| Functions | |
| double | itpp::quad (double(*f)(double), double a, double b, double tol) | 
| double | itpp::quadl (double(*f)(double), double a, double b, double tol) | 
| double itpp::quad | ( | double(*)(double) | f, | |
| double | a, | |||
| double | b, | |||
| double | tol = std::numeric_limits< double >::epsilon() | |||
| ) | 
1-dimensional numerical Simpson quadrature integration
Calculate the 1-dimensional integral
![\[ \int_a^b f(x) dx \]](form_183.png) 
Uses an adaptive Simpson quadrature method. See [Gander] for more details. The integrand is specified as a function
double f(double)
Example:
#include "itpp/itbase.h" double f(const double x) { return x*log(x); } int main() { double res = quad( f, 1.5, 3.5); cout << "res = " << res << endl; return 0; }
References:
[Gander] Gander, W. and W. Gautschi, "Adaptive Quadrature - Revisited", BIT, Vol. 40, 2000, pp. 84-101. This document is also available at http://www.inf.ethz.ch/personal/gander.
References itpp::sum().
| double itpp::quadl | ( | double(*)(double) | f, | |
| double | a, | |||
| double | b, | |||
| double | tol = std::numeric_limits< double >::epsilon() | |||
| ) | 
1-dimensional numerical adaptive Lobatto quadrature integration
Calculate the 1-dimensional integral
![\[ \int_a^b f(x) dx \]](form_183.png) 
Uses an adaptive Lobatto quadrature method. See [Gander] for more details. The integrand is specified as a function
double f(double)
Example:
#include "itpp/itbase.h" double f(const double x) { return x*log(x); } int main() { double res = quadl( f, 1.5, 3.5); cout << "res = " << res << endl; return 0; }
References:
[Gander] Gander, W. and W. Gautschi, "Adaptive Quadrature - Revisited", BIT, Vol. 40, 2000, pp. 84-101. This document is also available at http:// www.inf.ethz.ch/personal/gander.
References itpp::abs(), itpp::sign(), and itpp::sqrt().
 1.5.8
 1.5.8