form#61:$n$ |
---|
| 63 | \form#62:\[ f(x|\beta) = \frac{\Gamma[\gamma]}{\prod_{i=1}^{n}\Gamma(\beta_i)} \prod_{i=1}^{n}x_i^{\beta_i-1} \] |
---|
| 64 | \form#63:$\gamma=\sum_i \beta_i$ |
---|
| 65 | \form#64:\[ f(x|\alpha,\beta) = \prod f(x_i|\alpha_i,\beta_i) \] |
---|
| 66 | \form#65:$\beta$ |
---|
| 67 | \form#66:\[ x\sim iG(a,b) => 1/x\sim G(a,1/b) \] |
---|
| 68 | \form#67:$mu=A*rvc+mu_0$ |
---|
| 69 | \form#68:$\mu$ |
---|
| 70 | \form#69:$k$ |
---|
| 71 | \form#70:$\alpha=k$ |
---|
| 72 | \form#71:$\beta=k/\mu$ |
---|
| 73 | \form#72:$\mu/\sqrt(k)$ |
---|
| 74 | \form#73:$ \mu $ |
---|
| 75 | \form#74:$ k $ |
---|
| 76 | \form#75:$ \alpha=\mu/k^2+2 $ |
---|
| 77 | \form#76:$ \beta=\mu(\alpha-1)$ |
---|
| 78 | \form#77:$ \mu/\sqrt(k)$ |
---|
| 79 | \form#78:$l$ |
---|
| 80 | \form#79:\[ \mu = \mu_{t-1} ^{l} p^{1-l}\] |
---|
| 81 | \form#80:$\mathcal{I}$ |
---|
| 82 | \form#81:$\alpha$ |
---|
| 83 | \form#82:$ \Psi $ |
---|
| 84 | \form#83:$ \nu $ |
---|
| 85 | \form#84:$ \nu-p-1 $ |
---|
| 86 | \form#85:$w$ |
---|
| 87 | \form#86:$x^{(i)}, i=1..n$ |
---|
| 88 | \form#87:$f(x) = a$ |
---|
| 89 | \form#88:$f(x) = Ax+B$ |
---|
| 90 | \form#89:$f(x,u)$ |
---|
| 91 | \form#90:$f(x,u) = Ax+Bu$ |
---|
| 92 | \form#91:$f(x0,u0)$ |
---|
| 93 | \form#92:$A=\frac{d}{dx}f(x,u)|_{x0,u0}$ |
---|
| 94 | \form#93:$u$ |
---|
| 95 | \form#94:$A=\frac{d}{du}f(x,u)|_{x0,u0}$ |
---|
| 96 | \form#95:$ f(D) $ |
---|
| 97 | \form#96:\[ f(a,b,c) = f(a|b,c) f(b) f(c) \] |
---|
| 98 | \form#97:$ f(a|b,c) $ |
---|
| 99 | \form#98:$ f(b) $ |
---|
| 100 | \form#99:$ f(c) $ |
---|
| 101 | \form#100:\begin{eqnarray} x_t &= &A x_{t-1} + B u_{t} + v_t,\\ y_t &= &C x_{t} + D u_{t} + w_t, \end{eqnarray} |
---|
| 102 | \form#101:$ x_t $ |
---|
| 103 | \form#102:$ A, B, C, D$ |
---|
| 104 | \form#103:$v_t, w_t$ |
---|
| 105 | \form#104:$Q, R$ |
---|
| 106 | \form#105:\begin{eqnarray} x_t &= &g( x_{t-1}, u_{t}) + v_t,\\ y_t &= &h( x_{t} , u_{t}) + w_t, \end{eqnarray} |
---|
| 107 | \form#106:$ g(), h() $ |
---|
| 108 | \form#107:\[ y_t = \theta' \psi_t + \rho e_t \] |
---|
| 109 | \form#108:$[\theta,\rho]$ |
---|
| 110 | \form#109:$\psi_t$ |
---|
| 111 | \form#110:$\mathcal{N}(0,1)$ |
---|
| 112 | \form#111:\[ V_t = \sum_{i=0}^{n} \left[\begin{array}{c}y_{t}\\ \psi_{t}\end{array}\right] \begin{array}{c} [y_{t}',\,\psi_{t}']\\ \\\end{array} \] |
---|
| 113 | \form#112:\[ \nu_t = \sum_{i=0}^{n} 1 \] |
---|
| 114 | \form#113:$ \theta_t , r_t $ |
---|
| 115 | \form#114:\[ V_t = \phi V_{t-1} + \left[\begin{array}{c}y_{t}\\ \psi_{t}\end{array}\right] \begin{array}{c} [y_{t}',\,\psi_{t}']\\ \\\end{array} +(1-\phi) V_0 \] |
---|
| 116 | \form#115:\[ \nu_t = \phi \nu_{t-1} + 1 + (1-\phi) \nu_0 \] |
---|
| 117 | \form#116:$ \phi $ |
---|
| 118 | \form#117:$ \phi \in [0,1]$ |
---|
| 119 | \form#118:\[ \mathrm{win_length} = \frac{1}{1-\phi}\] |
---|
| 120 | \form#119:$ \phi=0.9 $ |
---|
| 121 | \form#120:$ V_0 , \nu_0 $ |
---|
| 122 | \form#121:$ V_t , \nu_t $ |
---|
| 123 | \form#122:$ \phi<1 $ |
---|
| 124 | \form#123:$ [d_1, d_2, \ldots d_t] $ |
---|