root/doc/html/formula.repository @ 296

Revision 296, 4.3 kB (checked in by smidl, 16 years ago)

doc

Line 
1\form#0:\[ y_t = \theta_1 \psi_1 + \theta_2 + \psi_2 +\ldots + \theta_n \psi_n + r e_t \]
2\form#1:$[\theta r]$
3\form#2:$\psi=\psi(y_{1:t},u_{1:t})$
4\form#3:$u_t$
5\form#4:$e_t$
6\form#5:\[ e_t \sim \mathcal{N}(0,1). \]
7\form#6:$ y_t $
8\form#7:$\theta,r$
9\form#8:$ dt = [y_t psi_t] $
10\form#9:\[ x_t = A x_{t-1} + B u_t + Q^{1/2} e_t \]
11\form#10:\[ y_t = C x_{t-1} + C u_t + Q^{1/2} w_t. \]
12\form#11:\[ \left[\begin{array}{cc} R^{0.5}\\ P_{t|t-1}^{0.5}C' & P_{t|t-1}^{0.5}CA'\\ & Q^{0.5}\end{array}\right]<\mathrm{orth.oper.}>=\left[\begin{array}{cc} R_{y}^{0.5} & KA'\\ & P_{t+1|t}^{0.5}\\ \\\end{array}\right]\]
13\form#12:\[ f(y_t|\psi_t, \Theta) = \sum_{i=1}^{n} w_i f(y_t|\psi_t, \theta_i) \]
14\form#13:$\psi$
15\form#14:$w=[w_1,\ldots,w_n]$
16\form#15:$\theta_i$
17\form#16:$\Theta$
18\form#17:$\Theta = [\theta_1,\ldots,\theta_n,w]$
19\form#18:$A=Ch' Ch$
20\form#19:$Ch$
21\form#20:\[M = L'DL\]
22\form#21:$L$
23\form#22:$D$
24\form#23:$V = V + w v v'$
25\form#24:$C$
26\form#25:$V = C*V*C'$
27\form#26:$V = C'*V*C$
28\form#27:$V$
29\form#28:$x$
30\form#29:$x= v'*V*v$
31\form#30:$x= v'*inv(V)*v$
32\form#31:$U$
33\form#32:$A'D0 A$
34\form#33:$L'DL$
35\form#34:$A'*diag(D)*A = self.L'*diag(self.D)*self.L$
36\form#35:\[ f(rv|rvc) = \frac{f(rv,rvc)}{f(rvc)} \]
37\form#36:$ f(rvc) = \int f(rv,rvc) d\ rv $
38\form#37:\[ f(x) = \sum_{i=1}^{n} w_{i} f_i(x), \quad \sum_{i=1}^n w_i = 1. \]
39\form#38:$f_i(x)$
40\form#39:$f(x)$
41\form#40:$f(rv|rvc,data)$
42\form#41:$x=$
43\form#42:$ x $
44\form#43:$ f_x()$
45\form#44:$ [x_1 , x_2 , \ldots \ $
46\form#45:$ f_x(rv)$
47\form#46:$x \sim epdf(rv|cond)$
48\form#47:$ t $
49\form#48:$ t+1 $
50\form#49:$ f(d_{t+1} |d_{t}, \ldots d_{0}) $
51\form#50:$t$
52\form#51:$[y_t, u_t, y_{t-1 }, u_{t-1}, \ldots]$
53\form#52:$ f(x_t|x_{t-1}) $
54\form#53:$ f(d_t|x_t) $
55\form#54:$p$
56\form#55:$p\times$
57\form#56:$n$
58\form#57:\[ f(x|\beta) = \frac{\Gamma[\gamma]}{\prod_{i=1}^{n}\Gamma(\beta_i)} \prod_{i=1}^{n}x_i^{\beta_i-1} \]
59\form#58:$\gamma=\sum_i \beta_i$
60\form#59:\[ f(x|\alpha,\beta) = \prod f(x_i|\alpha_i,\beta_i) \]
61\form#60:\[ x\sim iG(a,b) => 1/x\sim G(a,1/b) \]
62\form#61:$mu=A*rvc+mu_0$
63\form#62:$\mu$
64\form#63:$k$
65\form#64:$\alpha=k$
66\form#65:$\beta=k/\mu$
67\form#66:$\mu/\sqrt(k)$
68\form#67:$ \mu $
69\form#68:$ k $
70\form#69:$ \alpha=\mu/k^2+2 $
71\form#70:$ \beta=\mu(\alpha-1)$
72\form#71:$ \mu/\sqrt(k)$
73\form#72:$l$
74\form#73:\[ \mu = \mu_{t-1} ^{l} p^{1-l}\]
75\form#74:$\mathcal{I}$
76\form#75:$\alpha$
77\form#76:$\beta$
78\form#77:$w$
79\form#78:$x^{(i)}, i=1..n$
80\form#79:$f(x) = a$
81\form#80:$f(x) = Ax+B$
82\form#81:$f(x,u)$
83\form#82:$f(x,u) = Ax+Bu$
84\form#83:$f(x0,u0)$
85\form#84:$A=\frac{d}{dx}f(x,u)|_{x0,u0}$
86\form#85:$u$
87\form#86:$A=\frac{d}{du}f(x,u)|_{x0,u0}$
88\form#87:$ f(D) $
89\form#88:\[ f(a,b,c) = f(a|b,c) f(b) f(c) \]
90\form#89:$ f(a|b,c) $
91\form#90:$ f(b) $
92\form#91:$ f(c) $
93\form#92:\begin{eqnarray} x_t &= &A x_{t-1} + B u_{t} + v_t,\\ y_t &= &C x_{t} + D u_{t} + w_t, \end{eqnarray}
94\form#93:$ x_t $
95\form#94:$ A, B, C, D$
96\form#95:$v_t, w_t$
97\form#96:$Q, R$
98\form#97:\begin{eqnarray} x_t &= &g( x_{t-1}, u_{t}) + v_t,\\ y_t &= &h( x_{t} , u_{t}) + w_t, \end{eqnarray}
99\form#98:$ g(), h() $
100\form#99:\[ y_t = \theta' \psi_t + \rho e_t \]
101\form#100:$y_t$
102\form#101:$[\theta,\rho]$
103\form#102:$\psi_t$
104\form#103:$\mathcal{N}(0,1)$
105\form#104:\[ V_t = \sum_{i=0}^{n} \left[\begin{array}{c}y_{t}\\ \psi_{t}\end{array}\right] \begin{array}{c} [y_{t}',\,\psi_{t}']\\ \\\end{array} \]
106\form#105:\[ \nu_t = \sum_{i=0}^{n} 1 \]
107\form#106:$ \theta_t , r_t $
108\form#107:\[ V_t = V_{t-1} + \phi \left[\begin{array}{c}y_{t}\\ \psi_{t}\end{array}\right] \begin{array}{c} [y_{t}',\,\psi_{t}']\\ \\\end{array} +(1-\phi) V_0 \]
109\form#108:\[ \nu_t = \nu_{t-1} + \phi + (1-\phi) \nu_0 \]
110\form#109:$ \phi $
111\form#110:$ \phi \in [0,1]$
112\form#111:\[ \mathrm{win_length} = \frac{1}{1-\phi}\]
113\form#112:$ \phi=0.9 $
114\form#113:$ V_0 , \nu_0 $
115\form#114:$ V_t , \nu_t $
116\form#115:$ \phi<1 $
117\form#116:$ [d_1, d_2, \ldots d_t] $
118\form#117:$\omega$
119\form#118:\[ f(\theta_t | d_1,\ldots,d_t) = \frac{f(y_t|\theta_t,\cdot) f(\theta_t|d_1,\ldots,d_{t-1})}{f(y_t|d_1,\ldots,d_{t-1})} \]
120\form#119:$ c_t $
121\form#120:\[ f(\theta_t | c_t, d_1,\ldots,d_t) \propto f(y_t,\theta_t|c_t,\cdot, d_1,\ldots,d_{t-1}) \]
122\form#121:\[ V_t = \phi V_{t-1} + \left[\begin{array}{c}y_{t}\\ \psi_{t}\end{array}\right] \begin{array}{c} [y_{t}',\,\psi_{t}']\\ \\\end{array} +(1-\phi) V_0 \]
123\form#122:\[ \nu_t = \phi \nu_{t-1} + 1 + (1-\phi) \nu_0 \]
124\form#123:$ \Psi $
125\form#124:$ \nu $
126\form#125:$ \nu-p-1 $
Note: See TracBrowser for help on using the browser.