root/doc/html/group__linearequations.html @ 353

Revision 353, 116.3 kB (checked in by smidl, 16 years ago)

doc

Line 
1<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
2<html><head><meta http-equiv="Content-Type" content="text/html;charset=UTF-8">
3<title>mixpp: Solving Linear Equation Systems</title>
4<link href="tabs.css" rel="stylesheet" type="text/css">
5<link href="doxygen.css" rel="stylesheet" type="text/css">
6</head><body>
7<!-- Generated by Doxygen 1.5.8 -->
8<script type="text/javascript">
9<!--
10function changeDisplayState (e){
11  var num=this.id.replace(/[^[0-9]/g,'');
12  var button=this.firstChild;
13  var sectionDiv=document.getElementById('dynsection'+num);
14  if (sectionDiv.style.display=='none'||sectionDiv.style.display==''){
15    sectionDiv.style.display='block';
16    button.src='open.gif';
17  }else{
18    sectionDiv.style.display='none';
19    button.src='closed.gif';
20  }
21}
22function initDynSections(){
23  var divs=document.getElementsByTagName('div');
24  var sectionCounter=1;
25  for(var i=0;i<divs.length-1;i++){
26    if(divs[i].className=='dynheader'&&divs[i+1].className=='dynsection'){
27      var header=divs[i];
28      var section=divs[i+1];
29      var button=header.firstChild;
30      if (button!='IMG'){
31        divs[i].insertBefore(document.createTextNode(' '),divs[i].firstChild);
32        button=document.createElement('img');
33        divs[i].insertBefore(button,divs[i].firstChild);
34      }
35      header.style.cursor='pointer';
36      header.onclick=changeDisplayState;
37      header.id='dynheader'+sectionCounter;
38      button.src='closed.gif';
39      section.id='dynsection'+sectionCounter;
40      section.style.display='none';
41      section.style.marginLeft='14px';
42      sectionCounter++;
43    }
44  }
45}
46window.onload = initDynSections;
47-->
48</script>
49<div class="navigation" id="top">
50  <div class="tabs">
51    <ul>
52      <li><a href="main.html"><span>Main&nbsp;Page</span></a></li>
53      <li><a href="pages.html"><span>Related&nbsp;Pages</span></a></li>
54      <li><a href="modules.html"><span>Modules</span></a></li>
55      <li><a href="annotated.html"><span>Classes</span></a></li>
56      <li><a href="files.html"><span>Files</span></a></li>
57    </ul>
58  </div>
59</div>
60<div class="contents">
61<h1>Solving Linear Equation Systems<br>
62<small>
63[<a class="el" href="group__algebra.html">Linear Algebra</a>]</small>
64</h1><table border="0" cellpadding="0" cellspacing="0">
65<tr><td></td></tr>
66<tr><td colspan="2"><br><h2>Functions</h2></td></tr>
67<tr><td class="memItemLeft" nowrap align="right" valign="top">bool&nbsp;</td><td class="memItemRight" valign="bottom"><a class="el" href="group__linearequations.html#gd681464dcc43a1dd566a047a8703d1b0">itpp::ls_solve</a> (const <a class="el" href="classitpp_1_1Mat.html#6bba394f181c76fda12759568986c613">mat</a> &amp;A, const <a class="el" href="classitpp_1_1Vec.html#02e1bb55f60f3c2eb7a020eb1c2cfcf4">vec</a> &amp;b, <a class="el" href="classitpp_1_1Vec.html#02e1bb55f60f3c2eb7a020eb1c2cfcf4">vec</a> &amp;x)</td></tr>
68
69<tr><td class="mdescLeft">&nbsp;</td><td class="mdescRight">Solve linear equation system by LU factorisation.  <a href="#gd681464dcc43a1dd566a047a8703d1b0"></a><br></td></tr>
70<tr><td class="memItemLeft" nowrap align="right" valign="top"><a class="el" href="classitpp_1_1Vec.html#02e1bb55f60f3c2eb7a020eb1c2cfcf4">vec</a>&nbsp;</td><td class="memItemRight" valign="bottom"><a class="el" href="group__linearequations.html#g2b851be69935d19a71af456172dcd66a">itpp::ls_solve</a> (const <a class="el" href="classitpp_1_1Mat.html#6bba394f181c76fda12759568986c613">mat</a> &amp;A, const <a class="el" href="classitpp_1_1Vec.html#02e1bb55f60f3c2eb7a020eb1c2cfcf4">vec</a> &amp;b)</td></tr>
71
72<tr><td class="mdescLeft">&nbsp;</td><td class="mdescRight">Solve linear equation system by LU factorisation.  <a href="#g2b851be69935d19a71af456172dcd66a"></a><br></td></tr>
73<tr><td class="memItemLeft" nowrap align="right" valign="top">bool&nbsp;</td><td class="memItemRight" valign="bottom"><a class="el" href="group__linearequations.html#g0e8044324a0dab0ab034bb7d969d3545">itpp::ls_solve</a> (const <a class="el" href="classitpp_1_1Mat.html#6bba394f181c76fda12759568986c613">mat</a> &amp;A, const <a class="el" href="classitpp_1_1Mat.html#6bba394f181c76fda12759568986c613">mat</a> &amp;B, <a class="el" href="classitpp_1_1Mat.html#6bba394f181c76fda12759568986c613">mat</a> &amp;X)</td></tr>
74
75<tr><td class="mdescLeft">&nbsp;</td><td class="mdescRight">Solve multiple linear equations by LU factorisation.  <a href="#g0e8044324a0dab0ab034bb7d969d3545"></a><br></td></tr>
76<tr><td class="memItemLeft" nowrap align="right" valign="top"><a class="el" href="classitpp_1_1Mat.html#6bba394f181c76fda12759568986c613">mat</a>&nbsp;</td><td class="memItemRight" valign="bottom"><a class="el" href="group__linearequations.html#g5eeed005edd07d42bdac76efb95a10ef">itpp::ls_solve</a> (const <a class="el" href="classitpp_1_1Mat.html#6bba394f181c76fda12759568986c613">mat</a> &amp;A, const <a class="el" href="classitpp_1_1Mat.html#6bba394f181c76fda12759568986c613">mat</a> &amp;B)</td></tr>
77
78<tr><td class="mdescLeft">&nbsp;</td><td class="mdescRight">Solve multiple linear equations by LU factorisation.  <a href="#g5eeed005edd07d42bdac76efb95a10ef"></a><br></td></tr>
79<tr><td class="memItemLeft" nowrap align="right" valign="top">bool&nbsp;</td><td class="memItemRight" valign="bottom"><a class="el" href="group__linearequations.html#gf659f99b6d978e99a6109a4c4737d5e0">itpp::ls_solve</a> (const <a class="el" href="classitpp_1_1Mat.html#6fbac4b7184807da188e5b85d42f038b">cmat</a> &amp;A, const <a class="el" href="classitpp_1_1Vec.html#e83c1408740e41a7e29c383b71d4d544">cvec</a> &amp;b, <a class="el" href="classitpp_1_1Vec.html#e83c1408740e41a7e29c383b71d4d544">cvec</a> &amp;x)</td></tr>
80
81<tr><td class="mdescLeft">&nbsp;</td><td class="mdescRight">Solve linear equation system by LU factorisation.  <a href="#gf659f99b6d978e99a6109a4c4737d5e0"></a><br></td></tr>
82<tr><td class="memItemLeft" nowrap align="right" valign="top"><a class="el" href="classitpp_1_1Vec.html#e83c1408740e41a7e29c383b71d4d544">cvec</a>&nbsp;</td><td class="memItemRight" valign="bottom"><a class="el" href="group__linearequations.html#g79433271fb193f777f1527680a1f1f47">itpp::ls_solve</a> (const <a class="el" href="classitpp_1_1Mat.html#6fbac4b7184807da188e5b85d42f038b">cmat</a> &amp;A, const <a class="el" href="classitpp_1_1Vec.html#e83c1408740e41a7e29c383b71d4d544">cvec</a> &amp;b)</td></tr>
83
84<tr><td class="mdescLeft">&nbsp;</td><td class="mdescRight">Solve linear equation system by LU factorisation.  <a href="#g79433271fb193f777f1527680a1f1f47"></a><br></td></tr>
85<tr><td class="memItemLeft" nowrap align="right" valign="top">bool&nbsp;</td><td class="memItemRight" valign="bottom"><a class="el" href="group__linearequations.html#gdc73f49e6f97f745b446a217801e8e76">itpp::ls_solve</a> (const <a class="el" href="classitpp_1_1Mat.html#6fbac4b7184807da188e5b85d42f038b">cmat</a> &amp;A, const <a class="el" href="classitpp_1_1Mat.html#6fbac4b7184807da188e5b85d42f038b">cmat</a> &amp;B, <a class="el" href="classitpp_1_1Mat.html#6fbac4b7184807da188e5b85d42f038b">cmat</a> &amp;X)</td></tr>
86
87<tr><td class="mdescLeft">&nbsp;</td><td class="mdescRight">Solve multiple linear equations by LU factorisation.  <a href="#gdc73f49e6f97f745b446a217801e8e76"></a><br></td></tr>
88<tr><td class="memItemLeft" nowrap align="right" valign="top"><a class="el" href="classitpp_1_1Mat.html#6fbac4b7184807da188e5b85d42f038b">cmat</a>&nbsp;</td><td class="memItemRight" valign="bottom"><a class="el" href="group__linearequations.html#g66c689c7c7dd59dcc617297e9e09674c">itpp::ls_solve</a> (const <a class="el" href="classitpp_1_1Mat.html#6fbac4b7184807da188e5b85d42f038b">cmat</a> &amp;A, const <a class="el" href="classitpp_1_1Mat.html#6fbac4b7184807da188e5b85d42f038b">cmat</a> &amp;B)</td></tr>
89
90<tr><td class="mdescLeft">&nbsp;</td><td class="mdescRight">Solve multiple linear equations by LU factorisation.  <a href="#g66c689c7c7dd59dcc617297e9e09674c"></a><br></td></tr>
91<tr><td class="memItemLeft" nowrap align="right" valign="top">bool&nbsp;</td><td class="memItemRight" valign="bottom"><a class="el" href="group__linearequations.html#g79c944eae1622c51102e29c710f599a6">itpp::ls_solve_chol</a> (const <a class="el" href="classitpp_1_1Mat.html#6bba394f181c76fda12759568986c613">mat</a> &amp;A, const <a class="el" href="classitpp_1_1Vec.html#02e1bb55f60f3c2eb7a020eb1c2cfcf4">vec</a> &amp;b, <a class="el" href="classitpp_1_1Vec.html#02e1bb55f60f3c2eb7a020eb1c2cfcf4">vec</a> &amp;x)</td></tr>
92
93<tr><td class="mdescLeft">&nbsp;</td><td class="mdescRight">Solve linear equation system by Cholesky factorisation.  <a href="#g79c944eae1622c51102e29c710f599a6"></a><br></td></tr>
94<tr><td class="memItemLeft" nowrap align="right" valign="top"><a class="el" href="classitpp_1_1Vec.html#02e1bb55f60f3c2eb7a020eb1c2cfcf4">vec</a>&nbsp;</td><td class="memItemRight" valign="bottom"><a class="el" href="group__linearequations.html#ga46b244841f3ec438f1e41191757be39">itpp::ls_solve_chol</a> (const <a class="el" href="classitpp_1_1Mat.html#6bba394f181c76fda12759568986c613">mat</a> &amp;A, const <a class="el" href="classitpp_1_1Vec.html#02e1bb55f60f3c2eb7a020eb1c2cfcf4">vec</a> &amp;b)</td></tr>
95
96<tr><td class="mdescLeft">&nbsp;</td><td class="mdescRight">Solve linear equation system by Cholesky factorisation.  <a href="#ga46b244841f3ec438f1e41191757be39"></a><br></td></tr>
97<tr><td class="memItemLeft" nowrap align="right" valign="top">bool&nbsp;</td><td class="memItemRight" valign="bottom"><a class="el" href="group__linearequations.html#gbeee00983a1f1f68cd998aaebe32b1d2">itpp::ls_solve_chol</a> (const <a class="el" href="classitpp_1_1Mat.html#6bba394f181c76fda12759568986c613">mat</a> &amp;A, const <a class="el" href="classitpp_1_1Mat.html#6bba394f181c76fda12759568986c613">mat</a> &amp;B, <a class="el" href="classitpp_1_1Mat.html#6bba394f181c76fda12759568986c613">mat</a> &amp;X)</td></tr>
98
99<tr><td class="mdescLeft">&nbsp;</td><td class="mdescRight">Solve linear equation system by Cholesky factorisation.  <a href="#gbeee00983a1f1f68cd998aaebe32b1d2"></a><br></td></tr>
100<tr><td class="memItemLeft" nowrap align="right" valign="top"><a class="el" href="classitpp_1_1Mat.html#6bba394f181c76fda12759568986c613">mat</a>&nbsp;</td><td class="memItemRight" valign="bottom"><a class="el" href="group__linearequations.html#g7bdc6bb93ecfe978d4a422fa94c05156">itpp::ls_solve_chol</a> (const <a class="el" href="classitpp_1_1Mat.html#6bba394f181c76fda12759568986c613">mat</a> &amp;A, const <a class="el" href="classitpp_1_1Mat.html#6bba394f181c76fda12759568986c613">mat</a> &amp;B)</td></tr>
101
102<tr><td class="mdescLeft">&nbsp;</td><td class="mdescRight">Solve linear equation system by Cholesky factorisation.  <a href="#g7bdc6bb93ecfe978d4a422fa94c05156"></a><br></td></tr>
103<tr><td class="memItemLeft" nowrap align="right" valign="top">bool&nbsp;</td><td class="memItemRight" valign="bottom"><a class="el" href="group__linearequations.html#g6a49b9cd956395fd93c5c4f550c2b1d6">itpp::ls_solve_chol</a> (const <a class="el" href="classitpp_1_1Mat.html#6fbac4b7184807da188e5b85d42f038b">cmat</a> &amp;A, const <a class="el" href="classitpp_1_1Vec.html#e83c1408740e41a7e29c383b71d4d544">cvec</a> &amp;b, <a class="el" href="classitpp_1_1Vec.html#e83c1408740e41a7e29c383b71d4d544">cvec</a> &amp;x)</td></tr>
104
105<tr><td class="mdescLeft">&nbsp;</td><td class="mdescRight">Solve linear equation system by Cholesky factorisation.  <a href="#g6a49b9cd956395fd93c5c4f550c2b1d6"></a><br></td></tr>
106<tr><td class="memItemLeft" nowrap align="right" valign="top"><a class="el" href="classitpp_1_1Vec.html#e83c1408740e41a7e29c383b71d4d544">cvec</a>&nbsp;</td><td class="memItemRight" valign="bottom"><a class="el" href="group__linearequations.html#gc19522b8a7120792c41acce0f3436893">itpp::ls_solve_chol</a> (const <a class="el" href="classitpp_1_1Mat.html#6fbac4b7184807da188e5b85d42f038b">cmat</a> &amp;A, const <a class="el" href="classitpp_1_1Vec.html#e83c1408740e41a7e29c383b71d4d544">cvec</a> &amp;b)</td></tr>
107
108<tr><td class="mdescLeft">&nbsp;</td><td class="mdescRight">Solve linear equation system by Cholesky factorisation.  <a href="#gc19522b8a7120792c41acce0f3436893"></a><br></td></tr>
109<tr><td class="memItemLeft" nowrap align="right" valign="top">bool&nbsp;</td><td class="memItemRight" valign="bottom"><a class="el" href="group__linearequations.html#g114a7fea819005a29739d244fd5a5a55">itpp::ls_solve_chol</a> (const <a class="el" href="classitpp_1_1Mat.html#6fbac4b7184807da188e5b85d42f038b">cmat</a> &amp;A, const <a class="el" href="classitpp_1_1Mat.html#6fbac4b7184807da188e5b85d42f038b">cmat</a> &amp;B, <a class="el" href="classitpp_1_1Mat.html#6fbac4b7184807da188e5b85d42f038b">cmat</a> &amp;X)</td></tr>
110
111<tr><td class="mdescLeft">&nbsp;</td><td class="mdescRight">Solve linear equation system by Cholesky factorisation.  <a href="#g114a7fea819005a29739d244fd5a5a55"></a><br></td></tr>
112<tr><td class="memItemLeft" nowrap align="right" valign="top"><a class="el" href="classitpp_1_1Mat.html#6fbac4b7184807da188e5b85d42f038b">cmat</a>&nbsp;</td><td class="memItemRight" valign="bottom"><a class="el" href="group__linearequations.html#g682ef1051b2386ed6e47c328617f46d1">itpp::ls_solve_chol</a> (const <a class="el" href="classitpp_1_1Mat.html#6fbac4b7184807da188e5b85d42f038b">cmat</a> &amp;A, const <a class="el" href="classitpp_1_1Mat.html#6fbac4b7184807da188e5b85d42f038b">cmat</a> &amp;B)</td></tr>
113
114<tr><td class="mdescLeft">&nbsp;</td><td class="mdescRight">Solve linear equation system by Cholesky factorisation.  <a href="#g682ef1051b2386ed6e47c328617f46d1"></a><br></td></tr>
115<tr><td class="memItemLeft" nowrap align="right" valign="top">bool&nbsp;</td><td class="memItemRight" valign="bottom"><a class="el" href="group__linearequations.html#g618ea65fa1f15fd2e09c61765da06fac">itpp::ls_solve_od</a> (const <a class="el" href="classitpp_1_1Mat.html#6bba394f181c76fda12759568986c613">mat</a> &amp;A, const <a class="el" href="classitpp_1_1Vec.html#02e1bb55f60f3c2eb7a020eb1c2cfcf4">vec</a> &amp;b, <a class="el" href="classitpp_1_1Vec.html#02e1bb55f60f3c2eb7a020eb1c2cfcf4">vec</a> &amp;x)</td></tr>
116
117<tr><td class="mdescLeft">&nbsp;</td><td class="mdescRight">Solves overdetermined linear equation systems.  <a href="#g618ea65fa1f15fd2e09c61765da06fac"></a><br></td></tr>
118<tr><td class="memItemLeft" nowrap align="right" valign="top"><a class="el" href="classitpp_1_1Vec.html#02e1bb55f60f3c2eb7a020eb1c2cfcf4">vec</a>&nbsp;</td><td class="memItemRight" valign="bottom"><a class="el" href="group__linearequations.html#g635550ec883953a711dd5f658a164671">itpp::ls_solve_od</a> (const <a class="el" href="classitpp_1_1Mat.html#6bba394f181c76fda12759568986c613">mat</a> &amp;A, const <a class="el" href="classitpp_1_1Vec.html#02e1bb55f60f3c2eb7a020eb1c2cfcf4">vec</a> &amp;b)</td></tr>
119
120<tr><td class="mdescLeft">&nbsp;</td><td class="mdescRight">Solves overdetermined linear equation systems.  <a href="#g635550ec883953a711dd5f658a164671"></a><br></td></tr>
121<tr><td class="memItemLeft" nowrap align="right" valign="top">bool&nbsp;</td><td class="memItemRight" valign="bottom"><a class="el" href="group__linearequations.html#gfa445fa4f699c7ca17b7b6475d40969d">itpp::ls_solve_od</a> (const <a class="el" href="classitpp_1_1Mat.html#6bba394f181c76fda12759568986c613">mat</a> &amp;A, const <a class="el" href="classitpp_1_1Mat.html#6bba394f181c76fda12759568986c613">mat</a> &amp;B, <a class="el" href="classitpp_1_1Mat.html#6bba394f181c76fda12759568986c613">mat</a> &amp;X)</td></tr>
122
123<tr><td class="mdescLeft">&nbsp;</td><td class="mdescRight">Solves overdetermined linear equation systems.  <a href="#gfa445fa4f699c7ca17b7b6475d40969d"></a><br></td></tr>
124<tr><td class="memItemLeft" nowrap align="right" valign="top"><a class="el" href="classitpp_1_1Mat.html#6bba394f181c76fda12759568986c613">mat</a>&nbsp;</td><td class="memItemRight" valign="bottom"><a class="el" href="group__linearequations.html#gd93074c8c7c9e3b98b2888365abe7fca">itpp::ls_solve_od</a> (const <a class="el" href="classitpp_1_1Mat.html#6bba394f181c76fda12759568986c613">mat</a> &amp;A, const <a class="el" href="classitpp_1_1Mat.html#6bba394f181c76fda12759568986c613">mat</a> &amp;B)</td></tr>
125
126<tr><td class="mdescLeft">&nbsp;</td><td class="mdescRight">Solves overdetermined linear equation systems.  <a href="#gd93074c8c7c9e3b98b2888365abe7fca"></a><br></td></tr>
127<tr><td class="memItemLeft" nowrap align="right" valign="top">bool&nbsp;</td><td class="memItemRight" valign="bottom"><a class="el" href="group__linearequations.html#g23ed5ee5dee16412e2751e9bcedb449d">itpp::ls_solve_od</a> (const <a class="el" href="classitpp_1_1Mat.html#6fbac4b7184807da188e5b85d42f038b">cmat</a> &amp;A, const <a class="el" href="classitpp_1_1Vec.html#e83c1408740e41a7e29c383b71d4d544">cvec</a> &amp;b, <a class="el" href="classitpp_1_1Vec.html#e83c1408740e41a7e29c383b71d4d544">cvec</a> &amp;x)</td></tr>
128
129<tr><td class="mdescLeft">&nbsp;</td><td class="mdescRight">Solves overdetermined linear equation systems.  <a href="#g23ed5ee5dee16412e2751e9bcedb449d"></a><br></td></tr>
130<tr><td class="memItemLeft" nowrap align="right" valign="top"><a class="el" href="classitpp_1_1Vec.html#e83c1408740e41a7e29c383b71d4d544">cvec</a>&nbsp;</td><td class="memItemRight" valign="bottom"><a class="el" href="group__linearequations.html#g221d32bcf3790e81bbc73001fb3c7d1c">itpp::ls_solve_od</a> (const <a class="el" href="classitpp_1_1Mat.html#6fbac4b7184807da188e5b85d42f038b">cmat</a> &amp;A, const <a class="el" href="classitpp_1_1Vec.html#e83c1408740e41a7e29c383b71d4d544">cvec</a> &amp;b)</td></tr>
131
132<tr><td class="mdescLeft">&nbsp;</td><td class="mdescRight">Solves overdetermined linear equation systems.  <a href="#g221d32bcf3790e81bbc73001fb3c7d1c"></a><br></td></tr>
133<tr><td class="memItemLeft" nowrap align="right" valign="top">bool&nbsp;</td><td class="memItemRight" valign="bottom"><a class="el" href="group__linearequations.html#g4beeb59f1d32fc7c19b04ad3d7d5c210">itpp::ls_solve_od</a> (const <a class="el" href="classitpp_1_1Mat.html#6fbac4b7184807da188e5b85d42f038b">cmat</a> &amp;A, const <a class="el" href="classitpp_1_1Mat.html#6fbac4b7184807da188e5b85d42f038b">cmat</a> &amp;B, <a class="el" href="classitpp_1_1Mat.html#6fbac4b7184807da188e5b85d42f038b">cmat</a> &amp;X)</td></tr>
134
135<tr><td class="mdescLeft">&nbsp;</td><td class="mdescRight">Solves overdetermined linear equation systems.  <a href="#g4beeb59f1d32fc7c19b04ad3d7d5c210"></a><br></td></tr>
136<tr><td class="memItemLeft" nowrap align="right" valign="top"><a class="el" href="classitpp_1_1Mat.html#6fbac4b7184807da188e5b85d42f038b">cmat</a>&nbsp;</td><td class="memItemRight" valign="bottom"><a class="el" href="group__linearequations.html#g60f41335126f7c70973f95ff8147fbfd">itpp::ls_solve_od</a> (const <a class="el" href="classitpp_1_1Mat.html#6fbac4b7184807da188e5b85d42f038b">cmat</a> &amp;A, const <a class="el" href="classitpp_1_1Mat.html#6fbac4b7184807da188e5b85d42f038b">cmat</a> &amp;B)</td></tr>
137
138<tr><td class="mdescLeft">&nbsp;</td><td class="mdescRight">Solves overdetermined linear equation systems.  <a href="#g60f41335126f7c70973f95ff8147fbfd"></a><br></td></tr>
139<tr><td class="memItemLeft" nowrap align="right" valign="top">bool&nbsp;</td><td class="memItemRight" valign="bottom"><a class="el" href="group__linearequations.html#gec926319b4d7faf913e1cf034af1899c">itpp::ls_solve_ud</a> (const <a class="el" href="classitpp_1_1Mat.html#6bba394f181c76fda12759568986c613">mat</a> &amp;A, const <a class="el" href="classitpp_1_1Vec.html#02e1bb55f60f3c2eb7a020eb1c2cfcf4">vec</a> &amp;b, <a class="el" href="classitpp_1_1Vec.html#02e1bb55f60f3c2eb7a020eb1c2cfcf4">vec</a> &amp;x)</td></tr>
140
141<tr><td class="mdescLeft">&nbsp;</td><td class="mdescRight">Solves underdetermined linear equation systems.  <a href="#gec926319b4d7faf913e1cf034af1899c"></a><br></td></tr>
142<tr><td class="memItemLeft" nowrap align="right" valign="top"><a class="el" href="classitpp_1_1Vec.html#02e1bb55f60f3c2eb7a020eb1c2cfcf4">vec</a>&nbsp;</td><td class="memItemRight" valign="bottom"><a class="el" href="group__linearequations.html#g70cd3ada0cecc2d675638a51ea0eee0d">itpp::ls_solve_ud</a> (const <a class="el" href="classitpp_1_1Mat.html#6bba394f181c76fda12759568986c613">mat</a> &amp;A, const <a class="el" href="classitpp_1_1Vec.html#02e1bb55f60f3c2eb7a020eb1c2cfcf4">vec</a> &amp;b)</td></tr>
143
144<tr><td class="mdescLeft">&nbsp;</td><td class="mdescRight">Solves overdetermined linear equation systems.  <a href="#g70cd3ada0cecc2d675638a51ea0eee0d"></a><br></td></tr>
145<tr><td class="memItemLeft" nowrap align="right" valign="top">bool&nbsp;</td><td class="memItemRight" valign="bottom"><a class="el" href="group__linearequations.html#gf24d2c5baba027d772c2fbe4958a34ca">itpp::ls_solve_ud</a> (const <a class="el" href="classitpp_1_1Mat.html#6bba394f181c76fda12759568986c613">mat</a> &amp;A, const <a class="el" href="classitpp_1_1Mat.html#6bba394f181c76fda12759568986c613">mat</a> &amp;B, <a class="el" href="classitpp_1_1Mat.html#6bba394f181c76fda12759568986c613">mat</a> &amp;X)</td></tr>
146
147<tr><td class="mdescLeft">&nbsp;</td><td class="mdescRight">Solves underdetermined linear equation systems.  <a href="#gf24d2c5baba027d772c2fbe4958a34ca"></a><br></td></tr>
148<tr><td class="memItemLeft" nowrap align="right" valign="top"><a class="el" href="classitpp_1_1Mat.html#6bba394f181c76fda12759568986c613">mat</a>&nbsp;</td><td class="memItemRight" valign="bottom"><a class="el" href="group__linearequations.html#gd47cbd81c624acfc5715f6292dfd9cd4">itpp::ls_solve_ud</a> (const <a class="el" href="classitpp_1_1Mat.html#6bba394f181c76fda12759568986c613">mat</a> &amp;A, const <a class="el" href="classitpp_1_1Mat.html#6bba394f181c76fda12759568986c613">mat</a> &amp;B)</td></tr>
149
150<tr><td class="mdescLeft">&nbsp;</td><td class="mdescRight">Solves underdetermined linear equation systems.  <a href="#gd47cbd81c624acfc5715f6292dfd9cd4"></a><br></td></tr>
151<tr><td class="memItemLeft" nowrap align="right" valign="top">bool&nbsp;</td><td class="memItemRight" valign="bottom"><a class="el" href="group__linearequations.html#g90a505b0fd80f7aa15d869a3176549ec">itpp::ls_solve_ud</a> (const <a class="el" href="classitpp_1_1Mat.html#6fbac4b7184807da188e5b85d42f038b">cmat</a> &amp;A, const <a class="el" href="classitpp_1_1Vec.html#e83c1408740e41a7e29c383b71d4d544">cvec</a> &amp;b, <a class="el" href="classitpp_1_1Vec.html#e83c1408740e41a7e29c383b71d4d544">cvec</a> &amp;x)</td></tr>
152
153<tr><td class="mdescLeft">&nbsp;</td><td class="mdescRight">Solves underdetermined linear equation systems.  <a href="#g90a505b0fd80f7aa15d869a3176549ec"></a><br></td></tr>
154<tr><td class="memItemLeft" nowrap align="right" valign="top"><a class="el" href="classitpp_1_1Vec.html#e83c1408740e41a7e29c383b71d4d544">cvec</a>&nbsp;</td><td class="memItemRight" valign="bottom"><a class="el" href="group__linearequations.html#g126eb1902b5853564750c86339183586">itpp::ls_solve_ud</a> (const <a class="el" href="classitpp_1_1Mat.html#6fbac4b7184807da188e5b85d42f038b">cmat</a> &amp;A, const <a class="el" href="classitpp_1_1Vec.html#e83c1408740e41a7e29c383b71d4d544">cvec</a> &amp;b)</td></tr>
155
156<tr><td class="mdescLeft">&nbsp;</td><td class="mdescRight">Solves overdetermined linear equation systems.  <a href="#g126eb1902b5853564750c86339183586"></a><br></td></tr>
157<tr><td class="memItemLeft" nowrap align="right" valign="top">bool&nbsp;</td><td class="memItemRight" valign="bottom"><a class="el" href="group__linearequations.html#g5a070b09b70e0cbf95a72c76f0b4f975">itpp::ls_solve_ud</a> (const <a class="el" href="classitpp_1_1Mat.html#6fbac4b7184807da188e5b85d42f038b">cmat</a> &amp;A, const <a class="el" href="classitpp_1_1Mat.html#6fbac4b7184807da188e5b85d42f038b">cmat</a> &amp;B, <a class="el" href="classitpp_1_1Mat.html#6fbac4b7184807da188e5b85d42f038b">cmat</a> &amp;X)</td></tr>
158
159<tr><td class="mdescLeft">&nbsp;</td><td class="mdescRight">Solves underdetermined linear equation systems.  <a href="#g5a070b09b70e0cbf95a72c76f0b4f975"></a><br></td></tr>
160<tr><td class="memItemLeft" nowrap align="right" valign="top"><a class="el" href="classitpp_1_1Mat.html#6fbac4b7184807da188e5b85d42f038b">cmat</a>&nbsp;</td><td class="memItemRight" valign="bottom"><a class="el" href="group__linearequations.html#g67f1f4ffa7b7ea7bdb0c2d8276b58988">itpp::ls_solve_ud</a> (const <a class="el" href="classitpp_1_1Mat.html#6fbac4b7184807da188e5b85d42f038b">cmat</a> &amp;A, const <a class="el" href="classitpp_1_1Mat.html#6fbac4b7184807da188e5b85d42f038b">cmat</a> &amp;B)</td></tr>
161
162<tr><td class="mdescLeft">&nbsp;</td><td class="mdescRight">Solves underdetermined linear equation systems.  <a href="#g67f1f4ffa7b7ea7bdb0c2d8276b58988"></a><br></td></tr>
163<tr><td class="memItemLeft" nowrap align="right" valign="top">bool&nbsp;</td><td class="memItemRight" valign="bottom"><a class="el" href="group__linearequations.html#g523a45a9e50832ea218e34fff1a55db0">itpp::backslash</a> (const <a class="el" href="classitpp_1_1Mat.html#6bba394f181c76fda12759568986c613">mat</a> &amp;A, const <a class="el" href="classitpp_1_1Vec.html#02e1bb55f60f3c2eb7a020eb1c2cfcf4">vec</a> &amp;b, <a class="el" href="classitpp_1_1Vec.html#02e1bb55f60f3c2eb7a020eb1c2cfcf4">vec</a> &amp;x)</td></tr>
164
165<tr><td class="mdescLeft">&nbsp;</td><td class="mdescRight">A general linear equation system solver.  <a href="#g523a45a9e50832ea218e34fff1a55db0"></a><br></td></tr>
166<tr><td class="memItemLeft" nowrap align="right" valign="top"><a class="el" href="classitpp_1_1Vec.html#02e1bb55f60f3c2eb7a020eb1c2cfcf4">vec</a>&nbsp;</td><td class="memItemRight" valign="bottom"><a class="el" href="group__linearequations.html#gc93ca026801d8de27ec8378f01b06eda">itpp::backslash</a> (const <a class="el" href="classitpp_1_1Mat.html#6bba394f181c76fda12759568986c613">mat</a> &amp;A, const <a class="el" href="classitpp_1_1Vec.html#02e1bb55f60f3c2eb7a020eb1c2cfcf4">vec</a> &amp;b)</td></tr>
167
168<tr><td class="mdescLeft">&nbsp;</td><td class="mdescRight">A general linear equation system solver.  <a href="#gc93ca026801d8de27ec8378f01b06eda"></a><br></td></tr>
169<tr><td class="memItemLeft" nowrap align="right" valign="top">bool&nbsp;</td><td class="memItemRight" valign="bottom"><a class="el" href="group__linearequations.html#g254891271fb32587592d21b6b771ad85">itpp::backslash</a> (const <a class="el" href="classitpp_1_1Mat.html#6bba394f181c76fda12759568986c613">mat</a> &amp;A, const <a class="el" href="classitpp_1_1Mat.html#6bba394f181c76fda12759568986c613">mat</a> &amp;B, <a class="el" href="classitpp_1_1Mat.html#6bba394f181c76fda12759568986c613">mat</a> &amp;X)</td></tr>
170
171<tr><td class="mdescLeft">&nbsp;</td><td class="mdescRight">A general linear equation system solver.  <a href="#g254891271fb32587592d21b6b771ad85"></a><br></td></tr>
172<tr><td class="memItemLeft" nowrap align="right" valign="top"><a class="el" href="classitpp_1_1Mat.html#6bba394f181c76fda12759568986c613">mat</a>&nbsp;</td><td class="memItemRight" valign="bottom"><a class="el" href="group__linearequations.html#g0554bdde3c5e93abef3a11d45235d3da">itpp::backslash</a> (const <a class="el" href="classitpp_1_1Mat.html#6bba394f181c76fda12759568986c613">mat</a> &amp;A, const <a class="el" href="classitpp_1_1Mat.html#6bba394f181c76fda12759568986c613">mat</a> &amp;B)</td></tr>
173
174<tr><td class="mdescLeft">&nbsp;</td><td class="mdescRight">A general linear equation system solver.  <a href="#g0554bdde3c5e93abef3a11d45235d3da"></a><br></td></tr>
175<tr><td class="memItemLeft" nowrap align="right" valign="top">bool&nbsp;</td><td class="memItemRight" valign="bottom"><a class="el" href="group__linearequations.html#gaf8574970ef18e0c12c3150303010dd1">itpp::backslash</a> (const <a class="el" href="classitpp_1_1Mat.html#6fbac4b7184807da188e5b85d42f038b">cmat</a> &amp;A, const <a class="el" href="classitpp_1_1Vec.html#e83c1408740e41a7e29c383b71d4d544">cvec</a> &amp;b, <a class="el" href="classitpp_1_1Vec.html#e83c1408740e41a7e29c383b71d4d544">cvec</a> &amp;x)</td></tr>
176
177<tr><td class="mdescLeft">&nbsp;</td><td class="mdescRight">A general linear equation system solver.  <a href="#gaf8574970ef18e0c12c3150303010dd1"></a><br></td></tr>
178<tr><td class="memItemLeft" nowrap align="right" valign="top"><a class="el" href="classitpp_1_1Vec.html#e83c1408740e41a7e29c383b71d4d544">cvec</a>&nbsp;</td><td class="memItemRight" valign="bottom"><a class="el" href="group__linearequations.html#g2d0093ec5378e5e71136e7085a81b75f">itpp::backslash</a> (const <a class="el" href="classitpp_1_1Mat.html#6fbac4b7184807da188e5b85d42f038b">cmat</a> &amp;A, const <a class="el" href="classitpp_1_1Vec.html#e83c1408740e41a7e29c383b71d4d544">cvec</a> &amp;b)</td></tr>
179
180<tr><td class="mdescLeft">&nbsp;</td><td class="mdescRight">A general linear equation system solver.  <a href="#g2d0093ec5378e5e71136e7085a81b75f"></a><br></td></tr>
181<tr><td class="memItemLeft" nowrap align="right" valign="top">bool&nbsp;</td><td class="memItemRight" valign="bottom"><a class="el" href="group__linearequations.html#g797859ceb64d2233c41520836b91a983">itpp::backslash</a> (const <a class="el" href="classitpp_1_1Mat.html#6fbac4b7184807da188e5b85d42f038b">cmat</a> &amp;A, const <a class="el" href="classitpp_1_1Mat.html#6fbac4b7184807da188e5b85d42f038b">cmat</a> &amp;B, <a class="el" href="classitpp_1_1Mat.html#6fbac4b7184807da188e5b85d42f038b">cmat</a> &amp;X)</td></tr>
182
183<tr><td class="mdescLeft">&nbsp;</td><td class="mdescRight">A general linear equation system solver.  <a href="#g797859ceb64d2233c41520836b91a983"></a><br></td></tr>
184<tr><td class="memItemLeft" nowrap align="right" valign="top"><a class="el" href="classitpp_1_1Mat.html#6fbac4b7184807da188e5b85d42f038b">cmat</a>&nbsp;</td><td class="memItemRight" valign="bottom"><a class="el" href="group__linearequations.html#g3d33801c6488e98ad4b9e0842909644f">itpp::backslash</a> (const <a class="el" href="classitpp_1_1Mat.html#6fbac4b7184807da188e5b85d42f038b">cmat</a> &amp;A, const <a class="el" href="classitpp_1_1Mat.html#6fbac4b7184807da188e5b85d42f038b">cmat</a> &amp;B)</td></tr>
185
186<tr><td class="mdescLeft">&nbsp;</td><td class="mdescRight">A general linear equation system solver.  <a href="#g3d33801c6488e98ad4b9e0842909644f"></a><br></td></tr>
187<tr><td class="memItemLeft" nowrap align="right" valign="top"><a class="el" href="classitpp_1_1Vec.html#02e1bb55f60f3c2eb7a020eb1c2cfcf4">vec</a>&nbsp;</td><td class="memItemRight" valign="bottom"><a class="el" href="group__linearequations.html#g06f1de8cabe1784c5a6d8e0704762421">itpp::forward_substitution</a> (const <a class="el" href="classitpp_1_1Mat.html#6bba394f181c76fda12759568986c613">mat</a> &amp;L, const <a class="el" href="classitpp_1_1Vec.html#02e1bb55f60f3c2eb7a020eb1c2cfcf4">vec</a> &amp;b)</td></tr>
188
189<tr><td class="mdescLeft">&nbsp;</td><td class="mdescRight">Forward substitution of square matrix.  <a href="#g06f1de8cabe1784c5a6d8e0704762421"></a><br></td></tr>
190<tr><td class="memItemLeft" nowrap align="right" valign="top">void&nbsp;</td><td class="memItemRight" valign="bottom"><a class="el" href="group__linearequations.html#gc7c3161dea713d70d5d599a835b0638f">itpp::forward_substitution</a> (const <a class="el" href="classitpp_1_1Mat.html#6bba394f181c76fda12759568986c613">mat</a> &amp;L, const <a class="el" href="classitpp_1_1Vec.html#02e1bb55f60f3c2eb7a020eb1c2cfcf4">vec</a> &amp;b, <a class="el" href="classitpp_1_1Vec.html#02e1bb55f60f3c2eb7a020eb1c2cfcf4">vec</a> &amp;x)</td></tr>
191
192<tr><td class="mdescLeft">&nbsp;</td><td class="mdescRight">Forward substitution of square matrix.  <a href="#gc7c3161dea713d70d5d599a835b0638f"></a><br></td></tr>
193<tr><td class="memItemLeft" nowrap align="right" valign="top"><a class="el" href="classitpp_1_1Vec.html#02e1bb55f60f3c2eb7a020eb1c2cfcf4">vec</a>&nbsp;</td><td class="memItemRight" valign="bottom"><a class="el" href="group__linearequations.html#g118cc3706a66f4627206d889bfa8db82">itpp::forward_substitution</a> (const <a class="el" href="classitpp_1_1Mat.html#6bba394f181c76fda12759568986c613">mat</a> &amp;L, int p, const <a class="el" href="classitpp_1_1Vec.html#02e1bb55f60f3c2eb7a020eb1c2cfcf4">vec</a> &amp;b)</td></tr>
194
195<tr><td class="mdescLeft">&nbsp;</td><td class="mdescRight">Forward substitution of band matrices.  <a href="#g118cc3706a66f4627206d889bfa8db82"></a><br></td></tr>
196<tr><td class="memItemLeft" nowrap align="right" valign="top">void&nbsp;</td><td class="memItemRight" valign="bottom"><a class="el" href="group__linearequations.html#g8c7d440ecb34fd3d1c6f015fe4877ff7">itpp::forward_substitution</a> (const <a class="el" href="classitpp_1_1Mat.html#6bba394f181c76fda12759568986c613">mat</a> &amp;L, int p, const <a class="el" href="classitpp_1_1Vec.html#02e1bb55f60f3c2eb7a020eb1c2cfcf4">vec</a> &amp;b, <a class="el" href="classitpp_1_1Vec.html#02e1bb55f60f3c2eb7a020eb1c2cfcf4">vec</a> &amp;x)</td></tr>
197
198<tr><td class="mdescLeft">&nbsp;</td><td class="mdescRight">Forward substitution of band matrices.  <a href="#g8c7d440ecb34fd3d1c6f015fe4877ff7"></a><br></td></tr>
199<tr><td class="memItemLeft" nowrap align="right" valign="top"><a class="el" href="classitpp_1_1Vec.html#02e1bb55f60f3c2eb7a020eb1c2cfcf4">vec</a>&nbsp;</td><td class="memItemRight" valign="bottom"><a class="el" href="group__linearequations.html#g4fe9c0b4ef9b22132956d99ccedd804d">itpp::backward_substitution</a> (const <a class="el" href="classitpp_1_1Mat.html#6bba394f181c76fda12759568986c613">mat</a> &amp;U, const <a class="el" href="classitpp_1_1Vec.html#02e1bb55f60f3c2eb7a020eb1c2cfcf4">vec</a> &amp;b)</td></tr>
200
201<tr><td class="mdescLeft">&nbsp;</td><td class="mdescRight">Backward substitution of square matrix.  <a href="#g4fe9c0b4ef9b22132956d99ccedd804d"></a><br></td></tr>
202<tr><td class="memItemLeft" nowrap align="right" valign="top">void&nbsp;</td><td class="memItemRight" valign="bottom"><a class="el" href="group__linearequations.html#gcd34872e3a3b23f4cd20647a348bbe22">itpp::backward_substitution</a> (const <a class="el" href="classitpp_1_1Mat.html#6bba394f181c76fda12759568986c613">mat</a> &amp;U, const <a class="el" href="classitpp_1_1Vec.html#02e1bb55f60f3c2eb7a020eb1c2cfcf4">vec</a> &amp;b, <a class="el" href="classitpp_1_1Vec.html#02e1bb55f60f3c2eb7a020eb1c2cfcf4">vec</a> &amp;x)</td></tr>
203
204<tr><td class="mdescLeft">&nbsp;</td><td class="mdescRight">Backward substitution of square matrix.  <a href="#gcd34872e3a3b23f4cd20647a348bbe22"></a><br></td></tr>
205<tr><td class="memItemLeft" nowrap align="right" valign="top"><a class="el" href="classitpp_1_1Vec.html#02e1bb55f60f3c2eb7a020eb1c2cfcf4">vec</a>&nbsp;</td><td class="memItemRight" valign="bottom"><a class="el" href="group__linearequations.html#g4d266602981eb46a9f733c55dc1fd7a2">itpp::backward_substitution</a> (const <a class="el" href="classitpp_1_1Mat.html#6bba394f181c76fda12759568986c613">mat</a> &amp;U, int q, const <a class="el" href="classitpp_1_1Vec.html#02e1bb55f60f3c2eb7a020eb1c2cfcf4">vec</a> &amp;b)</td></tr>
206
207<tr><td class="mdescLeft">&nbsp;</td><td class="mdescRight">Backward substitution of band matrix.  <a href="#g4d266602981eb46a9f733c55dc1fd7a2"></a><br></td></tr>
208<tr><td class="memItemLeft" nowrap align="right" valign="top">void&nbsp;</td><td class="memItemRight" valign="bottom"><a class="el" href="group__linearequations.html#g4dc8a32c721296c2480fd991b8a570d1">itpp::backward_substitution</a> (const <a class="el" href="classitpp_1_1Mat.html#6bba394f181c76fda12759568986c613">mat</a> &amp;U, int q, const <a class="el" href="classitpp_1_1Vec.html#02e1bb55f60f3c2eb7a020eb1c2cfcf4">vec</a> &amp;b, <a class="el" href="classitpp_1_1Vec.html#02e1bb55f60f3c2eb7a020eb1c2cfcf4">vec</a> &amp;x)</td></tr>
209
210<tr><td class="mdescLeft">&nbsp;</td><td class="mdescRight">Backward substitution of band matrix.  <a href="#g4dc8a32c721296c2480fd991b8a570d1"></a><br></td></tr>
211</table>
212<hr><h2>Function Documentation</h2>
213<a class="anchor" name="g3d33801c6488e98ad4b9e0842909644f"></a><!-- doxytag: member="itpp::backslash" ref="g3d33801c6488e98ad4b9e0842909644f" args="(const cmat &amp;A, const cmat &amp;B)" -->
214<div class="memitem">
215<div class="memproto">
216      <table class="memname">
217        <tr>
218          <td class="memname"><a class="el" href="classitpp_1_1Mat.html#6fbac4b7184807da188e5b85d42f038b">cmat</a> itpp::backslash           </td>
219          <td>(</td>
220          <td class="paramtype">const <a class="el" href="classitpp_1_1Mat.html#6fbac4b7184807da188e5b85d42f038b">cmat</a> &amp;&nbsp;</td>
221          <td class="paramname"> <em>A</em>, </td>
222        </tr>
223        <tr>
224          <td class="paramkey"></td>
225          <td></td>
226          <td class="paramtype">const <a class="el" href="classitpp_1_1Mat.html#6fbac4b7184807da188e5b85d42f038b">cmat</a> &amp;&nbsp;</td>
227          <td class="paramname"> <em>B</em></td><td>&nbsp;</td>
228        </tr>
229        <tr>
230          <td></td>
231          <td>)</td>
232          <td></td><td></td><td></td>
233        </tr>
234      </table>
235</div>
236<div class="memdoc">
237
238<p>
239A general linear equation system solver.
240<p>
241Tries to emulate the backslash operator in Matlab by calling ls_solve(A,B), ls_solve_od(A,B), or ls_solve_ud(A,B).
242<p>References <a class="el" href="itassert_8h-source.html#l00107">it_assert_debug</a>.</p>
243
244<p>Referenced by <a class="el" href="filter__design_8cpp-source.html#l00228">itpp::arma_estimator()</a>, <a class="el" href="ls__solve_8cpp-source.html#l00667">itpp::backslash()</a>, and <a class="el" href="filter__design_8cpp-source.html#l00197">itpp::modified_yule_walker()</a>.</p>
245
246</div>
247</div><p>
248<a class="anchor" name="g797859ceb64d2233c41520836b91a983"></a><!-- doxytag: member="itpp::backslash" ref="g797859ceb64d2233c41520836b91a983" args="(const cmat &amp;A, const cmat &amp;B, cmat &amp;X)" -->
249<div class="memitem">
250<div class="memproto">
251      <table class="memname">
252        <tr>
253          <td class="memname">bool itpp::backslash           </td>
254          <td>(</td>
255          <td class="paramtype">const <a class="el" href="classitpp_1_1Mat.html#6fbac4b7184807da188e5b85d42f038b">cmat</a> &amp;&nbsp;</td>
256          <td class="paramname"> <em>A</em>, </td>
257        </tr>
258        <tr>
259          <td class="paramkey"></td>
260          <td></td>
261          <td class="paramtype">const <a class="el" href="classitpp_1_1Mat.html#6fbac4b7184807da188e5b85d42f038b">cmat</a> &amp;&nbsp;</td>
262          <td class="paramname"> <em>B</em>, </td>
263        </tr>
264        <tr>
265          <td class="paramkey"></td>
266          <td></td>
267          <td class="paramtype"><a class="el" href="classitpp_1_1Mat.html#6fbac4b7184807da188e5b85d42f038b">cmat</a> &amp;&nbsp;</td>
268          <td class="paramname"> <em>X</em></td><td>&nbsp;</td>
269        </tr>
270        <tr>
271          <td></td>
272          <td>)</td>
273          <td></td><td></td><td></td>
274        </tr>
275      </table>
276</div>
277<div class="memdoc">
278
279<p>
280A general linear equation system solver.
281<p>
282Tries to emulate the backslash operator in Matlab by calling ls_solve(A,B,X), ls_solve_od(A,B,X), or ls_solve_ud(A,B,X).
283<p>References <a class="el" href="ls__solve_8cpp-source.html#l00321">itpp::ls_solve()</a>, <a class="el" href="ls__solve_8cpp-source.html#l00477">itpp::ls_solve_od()</a>, and <a class="el" href="ls__solve_8cpp-source.html#l00639">itpp::ls_solve_ud()</a>.</p>
284
285</div>
286</div><p>
287<a class="anchor" name="g2d0093ec5378e5e71136e7085a81b75f"></a><!-- doxytag: member="itpp::backslash" ref="g2d0093ec5378e5e71136e7085a81b75f" args="(const cmat &amp;A, const cvec &amp;b)" -->
288<div class="memitem">
289<div class="memproto">
290      <table class="memname">
291        <tr>
292          <td class="memname"><a class="el" href="classitpp_1_1Vec.html#e83c1408740e41a7e29c383b71d4d544">cvec</a> itpp::backslash           </td>
293          <td>(</td>
294          <td class="paramtype">const <a class="el" href="classitpp_1_1Mat.html#6fbac4b7184807da188e5b85d42f038b">cmat</a> &amp;&nbsp;</td>
295          <td class="paramname"> <em>A</em>, </td>
296        </tr>
297        <tr>
298          <td class="paramkey"></td>
299          <td></td>
300          <td class="paramtype">const <a class="el" href="classitpp_1_1Vec.html#e83c1408740e41a7e29c383b71d4d544">cvec</a> &amp;&nbsp;</td>
301          <td class="paramname"> <em>b</em></td><td>&nbsp;</td>
302        </tr>
303        <tr>
304          <td></td>
305          <td>)</td>
306          <td></td><td></td><td></td>
307        </tr>
308      </table>
309</div>
310<div class="memdoc">
311
312<p>
313A general linear equation system solver.
314<p>
315Tries to emulate the backslash operator in Matlab by calling ls_solve(A,b), ls_solve_od(A,b) or ls_solve_ud(A,b)
316<p>References <a class="el" href="ls__solve_8cpp-source.html#l00744">itpp::backslash()</a>, and <a class="el" href="itassert_8h-source.html#l00107">it_assert_debug</a>.</p>
317
318</div>
319</div><p>
320<a class="anchor" name="gaf8574970ef18e0c12c3150303010dd1"></a><!-- doxytag: member="itpp::backslash" ref="gaf8574970ef18e0c12c3150303010dd1" args="(const cmat &amp;A, const cvec &amp;b, cvec &amp;x)" -->
321<div class="memitem">
322<div class="memproto">
323      <table class="memname">
324        <tr>
325          <td class="memname">bool itpp::backslash           </td>
326          <td>(</td>
327          <td class="paramtype">const <a class="el" href="classitpp_1_1Mat.html#6fbac4b7184807da188e5b85d42f038b">cmat</a> &amp;&nbsp;</td>
328          <td class="paramname"> <em>A</em>, </td>
329        </tr>
330        <tr>
331          <td class="paramkey"></td>
332          <td></td>
333          <td class="paramtype">const <a class="el" href="classitpp_1_1Vec.html#e83c1408740e41a7e29c383b71d4d544">cvec</a> &amp;&nbsp;</td>
334          <td class="paramname"> <em>b</em>, </td>
335        </tr>
336        <tr>
337          <td class="paramkey"></td>
338          <td></td>
339          <td class="paramtype"><a class="el" href="classitpp_1_1Vec.html#e83c1408740e41a7e29c383b71d4d544">cvec</a> &amp;&nbsp;</td>
340          <td class="paramname"> <em>x</em></td><td>&nbsp;</td>
341        </tr>
342        <tr>
343          <td></td>
344          <td>)</td>
345          <td></td><td></td><td></td>
346        </tr>
347      </table>
348</div>
349<div class="memdoc">
350
351<p>
352A general linear equation system solver.
353<p>
354Tries to emulate the backslash operator in Matlab by calling ls_solve(A,b,x), ls_solve_od(A,b,x) or ls_solve_ud(A,b,x)
355<p>References <a class="el" href="ls__solve_8cpp-source.html#l00321">itpp::ls_solve()</a>, <a class="el" href="ls__solve_8cpp-source.html#l00477">itpp::ls_solve_od()</a>, and <a class="el" href="ls__solve_8cpp-source.html#l00639">itpp::ls_solve_ud()</a>.</p>
356
357</div>
358</div><p>
359<a class="anchor" name="g0554bdde3c5e93abef3a11d45235d3da"></a><!-- doxytag: member="itpp::backslash" ref="g0554bdde3c5e93abef3a11d45235d3da" args="(const mat &amp;A, const mat &amp;B)" -->
360<div class="memitem">
361<div class="memproto">
362      <table class="memname">
363        <tr>
364          <td class="memname"><a class="el" href="classitpp_1_1Mat.html#6bba394f181c76fda12759568986c613">mat</a> itpp::backslash           </td>
365          <td>(</td>
366          <td class="paramtype">const <a class="el" href="classitpp_1_1Mat.html#6bba394f181c76fda12759568986c613">mat</a> &amp;&nbsp;</td>
367          <td class="paramname"> <em>A</em>, </td>
368        </tr>
369        <tr>
370          <td class="paramkey"></td>
371          <td></td>
372          <td class="paramtype">const <a class="el" href="classitpp_1_1Mat.html#6bba394f181c76fda12759568986c613">mat</a> &amp;&nbsp;</td>
373          <td class="paramname"> <em>B</em></td><td>&nbsp;</td>
374        </tr>
375        <tr>
376          <td></td>
377          <td>)</td>
378          <td></td><td></td><td></td>
379        </tr>
380      </table>
381</div>
382<div class="memdoc">
383
384<p>
385A general linear equation system solver.
386<p>
387Tries to emulate the backslash operator in Matlab by calling ls_solve(A,B), ls_solve_od(A,B), or ls_solve_ud(A,B).
388<p>References <a class="el" href="ls__solve_8cpp-source.html#l00744">itpp::backslash()</a>, and <a class="el" href="itassert_8h-source.html#l00107">it_assert_debug</a>.</p>
389
390</div>
391</div><p>
392<a class="anchor" name="g254891271fb32587592d21b6b771ad85"></a><!-- doxytag: member="itpp::backslash" ref="g254891271fb32587592d21b6b771ad85" args="(const mat &amp;A, const mat &amp;B, mat &amp;X)" -->
393<div class="memitem">
394<div class="memproto">
395      <table class="memname">
396        <tr>
397          <td class="memname">bool itpp::backslash           </td>
398          <td>(</td>
399          <td class="paramtype">const <a class="el" href="classitpp_1_1Mat.html#6bba394f181c76fda12759568986c613">mat</a> &amp;&nbsp;</td>
400          <td class="paramname"> <em>A</em>, </td>
401        </tr>
402        <tr>
403          <td class="paramkey"></td>
404          <td></td>
405          <td class="paramtype">const <a class="el" href="classitpp_1_1Mat.html#6bba394f181c76fda12759568986c613">mat</a> &amp;&nbsp;</td>
406          <td class="paramname"> <em>B</em>, </td>
407        </tr>
408        <tr>
409          <td class="paramkey"></td>
410          <td></td>
411          <td class="paramtype"><a class="el" href="classitpp_1_1Mat.html#6bba394f181c76fda12759568986c613">mat</a> &amp;&nbsp;</td>
412          <td class="paramname"> <em>X</em></td><td>&nbsp;</td>
413        </tr>
414        <tr>
415          <td></td>
416          <td>)</td>
417          <td></td><td></td><td></td>
418        </tr>
419      </table>
420</div>
421<div class="memdoc">
422
423<p>
424A general linear equation system solver.
425<p>
426Tries to emulate the backslash operator in Matlab by calling ls_solve(A,B,X), ls_solve_od(A,B,X), or ls_solve_ud(A,B,X).
427<p>References <a class="el" href="ls__solve_8cpp-source.html#l00321">itpp::ls_solve()</a>, <a class="el" href="ls__solve_8cpp-source.html#l00477">itpp::ls_solve_od()</a>, and <a class="el" href="ls__solve_8cpp-source.html#l00639">itpp::ls_solve_ud()</a>.</p>
428
429</div>
430</div><p>
431<a class="anchor" name="gc93ca026801d8de27ec8378f01b06eda"></a><!-- doxytag: member="itpp::backslash" ref="gc93ca026801d8de27ec8378f01b06eda" args="(const mat &amp;A, const vec &amp;b)" -->
432<div class="memitem">
433<div class="memproto">
434      <table class="memname">
435        <tr>
436          <td class="memname"><a class="el" href="classitpp_1_1Vec.html#02e1bb55f60f3c2eb7a020eb1c2cfcf4">vec</a> itpp::backslash           </td>
437          <td>(</td>
438          <td class="paramtype">const <a class="el" href="classitpp_1_1Mat.html#6bba394f181c76fda12759568986c613">mat</a> &amp;&nbsp;</td>
439          <td class="paramname"> <em>A</em>, </td>
440        </tr>
441        <tr>
442          <td class="paramkey"></td>
443          <td></td>
444          <td class="paramtype">const <a class="el" href="classitpp_1_1Vec.html#02e1bb55f60f3c2eb7a020eb1c2cfcf4">vec</a> &amp;&nbsp;</td>
445          <td class="paramname"> <em>b</em></td><td>&nbsp;</td>
446        </tr>
447        <tr>
448          <td></td>
449          <td>)</td>
450          <td></td><td></td><td></td>
451        </tr>
452      </table>
453</div>
454<div class="memdoc">
455
456<p>
457A general linear equation system solver.
458<p>
459Tries to emulate the backslash operator in Matlab by calling ls_solve(A,b), ls_solve_od(A,b) or ls_solve_ud(A,b)
460<p>References <a class="el" href="ls__solve_8cpp-source.html#l00744">itpp::backslash()</a>, and <a class="el" href="itassert_8h-source.html#l00107">it_assert_debug</a>.</p>
461
462</div>
463</div><p>
464<a class="anchor" name="g523a45a9e50832ea218e34fff1a55db0"></a><!-- doxytag: member="itpp::backslash" ref="g523a45a9e50832ea218e34fff1a55db0" args="(const mat &amp;A, const vec &amp;b, vec &amp;x)" -->
465<div class="memitem">
466<div class="memproto">
467      <table class="memname">
468        <tr>
469          <td class="memname">bool itpp::backslash           </td>
470          <td>(</td>
471          <td class="paramtype">const <a class="el" href="classitpp_1_1Mat.html#6bba394f181c76fda12759568986c613">mat</a> &amp;&nbsp;</td>
472          <td class="paramname"> <em>A</em>, </td>
473        </tr>
474        <tr>
475          <td class="paramkey"></td>
476          <td></td>
477          <td class="paramtype">const <a class="el" href="classitpp_1_1Vec.html#02e1bb55f60f3c2eb7a020eb1c2cfcf4">vec</a> &amp;&nbsp;</td>
478          <td class="paramname"> <em>b</em>, </td>
479        </tr>
480        <tr>
481          <td class="paramkey"></td>
482          <td></td>
483          <td class="paramtype"><a class="el" href="classitpp_1_1Vec.html#02e1bb55f60f3c2eb7a020eb1c2cfcf4">vec</a> &amp;&nbsp;</td>
484          <td class="paramname"> <em>x</em></td><td>&nbsp;</td>
485        </tr>
486        <tr>
487          <td></td>
488          <td>)</td>
489          <td></td><td></td><td></td>
490        </tr>
491      </table>
492</div>
493<div class="memdoc">
494
495<p>
496A general linear equation system solver.
497<p>
498Tries to emulate the backslash operator in Matlab by calling ls_solve(A,b,x), ls_solve_od(A,b,x) or ls_solve_ud(A,b,x)
499<p>References <a class="el" href="ls__solve_8cpp-source.html#l00321">itpp::ls_solve()</a>, <a class="el" href="ls__solve_8cpp-source.html#l00477">itpp::ls_solve_od()</a>, and <a class="el" href="ls__solve_8cpp-source.html#l00639">itpp::ls_solve_ud()</a>.</p>
500
501</div>
502</div><p>
503<a class="anchor" name="g4dc8a32c721296c2480fd991b8a570d1"></a><!-- doxytag: member="itpp::backward_substitution" ref="g4dc8a32c721296c2480fd991b8a570d1" args="(const mat &amp;U, int q, const vec &amp;b, vec &amp;x)" -->
504<div class="memitem">
505<div class="memproto">
506      <table class="memname">
507        <tr>
508          <td class="memname">void itpp::backward_substitution           </td>
509          <td>(</td>
510          <td class="paramtype">const <a class="el" href="classitpp_1_1Mat.html#6bba394f181c76fda12759568986c613">mat</a> &amp;&nbsp;</td>
511          <td class="paramname"> <em>U</em>, </td>
512        </tr>
513        <tr>
514          <td class="paramkey"></td>
515          <td></td>
516          <td class="paramtype">int&nbsp;</td>
517          <td class="paramname"> <em>q</em>, </td>
518        </tr>
519        <tr>
520          <td class="paramkey"></td>
521          <td></td>
522          <td class="paramtype">const <a class="el" href="classitpp_1_1Vec.html#02e1bb55f60f3c2eb7a020eb1c2cfcf4">vec</a> &amp;&nbsp;</td>
523          <td class="paramname"> <em>b</em>, </td>
524        </tr>
525        <tr>
526          <td class="paramkey"></td>
527          <td></td>
528          <td class="paramtype"><a class="el" href="classitpp_1_1Vec.html#02e1bb55f60f3c2eb7a020eb1c2cfcf4">vec</a> &amp;&nbsp;</td>
529          <td class="paramname"> <em>x</em></td><td>&nbsp;</td>
530        </tr>
531        <tr>
532          <td></td>
533          <td>)</td>
534          <td></td><td></td><td></td>
535        </tr>
536      </table>
537</div>
538<div class="memdoc">
539
540<p>
541Backward substitution of band matrix.
542<p>
543Solves Ux=b, where U is a upper triangular n by n matrix band-matrix with upper bandwidth q. Assumes that U is nonsingular. Requires about 2nq flops (if n &gt;&gt; q). Uses Alg. 4.3.3 in Golub &amp; van Loan "Matrix computations", 3rd ed., p. 153.
544<p>References <a class="el" href="itassert_8h-source.html#l00094">it_assert</a>, and <a class="el" href="tcp_8h-source.html#l00117">itpp::max()</a>.</p>
545
546<p>Referenced by <a class="el" href="ls__solve_8cpp-source.html#l00813">itpp::backward_substitution()</a>, <a class="el" href="libKF_8cpp-source.html#l00199">bdm::EKFCh::bayes()</a>, <a class="el" href="libKF_8cpp-source.html#l00130">bdm::KalmanCh::bayes()</a>, and <a class="el" href="libDC_8cpp-source.html#l00168">ldmat::invqform()</a>.</p>
547
548</div>
549</div><p>
550<a class="anchor" name="g4d266602981eb46a9f733c55dc1fd7a2"></a><!-- doxytag: member="itpp::backward_substitution" ref="g4d266602981eb46a9f733c55dc1fd7a2" args="(const mat &amp;U, int q, const vec &amp;b)" -->
551<div class="memitem">
552<div class="memproto">
553      <table class="memname">
554        <tr>
555          <td class="memname"><a class="el" href="classitpp_1_1Vec.html#02e1bb55f60f3c2eb7a020eb1c2cfcf4">vec</a> itpp::backward_substitution           </td>
556          <td>(</td>
557          <td class="paramtype">const <a class="el" href="classitpp_1_1Mat.html#6bba394f181c76fda12759568986c613">mat</a> &amp;&nbsp;</td>
558          <td class="paramname"> <em>U</em>, </td>
559        </tr>
560        <tr>
561          <td class="paramkey"></td>
562          <td></td>
563          <td class="paramtype">int&nbsp;</td>
564          <td class="paramname"> <em>q</em>, </td>
565        </tr>
566        <tr>
567          <td class="paramkey"></td>
568          <td></td>
569          <td class="paramtype">const <a class="el" href="classitpp_1_1Vec.html#02e1bb55f60f3c2eb7a020eb1c2cfcf4">vec</a> &amp;&nbsp;</td>
570          <td class="paramname"> <em>b</em></td><td>&nbsp;</td>
571        </tr>
572        <tr>
573          <td></td>
574          <td>)</td>
575          <td></td><td></td><td></td>
576        </tr>
577      </table>
578</div>
579<div class="memdoc">
580
581<p>
582Backward substitution of band matrix.
583<p>
584Solves Ux=b, where U is a upper triangular n by n matrix band-matrix with upper bandwidth q. Assumes that U is nonsingular. Requires about 2nq flops (if n &gt;&gt; q). Uses Alg. 4.3.3 in Golub &amp; van Loan "Matrix computations", 3rd ed., p. 153.
585<p>References <a class="el" href="ls__solve_8cpp-source.html#l00850">itpp::backward_substitution()</a>.</p>
586
587</div>
588</div><p>
589<a class="anchor" name="gcd34872e3a3b23f4cd20647a348bbe22"></a><!-- doxytag: member="itpp::backward_substitution" ref="gcd34872e3a3b23f4cd20647a348bbe22" args="(const mat &amp;U, const vec &amp;b, vec &amp;x)" -->
590<div class="memitem">
591<div class="memproto">
592      <table class="memname">
593        <tr>
594          <td class="memname">void itpp::backward_substitution           </td>
595          <td>(</td>
596          <td class="paramtype">const <a class="el" href="classitpp_1_1Mat.html#6bba394f181c76fda12759568986c613">mat</a> &amp;&nbsp;</td>
597          <td class="paramname"> <em>U</em>, </td>
598        </tr>
599        <tr>
600          <td class="paramkey"></td>
601          <td></td>
602          <td class="paramtype">const <a class="el" href="classitpp_1_1Vec.html#02e1bb55f60f3c2eb7a020eb1c2cfcf4">vec</a> &amp;&nbsp;</td>
603          <td class="paramname"> <em>b</em>, </td>
604        </tr>
605        <tr>
606          <td class="paramkey"></td>
607          <td></td>
608          <td class="paramtype"><a class="el" href="classitpp_1_1Vec.html#02e1bb55f60f3c2eb7a020eb1c2cfcf4">vec</a> &amp;&nbsp;</td>
609          <td class="paramname"> <em>x</em></td><td>&nbsp;</td>
610        </tr>
611        <tr>
612          <td></td>
613          <td>)</td>
614          <td></td><td></td><td></td>
615        </tr>
616      </table>
617</div>
618<div class="memdoc">
619
620<p>
621Backward substitution of square matrix.
622<p>
623Solves Ux=b, where U is a upper triangular n by n matrix. Assumes that U is nonsingular. Requires n^2 flops. Uses Alg. 3.1.2 in Golub &amp; van Loan "Matrix computations", 3rd ed., p. 89.
624<p>References <a class="el" href="itassert_8h-source.html#l00094">it_assert</a>.</p>
625
626</div>
627</div><p>
628<a class="anchor" name="g4fe9c0b4ef9b22132956d99ccedd804d"></a><!-- doxytag: member="itpp::backward_substitution" ref="g4fe9c0b4ef9b22132956d99ccedd804d" args="(const mat &amp;U, const vec &amp;b)" -->
629<div class="memitem">
630<div class="memproto">
631      <table class="memname">
632        <tr>
633          <td class="memname"><a class="el" href="classitpp_1_1Vec.html#02e1bb55f60f3c2eb7a020eb1c2cfcf4">vec</a> itpp::backward_substitution           </td>
634          <td>(</td>
635          <td class="paramtype">const <a class="el" href="classitpp_1_1Mat.html#6bba394f181c76fda12759568986c613">mat</a> &amp;&nbsp;</td>
636          <td class="paramname"> <em>U</em>, </td>
637        </tr>
638        <tr>
639          <td class="paramkey"></td>
640          <td></td>
641          <td class="paramtype">const <a class="el" href="classitpp_1_1Vec.html#02e1bb55f60f3c2eb7a020eb1c2cfcf4">vec</a> &amp;&nbsp;</td>
642          <td class="paramname"> <em>b</em></td><td>&nbsp;</td>
643        </tr>
644        <tr>
645          <td></td>
646          <td>)</td>
647          <td></td><td></td><td></td>
648        </tr>
649      </table>
650</div>
651<div class="memdoc">
652
653<p>
654Backward substitution of square matrix.
655<p>
656Solves Ux=b, where U is a upper triangular n by n matrix. Assumes that U is nonsingular. Requires n^2 flops. Uses Alg. 3.1.2 in Golub &amp; van Loan "Matrix computations", 3rd ed., p. 89.
657<p>References <a class="el" href="ls__solve_8cpp-source.html#l00850">itpp::backward_substitution()</a>.</p>
658
659</div>
660</div><p>
661<a class="anchor" name="g8c7d440ecb34fd3d1c6f015fe4877ff7"></a><!-- doxytag: member="itpp::forward_substitution" ref="g8c7d440ecb34fd3d1c6f015fe4877ff7" args="(const mat &amp;L, int p, const vec &amp;b, vec &amp;x)" -->
662<div class="memitem">
663<div class="memproto">
664      <table class="memname">
665        <tr>
666          <td class="memname">void itpp::forward_substitution           </td>
667          <td>(</td>
668          <td class="paramtype">const <a class="el" href="classitpp_1_1Mat.html#6bba394f181c76fda12759568986c613">mat</a> &amp;&nbsp;</td>
669          <td class="paramname"> <em>L</em>, </td>
670        </tr>
671        <tr>
672          <td class="paramkey"></td>
673          <td></td>
674          <td class="paramtype">int&nbsp;</td>
675          <td class="paramname"> <em>p</em>, </td>
676        </tr>
677        <tr>
678          <td class="paramkey"></td>
679          <td></td>
680          <td class="paramtype">const <a class="el" href="classitpp_1_1Vec.html#02e1bb55f60f3c2eb7a020eb1c2cfcf4">vec</a> &amp;&nbsp;</td>
681          <td class="paramname"> <em>b</em>, </td>
682        </tr>
683        <tr>
684          <td class="paramkey"></td>
685          <td></td>
686          <td class="paramtype"><a class="el" href="classitpp_1_1Vec.html#02e1bb55f60f3c2eb7a020eb1c2cfcf4">vec</a> &amp;&nbsp;</td>
687          <td class="paramname"> <em>x</em></td><td>&nbsp;</td>
688        </tr>
689        <tr>
690          <td></td>
691          <td>)</td>
692          <td></td><td></td><td></td>
693        </tr>
694      </table>
695</div>
696<div class="memdoc">
697
698<p>
699Forward substitution of band matrices.
700<p>
701Solves Lx=b, where L is a lower triangular n by n band-matrix with lower bandwidth p. Assumes that L is nonsingular. Requires about 2np flops (if n &gt;&gt; p). Uses Alg. 4.3.2 in Golub &amp; van Loan "Matrix computations", 3rd ed., p. 153.
702<p>References <a class="el" href="itassert_8h-source.html#l00094">it_assert</a>, and <a class="el" href="tcp_8h-source.html#l00115">itpp::min()</a>.</p>
703
704<p>Referenced by <a class="el" href="ls__solve_8cpp-source.html#l00756">itpp::forward_substitution()</a>, and <a class="el" href="chmat_8cpp-source.html#l00040">chmat::invqform()</a>.</p>
705
706</div>
707</div><p>
708<a class="anchor" name="g118cc3706a66f4627206d889bfa8db82"></a><!-- doxytag: member="itpp::forward_substitution" ref="g118cc3706a66f4627206d889bfa8db82" args="(const mat &amp;L, int p, const vec &amp;b)" -->
709<div class="memitem">
710<div class="memproto">
711      <table class="memname">
712        <tr>
713          <td class="memname"><a class="el" href="classitpp_1_1Vec.html#02e1bb55f60f3c2eb7a020eb1c2cfcf4">vec</a> itpp::forward_substitution           </td>
714          <td>(</td>
715          <td class="paramtype">const <a class="el" href="classitpp_1_1Mat.html#6bba394f181c76fda12759568986c613">mat</a> &amp;&nbsp;</td>
716          <td class="paramname"> <em>L</em>, </td>
717        </tr>
718        <tr>
719          <td class="paramkey"></td>
720          <td></td>
721          <td class="paramtype">int&nbsp;</td>
722          <td class="paramname"> <em>p</em>, </td>
723        </tr>
724        <tr>
725          <td class="paramkey"></td>
726          <td></td>
727          <td class="paramtype">const <a class="el" href="classitpp_1_1Vec.html#02e1bb55f60f3c2eb7a020eb1c2cfcf4">vec</a> &amp;&nbsp;</td>
728          <td class="paramname"> <em>b</em></td><td>&nbsp;</td>
729        </tr>
730        <tr>
731          <td></td>
732          <td>)</td>
733          <td></td><td></td><td></td>
734        </tr>
735      </table>
736</div>
737<div class="memdoc">
738
739<p>
740Forward substitution of band matrices.
741<p>
742Solves Lx=b, where L is a lower triangular n by n band-matrix with lower bandwidth p. Assumes that L is nonsingular. Requires about 2np flops (if n &gt;&gt; p). Uses Alg. 4.3.2 in Golub &amp; van Loan "Matrix computations", 3rd ed., p. 153.
743<p>References <a class="el" href="ls__solve_8cpp-source.html#l00797">itpp::forward_substitution()</a>.</p>
744
745</div>
746</div><p>
747<a class="anchor" name="gc7c3161dea713d70d5d599a835b0638f"></a><!-- doxytag: member="itpp::forward_substitution" ref="gc7c3161dea713d70d5d599a835b0638f" args="(const mat &amp;L, const vec &amp;b, vec &amp;x)" -->
748<div class="memitem">
749<div class="memproto">
750      <table class="memname">
751        <tr>
752          <td class="memname">void itpp::forward_substitution           </td>
753          <td>(</td>
754          <td class="paramtype">const <a class="el" href="classitpp_1_1Mat.html#6bba394f181c76fda12759568986c613">mat</a> &amp;&nbsp;</td>
755          <td class="paramname"> <em>L</em>, </td>
756        </tr>
757        <tr>
758          <td class="paramkey"></td>
759          <td></td>
760          <td class="paramtype">const <a class="el" href="classitpp_1_1Vec.html#02e1bb55f60f3c2eb7a020eb1c2cfcf4">vec</a> &amp;&nbsp;</td>
761          <td class="paramname"> <em>b</em>, </td>
762        </tr>
763        <tr>
764          <td class="paramkey"></td>
765          <td></td>
766          <td class="paramtype"><a class="el" href="classitpp_1_1Vec.html#02e1bb55f60f3c2eb7a020eb1c2cfcf4">vec</a> &amp;&nbsp;</td>
767          <td class="paramname"> <em>x</em></td><td>&nbsp;</td>
768        </tr>
769        <tr>
770          <td></td>
771          <td>)</td>
772          <td></td><td></td><td></td>
773        </tr>
774      </table>
775</div>
776<div class="memdoc">
777
778<p>
779Forward substitution of square matrix.
780<p>
781Solves Lx=b, where L is a lower triangular n by n matrix. Assumes that L is nonsingular. Requires n^2 flops. Uses Alg. 3.1.1 in Golub &amp; van Loan "Matrix computations", 3rd ed., p. 89.
782<p>References <a class="el" href="itassert_8h-source.html#l00094">it_assert</a>.</p>
783
784</div>
785</div><p>
786<a class="anchor" name="g06f1de8cabe1784c5a6d8e0704762421"></a><!-- doxytag: member="itpp::forward_substitution" ref="g06f1de8cabe1784c5a6d8e0704762421" args="(const mat &amp;L, const vec &amp;b)" -->
787<div class="memitem">
788<div class="memproto">
789      <table class="memname">
790        <tr>
791          <td class="memname"><a class="el" href="classitpp_1_1Vec.html#02e1bb55f60f3c2eb7a020eb1c2cfcf4">vec</a> itpp::forward_substitution           </td>
792          <td>(</td>
793          <td class="paramtype">const <a class="el" href="classitpp_1_1Mat.html#6bba394f181c76fda12759568986c613">mat</a> &amp;&nbsp;</td>
794          <td class="paramname"> <em>L</em>, </td>
795        </tr>
796        <tr>
797          <td class="paramkey"></td>
798          <td></td>
799          <td class="paramtype">const <a class="el" href="classitpp_1_1Vec.html#02e1bb55f60f3c2eb7a020eb1c2cfcf4">vec</a> &amp;&nbsp;</td>
800          <td class="paramname"> <em>b</em></td><td>&nbsp;</td>
801        </tr>
802        <tr>
803          <td></td>
804          <td>)</td>
805          <td></td><td></td><td></td>
806        </tr>
807      </table>
808</div>
809<div class="memdoc">
810
811<p>
812Forward substitution of square matrix.
813<p>
814Solves Lx=b, where L is a lower triangular n by n matrix. Assumes that L is nonsingular. Requires n^2 flops. Uses Alg. 3.1.1 in Golub &amp; van Loan "Matrix computations", 3rd ed., p. 89.
815<p>References <a class="el" href="ls__solve_8cpp-source.html#l00797">itpp::forward_substitution()</a>.</p>
816
817</div>
818</div><p>
819<a class="anchor" name="g66c689c7c7dd59dcc617297e9e09674c"></a><!-- doxytag: member="itpp::ls_solve" ref="g66c689c7c7dd59dcc617297e9e09674c" args="(const cmat &amp;A, const cmat &amp;B)" -->
820<div class="memitem">
821<div class="memproto">
822      <table class="memname">
823        <tr>
824          <td class="memname"><a class="el" href="classitpp_1_1Mat.html#6fbac4b7184807da188e5b85d42f038b">cmat</a> itpp::ls_solve           </td>
825          <td>(</td>
826          <td class="paramtype">const <a class="el" href="classitpp_1_1Mat.html#6fbac4b7184807da188e5b85d42f038b">cmat</a> &amp;&nbsp;</td>
827          <td class="paramname"> <em>A</em>, </td>
828        </tr>
829        <tr>
830          <td class="paramkey"></td>
831          <td></td>
832          <td class="paramtype">const <a class="el" href="classitpp_1_1Mat.html#6fbac4b7184807da188e5b85d42f038b">cmat</a> &amp;&nbsp;</td>
833          <td class="paramname"> <em>B</em></td><td>&nbsp;</td>
834        </tr>
835        <tr>
836          <td></td>
837          <td>)</td>
838          <td></td><td></td><td></td>
839        </tr>
840      </table>
841</div>
842<div class="memdoc">
843
844<p>
845Solve multiple linear equations by LU factorisation.
846<p>
847Solves the linear system <img class="formulaInl" alt="$AX=B$" src="form_139.png">. Here <img class="formulaInl" alt="$A$" src="form_138.png"> is a nonsingular <img class="formulaInl" alt="$n \times n$" src="form_126.png"> matrix. Uses the LAPACK routine ZGESV.
848<p>References <a class="el" href="itassert_8h-source.html#l00107">it_assert_debug</a>.</p>
849
850<p>Referenced by <a class="el" href="ls__solve_8cpp-source.html#l00651">itpp::backslash()</a>, and <a class="el" href="ls__solve_8cpp-source.html#l00294">itpp::ls_solve()</a>.</p>
851
852</div>
853</div><p>
854<a class="anchor" name="gdc73f49e6f97f745b446a217801e8e76"></a><!-- doxytag: member="itpp::ls_solve" ref="gdc73f49e6f97f745b446a217801e8e76" args="(const cmat &amp;A, const cmat &amp;B, cmat &amp;X)" -->
855<div class="memitem">
856<div class="memproto">
857      <table class="memname">
858        <tr>
859          <td class="memname">bool itpp::ls_solve           </td>
860          <td>(</td>
861          <td class="paramtype">const <a class="el" href="classitpp_1_1Mat.html#6fbac4b7184807da188e5b85d42f038b">cmat</a> &amp;&nbsp;</td>
862          <td class="paramname"> <em>A</em>, </td>
863        </tr>
864        <tr>
865          <td class="paramkey"></td>
866          <td></td>
867          <td class="paramtype">const <a class="el" href="classitpp_1_1Mat.html#6fbac4b7184807da188e5b85d42f038b">cmat</a> &amp;&nbsp;</td>
868          <td class="paramname"> <em>B</em>, </td>
869        </tr>
870        <tr>
871          <td class="paramkey"></td>
872          <td></td>
873          <td class="paramtype"><a class="el" href="classitpp_1_1Mat.html#6fbac4b7184807da188e5b85d42f038b">cmat</a> &amp;&nbsp;</td>
874          <td class="paramname"> <em>X</em></td><td>&nbsp;</td>
875        </tr>
876        <tr>
877          <td></td>
878          <td>)</td>
879          <td></td><td></td><td></td>
880        </tr>
881      </table>
882</div>
883<div class="memdoc">
884
885<p>
886Solve multiple linear equations by LU factorisation.
887<p>
888Solves the linear system <img class="formulaInl" alt="$AX=B$" src="form_139.png">. Here <img class="formulaInl" alt="$A$" src="form_138.png"> is a nonsingular <img class="formulaInl" alt="$n \times n$" src="form_126.png"> matrix. Uses the LAPACK routine ZGESV.
889<p>References <a class="el" href="itassert_8h-source.html#l00126">it_error</a>.</p>
890
891</div>
892</div><p>
893<a class="anchor" name="g79433271fb193f777f1527680a1f1f47"></a><!-- doxytag: member="itpp::ls_solve" ref="g79433271fb193f777f1527680a1f1f47" args="(const cmat &amp;A, const cvec &amp;b)" -->
894<div class="memitem">
895<div class="memproto">
896      <table class="memname">
897        <tr>
898          <td class="memname"><a class="el" href="classitpp_1_1Vec.html#e83c1408740e41a7e29c383b71d4d544">cvec</a> itpp::ls_solve           </td>
899          <td>(</td>
900          <td class="paramtype">const <a class="el" href="classitpp_1_1Mat.html#6fbac4b7184807da188e5b85d42f038b">cmat</a> &amp;&nbsp;</td>
901          <td class="paramname"> <em>A</em>, </td>
902        </tr>
903        <tr>
904          <td class="paramkey"></td>
905          <td></td>
906          <td class="paramtype">const <a class="el" href="classitpp_1_1Vec.html#e83c1408740e41a7e29c383b71d4d544">cvec</a> &amp;&nbsp;</td>
907          <td class="paramname"> <em>b</em></td><td>&nbsp;</td>
908        </tr>
909        <tr>
910          <td></td>
911          <td>)</td>
912          <td></td><td></td><td></td>
913        </tr>
914      </table>
915</div>
916<div class="memdoc">
917
918<p>
919Solve linear equation system by LU factorisation.
920<p>
921Solves the linear system <img class="formulaInl" alt="$Ax=b$" src="form_137.png">, where <img class="formulaInl" alt="$A$" src="form_138.png"> is a <img class="formulaInl" alt="$n \times n$" src="form_126.png"> matrix. Uses the LAPACK routine ZGESV.
922<p>References <a class="el" href="itassert_8h-source.html#l00107">it_assert_debug</a>, and <a class="el" href="ls__solve_8cpp-source.html#l00321">itpp::ls_solve()</a>.</p>
923
924</div>
925</div><p>
926<a class="anchor" name="gf659f99b6d978e99a6109a4c4737d5e0"></a><!-- doxytag: member="itpp::ls_solve" ref="gf659f99b6d978e99a6109a4c4737d5e0" args="(const cmat &amp;A, const cvec &amp;b, cvec &amp;x)" -->
927<div class="memitem">
928<div class="memproto">
929      <table class="memname">
930        <tr>
931          <td class="memname">bool itpp::ls_solve           </td>
932          <td>(</td>
933          <td class="paramtype">const <a class="el" href="classitpp_1_1Mat.html#6fbac4b7184807da188e5b85d42f038b">cmat</a> &amp;&nbsp;</td>
934          <td class="paramname"> <em>A</em>, </td>
935        </tr>
936        <tr>
937          <td class="paramkey"></td>
938          <td></td>
939          <td class="paramtype">const <a class="el" href="classitpp_1_1Vec.html#e83c1408740e41a7e29c383b71d4d544">cvec</a> &amp;&nbsp;</td>
940          <td class="paramname"> <em>b</em>, </td>
941        </tr>
942        <tr>
943          <td class="paramkey"></td>
944          <td></td>
945          <td class="paramtype"><a class="el" href="classitpp_1_1Vec.html#e83c1408740e41a7e29c383b71d4d544">cvec</a> &amp;&nbsp;</td>
946          <td class="paramname"> <em>x</em></td><td>&nbsp;</td>
947        </tr>
948        <tr>
949          <td></td>
950          <td>)</td>
951          <td></td><td></td><td></td>
952        </tr>
953      </table>
954</div>
955<div class="memdoc">
956
957<p>
958Solve linear equation system by LU factorisation.
959<p>
960Solves the linear system <img class="formulaInl" alt="$Ax=b$" src="form_137.png">, where <img class="formulaInl" alt="$A$" src="form_138.png"> is a <img class="formulaInl" alt="$n \times n$" src="form_126.png"> matrix. Uses the LAPACK routine ZGESV.
961<p>References <a class="el" href="itassert_8h-source.html#l00126">it_error</a>.</p>
962
963</div>
964</div><p>
965<a class="anchor" name="g5eeed005edd07d42bdac76efb95a10ef"></a><!-- doxytag: member="itpp::ls_solve" ref="g5eeed005edd07d42bdac76efb95a10ef" args="(const mat &amp;A, const mat &amp;B)" -->
966<div class="memitem">
967<div class="memproto">
968      <table class="memname">
969        <tr>
970          <td class="memname"><a class="el" href="classitpp_1_1Mat.html#6bba394f181c76fda12759568986c613">mat</a> itpp::ls_solve           </td>
971          <td>(</td>
972          <td class="paramtype">const <a class="el" href="classitpp_1_1Mat.html#6bba394f181c76fda12759568986c613">mat</a> &amp;&nbsp;</td>
973          <td class="paramname"> <em>A</em>, </td>
974        </tr>
975        <tr>
976          <td class="paramkey"></td>
977          <td></td>
978          <td class="paramtype">const <a class="el" href="classitpp_1_1Mat.html#6bba394f181c76fda12759568986c613">mat</a> &amp;&nbsp;</td>
979          <td class="paramname"> <em>B</em></td><td>&nbsp;</td>
980        </tr>
981        <tr>
982          <td></td>
983          <td>)</td>
984          <td></td><td></td><td></td>
985        </tr>
986      </table>
987</div>
988<div class="memdoc">
989
990<p>
991Solve multiple linear equations by LU factorisation.
992<p>
993Solves the linear system <img class="formulaInl" alt="$AX=B$" src="form_139.png">. Here <img class="formulaInl" alt="$A$" src="form_138.png"> is a nonsingular <img class="formulaInl" alt="$n \times n$" src="form_126.png"> matrix. Uses the LAPACK routine DGESV.
994<p>References <a class="el" href="itassert_8h-source.html#l00107">it_assert_debug</a>, and <a class="el" href="ls__solve_8cpp-source.html#l00321">itpp::ls_solve()</a>.</p>
995
996</div>
997</div><p>
998<a class="anchor" name="g0e8044324a0dab0ab034bb7d969d3545"></a><!-- doxytag: member="itpp::ls_solve" ref="g0e8044324a0dab0ab034bb7d969d3545" args="(const mat &amp;A, const mat &amp;B, mat &amp;X)" -->
999<div class="memitem">
1000<div class="memproto">
1001      <table class="memname">
1002        <tr>
1003          <td class="memname">bool itpp::ls_solve           </td>
1004          <td>(</td>
1005          <td class="paramtype">const <a class="el" href="classitpp_1_1Mat.html#6bba394f181c76fda12759568986c613">mat</a> &amp;&nbsp;</td>
1006          <td class="paramname"> <em>A</em>, </td>
1007        </tr>
1008        <tr>
1009          <td class="paramkey"></td>
1010          <td></td>
1011          <td class="paramtype">const <a class="el" href="classitpp_1_1Mat.html#6bba394f181c76fda12759568986c613">mat</a> &amp;&nbsp;</td>
1012          <td class="paramname"> <em>B</em>, </td>
1013        </tr>
1014        <tr>
1015          <td class="paramkey"></td>
1016          <td></td>
1017          <td class="paramtype"><a class="el" href="classitpp_1_1Mat.html#6bba394f181c76fda12759568986c613">mat</a> &amp;&nbsp;</td>
1018          <td class="paramname"> <em>X</em></td><td>&nbsp;</td>
1019        </tr>
1020        <tr>
1021          <td></td>
1022          <td>)</td>
1023          <td></td><td></td><td></td>
1024        </tr>
1025      </table>
1026</div>
1027<div class="memdoc">
1028
1029<p>
1030Solve multiple linear equations by LU factorisation.
1031<p>
1032Solves the linear system <img class="formulaInl" alt="$AX=B$" src="form_139.png">. Here <img class="formulaInl" alt="$A$" src="form_138.png"> is a nonsingular <img class="formulaInl" alt="$n \times n$" src="form_126.png"> matrix. Uses the LAPACK routine DGESV.
1033<p>References <a class="el" href="itassert_8h-source.html#l00126">it_error</a>.</p>
1034
1035</div>
1036</div><p>
1037<a class="anchor" name="g2b851be69935d19a71af456172dcd66a"></a><!-- doxytag: member="itpp::ls_solve" ref="g2b851be69935d19a71af456172dcd66a" args="(const mat &amp;A, const vec &amp;b)" -->
1038<div class="memitem">
1039<div class="memproto">
1040      <table class="memname">
1041        <tr>
1042          <td class="memname"><a class="el" href="classitpp_1_1Vec.html#02e1bb55f60f3c2eb7a020eb1c2cfcf4">vec</a> itpp::ls_solve           </td>
1043          <td>(</td>
1044          <td class="paramtype">const <a class="el" href="classitpp_1_1Mat.html#6bba394f181c76fda12759568986c613">mat</a> &amp;&nbsp;</td>
1045          <td class="paramname"> <em>A</em>, </td>
1046        </tr>
1047        <tr>
1048          <td class="paramkey"></td>
1049          <td></td>
1050          <td class="paramtype">const <a class="el" href="classitpp_1_1Vec.html#02e1bb55f60f3c2eb7a020eb1c2cfcf4">vec</a> &amp;&nbsp;</td>
1051          <td class="paramname"> <em>b</em></td><td>&nbsp;</td>
1052        </tr>
1053        <tr>
1054          <td></td>
1055          <td>)</td>
1056          <td></td><td></td><td></td>
1057        </tr>
1058      </table>
1059</div>
1060<div class="memdoc">
1061
1062<p>
1063Solve linear equation system by LU factorisation.
1064<p>
1065Solves the linear system <img class="formulaInl" alt="$Ax=b$" src="form_137.png">, where <img class="formulaInl" alt="$A$" src="form_138.png"> is a <img class="formulaInl" alt="$n \times n$" src="form_126.png"> matrix. Uses the LAPACK routine DGESV.
1066<p>References <a class="el" href="itassert_8h-source.html#l00107">it_assert_debug</a>, and <a class="el" href="ls__solve_8cpp-source.html#l00321">itpp::ls_solve()</a>.</p>
1067
1068</div>
1069</div><p>
1070<a class="anchor" name="gd681464dcc43a1dd566a047a8703d1b0"></a><!-- doxytag: member="itpp::ls_solve" ref="gd681464dcc43a1dd566a047a8703d1b0" args="(const mat &amp;A, const vec &amp;b, vec &amp;x)" -->
1071<div class="memitem">
1072<div class="memproto">
1073      <table class="memname">
1074        <tr>
1075          <td class="memname">bool itpp::ls_solve           </td>
1076          <td>(</td>
1077          <td class="paramtype">const <a class="el" href="classitpp_1_1Mat.html#6bba394f181c76fda12759568986c613">mat</a> &amp;&nbsp;</td>
1078          <td class="paramname"> <em>A</em>, </td>
1079        </tr>
1080        <tr>
1081          <td class="paramkey"></td>
1082          <td></td>
1083          <td class="paramtype">const <a class="el" href="classitpp_1_1Vec.html#02e1bb55f60f3c2eb7a020eb1c2cfcf4">vec</a> &amp;&nbsp;</td>
1084          <td class="paramname"> <em>b</em>, </td>
1085        </tr>
1086        <tr>
1087          <td class="paramkey"></td>
1088          <td></td>
1089          <td class="paramtype"><a class="el" href="classitpp_1_1Vec.html#02e1bb55f60f3c2eb7a020eb1c2cfcf4">vec</a> &amp;&nbsp;</td>
1090          <td class="paramname"> <em>x</em></td><td>&nbsp;</td>
1091        </tr>
1092        <tr>
1093          <td></td>
1094          <td>)</td>
1095          <td></td><td></td><td></td>
1096        </tr>
1097      </table>
1098</div>
1099<div class="memdoc">
1100
1101<p>
1102Solve linear equation system by LU factorisation.
1103<p>
1104Solves the linear system <img class="formulaInl" alt="$Ax=b$" src="form_137.png">, where <img class="formulaInl" alt="$A$" src="form_138.png"> is a <img class="formulaInl" alt="$n \times n$" src="form_126.png"> matrix. Uses the LAPACK routine DGESV.
1105<p>References <a class="el" href="itassert_8h-source.html#l00126">it_error</a>.</p>
1106
1107</div>
1108</div><p>
1109<a class="anchor" name="g682ef1051b2386ed6e47c328617f46d1"></a><!-- doxytag: member="itpp::ls_solve_chol" ref="g682ef1051b2386ed6e47c328617f46d1" args="(const cmat &amp;A, const cmat &amp;B)" -->
1110<div class="memitem">
1111<div class="memproto">
1112      <table class="memname">
1113        <tr>
1114          <td class="memname"><a class="el" href="classitpp_1_1Mat.html#6fbac4b7184807da188e5b85d42f038b">cmat</a> itpp::ls_solve_chol           </td>
1115          <td>(</td>
1116          <td class="paramtype">const <a class="el" href="classitpp_1_1Mat.html#6fbac4b7184807da188e5b85d42f038b">cmat</a> &amp;&nbsp;</td>
1117          <td class="paramname"> <em>A</em>, </td>
1118        </tr>
1119        <tr>
1120          <td class="paramkey"></td>
1121          <td></td>
1122          <td class="paramtype">const <a class="el" href="classitpp_1_1Mat.html#6fbac4b7184807da188e5b85d42f038b">cmat</a> &amp;&nbsp;</td>
1123          <td class="paramname"> <em>B</em></td><td>&nbsp;</td>
1124        </tr>
1125        <tr>
1126          <td></td>
1127          <td>)</td>
1128          <td></td><td></td><td></td>
1129        </tr>
1130      </table>
1131</div>
1132<div class="memdoc">
1133
1134<p>
1135Solve linear equation system by Cholesky factorisation.
1136<p>
1137Solves the linear system <img class="formulaInl" alt="$AX=B$" src="form_139.png">, where <img class="formulaInl" alt="$A$" src="form_138.png"> is a Hermitian positive definite <img class="formulaInl" alt="$n \times n$" src="form_126.png"> matrix. Uses the LAPACK routine ZPOSV.
1138<p>References <a class="el" href="itassert_8h-source.html#l00107">it_assert_debug</a>.</p>
1139
1140<p>Referenced by <a class="el" href="ls__solve_8cpp-source.html#l00154">itpp::ls_solve_chol()</a>.</p>
1141
1142</div>
1143</div><p>
1144<a class="anchor" name="g114a7fea819005a29739d244fd5a5a55"></a><!-- doxytag: member="itpp::ls_solve_chol" ref="g114a7fea819005a29739d244fd5a5a55" args="(const cmat &amp;A, const cmat &amp;B, cmat &amp;X)" -->
1145<div class="memitem">
1146<div class="memproto">
1147      <table class="memname">
1148        <tr>
1149          <td class="memname">bool itpp::ls_solve_chol           </td>
1150          <td>(</td>
1151          <td class="paramtype">const <a class="el" href="classitpp_1_1Mat.html#6fbac4b7184807da188e5b85d42f038b">cmat</a> &amp;&nbsp;</td>
1152          <td class="paramname"> <em>A</em>, </td>
1153        </tr>
1154        <tr>
1155          <td class="paramkey"></td>
1156          <td></td>
1157          <td class="paramtype">const <a class="el" href="classitpp_1_1Mat.html#6fbac4b7184807da188e5b85d42f038b">cmat</a> &amp;&nbsp;</td>
1158          <td class="paramname"> <em>B</em>, </td>
1159        </tr>
1160        <tr>
1161          <td class="paramkey"></td>
1162          <td></td>
1163          <td class="paramtype"><a class="el" href="classitpp_1_1Mat.html#6fbac4b7184807da188e5b85d42f038b">cmat</a> &amp;&nbsp;</td>
1164          <td class="paramname"> <em>X</em></td><td>&nbsp;</td>
1165        </tr>
1166        <tr>
1167          <td></td>
1168          <td>)</td>
1169          <td></td><td></td><td></td>
1170        </tr>
1171      </table>
1172</div>
1173<div class="memdoc">
1174
1175<p>
1176Solve linear equation system by Cholesky factorisation.
1177<p>
1178Solves the linear system <img class="formulaInl" alt="$AX=B$" src="form_139.png">, where <img class="formulaInl" alt="$A$" src="form_138.png"> is a Hermitian positive definite <img class="formulaInl" alt="$n \times n$" src="form_126.png"> matrix. Uses the LAPACK routine ZPOSV.
1179<p>References <a class="el" href="itassert_8h-source.html#l00126">it_error</a>.</p>
1180
1181</div>
1182</div><p>
1183<a class="anchor" name="gc19522b8a7120792c41acce0f3436893"></a><!-- doxytag: member="itpp::ls_solve_chol" ref="gc19522b8a7120792c41acce0f3436893" args="(const cmat &amp;A, const cvec &amp;b)" -->
1184<div class="memitem">
1185<div class="memproto">
1186      <table class="memname">
1187        <tr>
1188          <td class="memname"><a class="el" href="classitpp_1_1Vec.html#e83c1408740e41a7e29c383b71d4d544">cvec</a> itpp::ls_solve_chol           </td>
1189          <td>(</td>
1190          <td class="paramtype">const <a class="el" href="classitpp_1_1Mat.html#6fbac4b7184807da188e5b85d42f038b">cmat</a> &amp;&nbsp;</td>
1191          <td class="paramname"> <em>A</em>, </td>
1192        </tr>
1193        <tr>
1194          <td class="paramkey"></td>
1195          <td></td>
1196          <td class="paramtype">const <a class="el" href="classitpp_1_1Vec.html#e83c1408740e41a7e29c383b71d4d544">cvec</a> &amp;&nbsp;</td>
1197          <td class="paramname"> <em>b</em></td><td>&nbsp;</td>
1198        </tr>
1199        <tr>
1200          <td></td>
1201          <td>)</td>
1202          <td></td><td></td><td></td>
1203        </tr>
1204      </table>
1205</div>
1206<div class="memdoc">
1207
1208<p>
1209Solve linear equation system by Cholesky factorisation.
1210<p>
1211Solves the linear system <img class="formulaInl" alt="$Ax=b$" src="form_137.png">, where <img class="formulaInl" alt="$A$" src="form_138.png"> is a Hermitian positive definite <img class="formulaInl" alt="$n \times n$" src="form_126.png"> matrix. Uses the LAPACK routine ZPOSV.
1212<p>References <a class="el" href="itassert_8h-source.html#l00107">it_assert_debug</a>, and <a class="el" href="ls__solve_8cpp-source.html#l00181">itpp::ls_solve_chol()</a>.</p>
1213
1214</div>
1215</div><p>
1216<a class="anchor" name="g6a49b9cd956395fd93c5c4f550c2b1d6"></a><!-- doxytag: member="itpp::ls_solve_chol" ref="g6a49b9cd956395fd93c5c4f550c2b1d6" args="(const cmat &amp;A, const cvec &amp;b, cvec &amp;x)" -->
1217<div class="memitem">
1218<div class="memproto">
1219      <table class="memname">
1220        <tr>
1221          <td class="memname">bool itpp::ls_solve_chol           </td>
1222          <td>(</td>
1223          <td class="paramtype">const <a class="el" href="classitpp_1_1Mat.html#6fbac4b7184807da188e5b85d42f038b">cmat</a> &amp;&nbsp;</td>
1224          <td class="paramname"> <em>A</em>, </td>
1225        </tr>
1226        <tr>
1227          <td class="paramkey"></td>
1228          <td></td>
1229          <td class="paramtype">const <a class="el" href="classitpp_1_1Vec.html#e83c1408740e41a7e29c383b71d4d544">cvec</a> &amp;&nbsp;</td>
1230          <td class="paramname"> <em>b</em>, </td>
1231        </tr>
1232        <tr>
1233          <td class="paramkey"></td>
1234          <td></td>
1235          <td class="paramtype"><a class="el" href="classitpp_1_1Vec.html#e83c1408740e41a7e29c383b71d4d544">cvec</a> &amp;&nbsp;</td>
1236          <td class="paramname"> <em>x</em></td><td>&nbsp;</td>
1237        </tr>
1238        <tr>
1239          <td></td>
1240          <td>)</td>
1241          <td></td><td></td><td></td>
1242        </tr>
1243      </table>
1244</div>
1245<div class="memdoc">
1246
1247<p>
1248Solve linear equation system by Cholesky factorisation.
1249<p>
1250Solves the linear system <img class="formulaInl" alt="$Ax=b$" src="form_137.png">, where <img class="formulaInl" alt="$A$" src="form_138.png"> is a Hermitian positive definite <img class="formulaInl" alt="$n \times n$" src="form_126.png"> matrix. Uses the LAPACK routine ZPOSV.
1251<p>References <a class="el" href="itassert_8h-source.html#l00126">it_error</a>.</p>
1252
1253</div>
1254</div><p>
1255<a class="anchor" name="g7bdc6bb93ecfe978d4a422fa94c05156"></a><!-- doxytag: member="itpp::ls_solve_chol" ref="g7bdc6bb93ecfe978d4a422fa94c05156" args="(const mat &amp;A, const mat &amp;B)" -->
1256<div class="memitem">
1257<div class="memproto">
1258      <table class="memname">
1259        <tr>
1260          <td class="memname"><a class="el" href="classitpp_1_1Mat.html#6bba394f181c76fda12759568986c613">mat</a> itpp::ls_solve_chol           </td>
1261          <td>(</td>
1262          <td class="paramtype">const <a class="el" href="classitpp_1_1Mat.html#6bba394f181c76fda12759568986c613">mat</a> &amp;&nbsp;</td>
1263          <td class="paramname"> <em>A</em>, </td>
1264        </tr>
1265        <tr>
1266          <td class="paramkey"></td>
1267          <td></td>
1268          <td class="paramtype">const <a class="el" href="classitpp_1_1Mat.html#6bba394f181c76fda12759568986c613">mat</a> &amp;&nbsp;</td>
1269          <td class="paramname"> <em>B</em></td><td>&nbsp;</td>
1270        </tr>
1271        <tr>
1272          <td></td>
1273          <td>)</td>
1274          <td></td><td></td><td></td>
1275        </tr>
1276      </table>
1277</div>
1278<div class="memdoc">
1279
1280<p>
1281Solve linear equation system by Cholesky factorisation.
1282<p>
1283Solves the linear system <img class="formulaInl" alt="$AX=B$" src="form_139.png">, where <img class="formulaInl" alt="$A$" src="form_138.png"> is a symmetric positive definite <img class="formulaInl" alt="$n \times n$" src="form_126.png"> matrix. Uses the LAPACK routine DPOSV.
1284<p>References <a class="el" href="itassert_8h-source.html#l00107">it_assert_debug</a>, and <a class="el" href="ls__solve_8cpp-source.html#l00181">itpp::ls_solve_chol()</a>.</p>
1285
1286</div>
1287</div><p>
1288<a class="anchor" name="gbeee00983a1f1f68cd998aaebe32b1d2"></a><!-- doxytag: member="itpp::ls_solve_chol" ref="gbeee00983a1f1f68cd998aaebe32b1d2" args="(const mat &amp;A, const mat &amp;B, mat &amp;X)" -->
1289<div class="memitem">
1290<div class="memproto">
1291      <table class="memname">
1292        <tr>
1293          <td class="memname">bool itpp::ls_solve_chol           </td>
1294          <td>(</td>
1295          <td class="paramtype">const <a class="el" href="classitpp_1_1Mat.html#6bba394f181c76fda12759568986c613">mat</a> &amp;&nbsp;</td>
1296          <td class="paramname"> <em>A</em>, </td>
1297        </tr>
1298        <tr>
1299          <td class="paramkey"></td>
1300          <td></td>
1301          <td class="paramtype">const <a class="el" href="classitpp_1_1Mat.html#6bba394f181c76fda12759568986c613">mat</a> &amp;&nbsp;</td>
1302          <td class="paramname"> <em>B</em>, </td>
1303        </tr>
1304        <tr>
1305          <td class="paramkey"></td>
1306          <td></td>
1307          <td class="paramtype"><a class="el" href="classitpp_1_1Mat.html#6bba394f181c76fda12759568986c613">mat</a> &amp;&nbsp;</td>
1308          <td class="paramname"> <em>X</em></td><td>&nbsp;</td>
1309        </tr>
1310        <tr>
1311          <td></td>
1312          <td>)</td>
1313          <td></td><td></td><td></td>
1314        </tr>
1315      </table>
1316</div>
1317<div class="memdoc">
1318
1319<p>
1320Solve linear equation system by Cholesky factorisation.
1321<p>
1322Solves the linear system <img class="formulaInl" alt="$AX=B$" src="form_139.png">, where <img class="formulaInl" alt="$A$" src="form_138.png"> is a symmetric positive definite <img class="formulaInl" alt="$n \times n$" src="form_126.png"> matrix. Uses the LAPACK routine DPOSV.
1323<p>References <a class="el" href="itassert_8h-source.html#l00126">it_error</a>.</p>
1324
1325</div>
1326</div><p>
1327<a class="anchor" name="ga46b244841f3ec438f1e41191757be39"></a><!-- doxytag: member="itpp::ls_solve_chol" ref="ga46b244841f3ec438f1e41191757be39" args="(const mat &amp;A, const vec &amp;b)" -->
1328<div class="memitem">
1329<div class="memproto">
1330      <table class="memname">
1331        <tr>
1332          <td class="memname"><a class="el" href="classitpp_1_1Vec.html#02e1bb55f60f3c2eb7a020eb1c2cfcf4">vec</a> itpp::ls_solve_chol           </td>
1333          <td>(</td>
1334          <td class="paramtype">const <a class="el" href="classitpp_1_1Mat.html#6bba394f181c76fda12759568986c613">mat</a> &amp;&nbsp;</td>
1335          <td class="paramname"> <em>A</em>, </td>
1336        </tr>
1337        <tr>
1338          <td class="paramkey"></td>
1339          <td></td>
1340          <td class="paramtype">const <a class="el" href="classitpp_1_1Vec.html#02e1bb55f60f3c2eb7a020eb1c2cfcf4">vec</a> &amp;&nbsp;</td>
1341          <td class="paramname"> <em>b</em></td><td>&nbsp;</td>
1342        </tr>
1343        <tr>
1344          <td></td>
1345          <td>)</td>
1346          <td></td><td></td><td></td>
1347        </tr>
1348      </table>
1349</div>
1350<div class="memdoc">
1351
1352<p>
1353Solve linear equation system by Cholesky factorisation.
1354<p>
1355Solves the linear system <img class="formulaInl" alt="$Ax=b$" src="form_137.png">, where <img class="formulaInl" alt="$A$" src="form_138.png"> is a symmetric positive definite <img class="formulaInl" alt="$n \times n$" src="form_126.png"> matrix. Uses the LAPACK routine DPOSV.
1356<p>References <a class="el" href="itassert_8h-source.html#l00107">it_assert_debug</a>, and <a class="el" href="ls__solve_8cpp-source.html#l00181">itpp::ls_solve_chol()</a>.</p>
1357
1358</div>
1359</div><p>
1360<a class="anchor" name="g79c944eae1622c51102e29c710f599a6"></a><!-- doxytag: member="itpp::ls_solve_chol" ref="g79c944eae1622c51102e29c710f599a6" args="(const mat &amp;A, const vec &amp;b, vec &amp;x)" -->
1361<div class="memitem">
1362<div class="memproto">
1363      <table class="memname">
1364        <tr>
1365          <td class="memname">bool itpp::ls_solve_chol           </td>
1366          <td>(</td>
1367          <td class="paramtype">const <a class="el" href="classitpp_1_1Mat.html#6bba394f181c76fda12759568986c613">mat</a> &amp;&nbsp;</td>
1368          <td class="paramname"> <em>A</em>, </td>
1369        </tr>
1370        <tr>
1371          <td class="paramkey"></td>
1372          <td></td>
1373          <td class="paramtype">const <a class="el" href="classitpp_1_1Vec.html#02e1bb55f60f3c2eb7a020eb1c2cfcf4">vec</a> &amp;&nbsp;</td>
1374          <td class="paramname"> <em>b</em>, </td>
1375        </tr>
1376        <tr>
1377          <td class="paramkey"></td>
1378          <td></td>
1379          <td class="paramtype"><a class="el" href="classitpp_1_1Vec.html#02e1bb55f60f3c2eb7a020eb1c2cfcf4">vec</a> &amp;&nbsp;</td>
1380          <td class="paramname"> <em>x</em></td><td>&nbsp;</td>
1381        </tr>
1382        <tr>
1383          <td></td>
1384          <td>)</td>
1385          <td></td><td></td><td></td>
1386        </tr>
1387      </table>
1388</div>
1389<div class="memdoc">
1390
1391<p>
1392Solve linear equation system by Cholesky factorisation.
1393<p>
1394Solves the linear system <img class="formulaInl" alt="$Ax=b$" src="form_137.png">, where <img class="formulaInl" alt="$A$" src="form_138.png"> is a symmetric positive definite <img class="formulaInl" alt="$n \times n$" src="form_126.png"> matrix. Uses the LAPACK routine DPOSV.
1395<p>References <a class="el" href="itassert_8h-source.html#l00126">it_error</a>.</p>
1396
1397</div>
1398</div><p>
1399<a class="anchor" name="g60f41335126f7c70973f95ff8147fbfd"></a><!-- doxytag: member="itpp::ls_solve_od" ref="g60f41335126f7c70973f95ff8147fbfd" args="(const cmat &amp;A, const cmat &amp;B)" -->
1400<div class="memitem">
1401<div class="memproto">
1402      <table class="memname">
1403        <tr>
1404          <td class="memname"><a class="el" href="classitpp_1_1Mat.html#6fbac4b7184807da188e5b85d42f038b">cmat</a> itpp::ls_solve_od           </td>
1405          <td>(</td>
1406          <td class="paramtype">const <a class="el" href="classitpp_1_1Mat.html#6fbac4b7184807da188e5b85d42f038b">cmat</a> &amp;&nbsp;</td>
1407          <td class="paramname"> <em>A</em>, </td>
1408        </tr>
1409        <tr>
1410          <td class="paramkey"></td>
1411          <td></td>
1412          <td class="paramtype">const <a class="el" href="classitpp_1_1Mat.html#6fbac4b7184807da188e5b85d42f038b">cmat</a> &amp;&nbsp;</td>
1413          <td class="paramname"> <em>B</em></td><td>&nbsp;</td>
1414        </tr>
1415        <tr>
1416          <td></td>
1417          <td>)</td>
1418          <td></td><td></td><td></td>
1419        </tr>
1420      </table>
1421</div>
1422<div class="memdoc">
1423
1424<p>
1425Solves overdetermined linear equation systems.
1426<p>
1427Solves the overdetermined linear system <img class="formulaInl" alt="$AX=B$" src="form_139.png">, where <img class="formulaInl" alt="$A$" src="form_138.png"> is a <img class="formulaInl" alt="$m \times n$" src="form_140.png"> matrix and <img class="formulaInl" alt="$m \geq n$" src="form_141.png">. Uses QR-factorization and assumes that <img class="formulaInl" alt="$A$" src="form_138.png"> is full rank. Based on the LAPACK routine ZGELS.
1428<p>References <a class="el" href="itassert_8h-source.html#l00107">it_assert_debug</a>.</p>
1429
1430<p>Referenced by <a class="el" href="ls__solve_8cpp-source.html#l00651">itpp::backslash()</a>, and <a class="el" href="ls__solve_8cpp-source.html#l00450">itpp::ls_solve_od()</a>.</p>
1431
1432</div>
1433</div><p>
1434<a class="anchor" name="g4beeb59f1d32fc7c19b04ad3d7d5c210"></a><!-- doxytag: member="itpp::ls_solve_od" ref="g4beeb59f1d32fc7c19b04ad3d7d5c210" args="(const cmat &amp;A, const cmat &amp;B, cmat &amp;X)" -->
1435<div class="memitem">
1436<div class="memproto">
1437      <table class="memname">
1438        <tr>
1439          <td class="memname">bool itpp::ls_solve_od           </td>
1440          <td>(</td>
1441          <td class="paramtype">const <a class="el" href="classitpp_1_1Mat.html#6fbac4b7184807da188e5b85d42f038b">cmat</a> &amp;&nbsp;</td>
1442          <td class="paramname"> <em>A</em>, </td>
1443        </tr>
1444        <tr>
1445          <td class="paramkey"></td>
1446          <td></td>
1447          <td class="paramtype">const <a class="el" href="classitpp_1_1Mat.html#6fbac4b7184807da188e5b85d42f038b">cmat</a> &amp;&nbsp;</td>
1448          <td class="paramname"> <em>B</em>, </td>
1449        </tr>
1450        <tr>
1451          <td class="paramkey"></td>
1452          <td></td>
1453          <td class="paramtype"><a class="el" href="classitpp_1_1Mat.html#6fbac4b7184807da188e5b85d42f038b">cmat</a> &amp;&nbsp;</td>
1454          <td class="paramname"> <em>X</em></td><td>&nbsp;</td>
1455        </tr>
1456        <tr>
1457          <td></td>
1458          <td>)</td>
1459          <td></td><td></td><td></td>
1460        </tr>
1461      </table>
1462</div>
1463<div class="memdoc">
1464
1465<p>
1466Solves overdetermined linear equation systems.
1467<p>
1468Solves the overdetermined linear system <img class="formulaInl" alt="$AX=B$" src="form_139.png">, where <img class="formulaInl" alt="$A$" src="form_138.png"> is a <img class="formulaInl" alt="$m \times n$" src="form_140.png"> matrix and <img class="formulaInl" alt="$m \geq n$" src="form_141.png">. Uses QR-factorization and assumes that <img class="formulaInl" alt="$A$" src="form_138.png"> is full rank. Based on the LAPACK routine ZGELS.
1469<p>References <a class="el" href="itassert_8h-source.html#l00126">it_error</a>.</p>
1470
1471</div>
1472</div><p>
1473<a class="anchor" name="g221d32bcf3790e81bbc73001fb3c7d1c"></a><!-- doxytag: member="itpp::ls_solve_od" ref="g221d32bcf3790e81bbc73001fb3c7d1c" args="(const cmat &amp;A, const cvec &amp;b)" -->
1474<div class="memitem">
1475<div class="memproto">
1476      <table class="memname">
1477        <tr>
1478          <td class="memname"><a class="el" href="classitpp_1_1Vec.html#e83c1408740e41a7e29c383b71d4d544">cvec</a> itpp::ls_solve_od           </td>
1479          <td>(</td>
1480          <td class="paramtype">const <a class="el" href="classitpp_1_1Mat.html#6fbac4b7184807da188e5b85d42f038b">cmat</a> &amp;&nbsp;</td>
1481          <td class="paramname"> <em>A</em>, </td>
1482        </tr>
1483        <tr>
1484          <td class="paramkey"></td>
1485          <td></td>
1486          <td class="paramtype">const <a class="el" href="classitpp_1_1Vec.html#e83c1408740e41a7e29c383b71d4d544">cvec</a> &amp;&nbsp;</td>
1487          <td class="paramname"> <em>b</em></td><td>&nbsp;</td>
1488        </tr>
1489        <tr>
1490          <td></td>
1491          <td>)</td>
1492          <td></td><td></td><td></td>
1493        </tr>
1494      </table>
1495</div>
1496<div class="memdoc">
1497
1498<p>
1499Solves overdetermined linear equation systems.
1500<p>
1501Solves the overdetermined linear system <img class="formulaInl" alt="$Ax=b$" src="form_137.png">, where <img class="formulaInl" alt="$A$" src="form_138.png"> is a <img class="formulaInl" alt="$m \times n$" src="form_140.png"> matrix and <img class="formulaInl" alt="$m \geq n$" src="form_141.png">. Uses QR-factorization and assumes that <img class="formulaInl" alt="$A$" src="form_138.png"> is full rank. Based on the LAPACK routine ZGELS.
1502<p>References <a class="el" href="itassert_8h-source.html#l00107">it_assert_debug</a>, and <a class="el" href="ls__solve_8cpp-source.html#l00477">itpp::ls_solve_od()</a>.</p>
1503
1504</div>
1505</div><p>
1506<a class="anchor" name="g23ed5ee5dee16412e2751e9bcedb449d"></a><!-- doxytag: member="itpp::ls_solve_od" ref="g23ed5ee5dee16412e2751e9bcedb449d" args="(const cmat &amp;A, const cvec &amp;b, cvec &amp;x)" -->
1507<div class="memitem">
1508<div class="memproto">
1509      <table class="memname">
1510        <tr>
1511          <td class="memname">bool itpp::ls_solve_od           </td>
1512          <td>(</td>
1513          <td class="paramtype">const <a class="el" href="classitpp_1_1Mat.html#6fbac4b7184807da188e5b85d42f038b">cmat</a> &amp;&nbsp;</td>
1514          <td class="paramname"> <em>A</em>, </td>
1515        </tr>
1516        <tr>
1517          <td class="paramkey"></td>
1518          <td></td>
1519          <td class="paramtype">const <a class="el" href="classitpp_1_1Vec.html#e83c1408740e41a7e29c383b71d4d544">cvec</a> &amp;&nbsp;</td>
1520          <td class="paramname"> <em>b</em>, </td>
1521        </tr>
1522        <tr>
1523          <td class="paramkey"></td>
1524          <td></td>
1525          <td class="paramtype"><a class="el" href="classitpp_1_1Vec.html#e83c1408740e41a7e29c383b71d4d544">cvec</a> &amp;&nbsp;</td>
1526          <td class="paramname"> <em>x</em></td><td>&nbsp;</td>
1527        </tr>
1528        <tr>
1529          <td></td>
1530          <td>)</td>
1531          <td></td><td></td><td></td>
1532        </tr>
1533      </table>
1534</div>
1535<div class="memdoc">
1536
1537<p>
1538Solves overdetermined linear equation systems.
1539<p>
1540Solves the overdetermined linear system <img class="formulaInl" alt="$Ax=b$" src="form_137.png">, where <img class="formulaInl" alt="$A$" src="form_138.png"> is a <img class="formulaInl" alt="$m \times n$" src="form_140.png"> matrix and <img class="formulaInl" alt="$m \geq n$" src="form_141.png">. Uses QR-factorization and is built upon the LAPACK routine ZGELS.
1541<p>References <a class="el" href="itassert_8h-source.html#l00126">it_error</a>.</p>
1542
1543</div>
1544</div><p>
1545<a class="anchor" name="gd93074c8c7c9e3b98b2888365abe7fca"></a><!-- doxytag: member="itpp::ls_solve_od" ref="gd93074c8c7c9e3b98b2888365abe7fca" args="(const mat &amp;A, const mat &amp;B)" -->
1546<div class="memitem">
1547<div class="memproto">
1548      <table class="memname">
1549        <tr>
1550          <td class="memname"><a class="el" href="classitpp_1_1Mat.html#6bba394f181c76fda12759568986c613">mat</a> itpp::ls_solve_od           </td>
1551          <td>(</td>
1552          <td class="paramtype">const <a class="el" href="classitpp_1_1Mat.html#6bba394f181c76fda12759568986c613">mat</a> &amp;&nbsp;</td>
1553          <td class="paramname"> <em>A</em>, </td>
1554        </tr>
1555        <tr>
1556          <td class="paramkey"></td>
1557          <td></td>
1558          <td class="paramtype">const <a class="el" href="classitpp_1_1Mat.html#6bba394f181c76fda12759568986c613">mat</a> &amp;&nbsp;</td>
1559          <td class="paramname"> <em>B</em></td><td>&nbsp;</td>
1560        </tr>
1561        <tr>
1562          <td></td>
1563          <td>)</td>
1564          <td></td><td></td><td></td>
1565        </tr>
1566      </table>
1567</div>
1568<div class="memdoc">
1569
1570<p>
1571Solves overdetermined linear equation systems.
1572<p>
1573Solves the overdetermined linear system <img class="formulaInl" alt="$AX=B$" src="form_139.png">, where <img class="formulaInl" alt="$A$" src="form_138.png"> is a <img class="formulaInl" alt="$m \times n$" src="form_140.png"> matrix and <img class="formulaInl" alt="$m \geq n$" src="form_141.png">. Uses QR-factorization and assumes that <img class="formulaInl" alt="$A$" src="form_138.png"> is full rank. Based on the LAPACK routine DGELS.
1574<p>References <a class="el" href="itassert_8h-source.html#l00107">it_assert_debug</a>, and <a class="el" href="ls__solve_8cpp-source.html#l00477">itpp::ls_solve_od()</a>.</p>
1575
1576</div>
1577</div><p>
1578<a class="anchor" name="gfa445fa4f699c7ca17b7b6475d40969d"></a><!-- doxytag: member="itpp::ls_solve_od" ref="gfa445fa4f699c7ca17b7b6475d40969d" args="(const mat &amp;A, const mat &amp;B, mat &amp;X)" -->
1579<div class="memitem">
1580<div class="memproto">
1581      <table class="memname">
1582        <tr>
1583          <td class="memname">bool itpp::ls_solve_od           </td>
1584          <td>(</td>
1585          <td class="paramtype">const <a class="el" href="classitpp_1_1Mat.html#6bba394f181c76fda12759568986c613">mat</a> &amp;&nbsp;</td>
1586          <td class="paramname"> <em>A</em>, </td>
1587        </tr>
1588        <tr>
1589          <td class="paramkey"></td>
1590          <td></td>
1591          <td class="paramtype">const <a class="el" href="classitpp_1_1Mat.html#6bba394f181c76fda12759568986c613">mat</a> &amp;&nbsp;</td>
1592          <td class="paramname"> <em>B</em>, </td>
1593        </tr>
1594        <tr>
1595          <td class="paramkey"></td>
1596          <td></td>
1597          <td class="paramtype"><a class="el" href="classitpp_1_1Mat.html#6bba394f181c76fda12759568986c613">mat</a> &amp;&nbsp;</td>
1598          <td class="paramname"> <em>X</em></td><td>&nbsp;</td>
1599        </tr>
1600        <tr>
1601          <td></td>
1602          <td>)</td>
1603          <td></td><td></td><td></td>
1604        </tr>
1605      </table>
1606</div>
1607<div class="memdoc">
1608
1609<p>
1610Solves overdetermined linear equation systems.
1611<p>
1612Solves the overdetermined linear system <img class="formulaInl" alt="$AX=B$" src="form_139.png">, where <img class="formulaInl" alt="$A$" src="form_138.png"> is a <img class="formulaInl" alt="$m \times n$" src="form_140.png"> matrix and <img class="formulaInl" alt="$m \geq n$" src="form_141.png">. Uses QR-factorization and assumes that <img class="formulaInl" alt="$A$" src="form_138.png"> is full rank. Based on the LAPACK routine DGELS.
1613<p>References <a class="el" href="itassert_8h-source.html#l00126">it_error</a>.</p>
1614
1615</div>
1616</div><p>
1617<a class="anchor" name="g635550ec883953a711dd5f658a164671"></a><!-- doxytag: member="itpp::ls_solve_od" ref="g635550ec883953a711dd5f658a164671" args="(const mat &amp;A, const vec &amp;b)" -->
1618<div class="memitem">
1619<div class="memproto">
1620      <table class="memname">
1621        <tr>
1622          <td class="memname"><a class="el" href="classitpp_1_1Vec.html#02e1bb55f60f3c2eb7a020eb1c2cfcf4">vec</a> itpp::ls_solve_od           </td>
1623          <td>(</td>
1624          <td class="paramtype">const <a class="el" href="classitpp_1_1Mat.html#6bba394f181c76fda12759568986c613">mat</a> &amp;&nbsp;</td>
1625          <td class="paramname"> <em>A</em>, </td>
1626        </tr>
1627        <tr>
1628          <td class="paramkey"></td>
1629          <td></td>
1630          <td class="paramtype">const <a class="el" href="classitpp_1_1Vec.html#02e1bb55f60f3c2eb7a020eb1c2cfcf4">vec</a> &amp;&nbsp;</td>
1631          <td class="paramname"> <em>b</em></td><td>&nbsp;</td>
1632        </tr>
1633        <tr>
1634          <td></td>
1635          <td>)</td>
1636          <td></td><td></td><td></td>
1637        </tr>
1638      </table>
1639</div>
1640<div class="memdoc">
1641
1642<p>
1643Solves overdetermined linear equation systems.
1644<p>
1645Solves the overdetermined linear system <img class="formulaInl" alt="$Ax=b$" src="form_137.png">, where <img class="formulaInl" alt="$A$" src="form_138.png"> is a <img class="formulaInl" alt="$m \times n$" src="form_140.png"> matrix and <img class="formulaInl" alt="$m \geq n$" src="form_141.png">. Uses QR-factorization and assumes that <img class="formulaInl" alt="$A$" src="form_138.png"> is full rank. Based on the LAPACK routine DGELS.
1646<p>References <a class="el" href="itassert_8h-source.html#l00107">it_assert_debug</a>, and <a class="el" href="ls__solve_8cpp-source.html#l00477">itpp::ls_solve_od()</a>.</p>
1647
1648</div>
1649</div><p>
1650<a class="anchor" name="g618ea65fa1f15fd2e09c61765da06fac"></a><!-- doxytag: member="itpp::ls_solve_od" ref="g618ea65fa1f15fd2e09c61765da06fac" args="(const mat &amp;A, const vec &amp;b, vec &amp;x)" -->
1651<div class="memitem">
1652<div class="memproto">
1653      <table class="memname">
1654        <tr>
1655          <td class="memname">bool itpp::ls_solve_od           </td>
1656          <td>(</td>
1657          <td class="paramtype">const <a class="el" href="classitpp_1_1Mat.html#6bba394f181c76fda12759568986c613">mat</a> &amp;&nbsp;</td>
1658          <td class="paramname"> <em>A</em>, </td>
1659        </tr>
1660        <tr>
1661          <td class="paramkey"></td>
1662          <td></td>
1663          <td class="paramtype">const <a class="el" href="classitpp_1_1Vec.html#02e1bb55f60f3c2eb7a020eb1c2cfcf4">vec</a> &amp;&nbsp;</td>
1664          <td class="paramname"> <em>b</em>, </td>
1665        </tr>
1666        <tr>
1667          <td class="paramkey"></td>
1668          <td></td>
1669          <td class="paramtype"><a class="el" href="classitpp_1_1Vec.html#02e1bb55f60f3c2eb7a020eb1c2cfcf4">vec</a> &amp;&nbsp;</td>
1670          <td class="paramname"> <em>x</em></td><td>&nbsp;</td>
1671        </tr>
1672        <tr>
1673          <td></td>
1674          <td>)</td>
1675          <td></td><td></td><td></td>
1676        </tr>
1677      </table>
1678</div>
1679<div class="memdoc">
1680
1681<p>
1682Solves overdetermined linear equation systems.
1683<p>
1684Solves the overdetermined linear system <img class="formulaInl" alt="$Ax=b$" src="form_137.png">, where <img class="formulaInl" alt="$A$" src="form_138.png"> is a <img class="formulaInl" alt="$m \times n$" src="form_140.png"> matrix and <img class="formulaInl" alt="$m \geq n$" src="form_141.png">. Uses QR-factorization and is built upon the LAPACK routine DGELS.
1685<p>References <a class="el" href="itassert_8h-source.html#l00126">it_error</a>.</p>
1686
1687</div>
1688</div><p>
1689<a class="anchor" name="g67f1f4ffa7b7ea7bdb0c2d8276b58988"></a><!-- doxytag: member="itpp::ls_solve_ud" ref="g67f1f4ffa7b7ea7bdb0c2d8276b58988" args="(const cmat &amp;A, const cmat &amp;B)" -->
1690<div class="memitem">
1691<div class="memproto">
1692      <table class="memname">
1693        <tr>
1694          <td class="memname"><a class="el" href="classitpp_1_1Mat.html#6fbac4b7184807da188e5b85d42f038b">cmat</a> itpp::ls_solve_ud           </td>
1695          <td>(</td>
1696          <td class="paramtype">const <a class="el" href="classitpp_1_1Mat.html#6fbac4b7184807da188e5b85d42f038b">cmat</a> &amp;&nbsp;</td>
1697          <td class="paramname"> <em>A</em>, </td>
1698        </tr>
1699        <tr>
1700          <td class="paramkey"></td>
1701          <td></td>
1702          <td class="paramtype">const <a class="el" href="classitpp_1_1Mat.html#6fbac4b7184807da188e5b85d42f038b">cmat</a> &amp;&nbsp;</td>
1703          <td class="paramname"> <em>B</em></td><td>&nbsp;</td>
1704        </tr>
1705        <tr>
1706          <td></td>
1707          <td>)</td>
1708          <td></td><td></td><td></td>
1709        </tr>
1710      </table>
1711</div>
1712<div class="memdoc">
1713
1714<p>
1715Solves underdetermined linear equation systems.
1716<p>
1717Solves the underdetermined linear system <img class="formulaInl" alt="$AX=B$" src="form_139.png">, where <img class="formulaInl" alt="$A$" src="form_138.png"> is a <img class="formulaInl" alt="$m \times n$" src="form_140.png"> matrix and <img class="formulaInl" alt="$m \leq n$" src="form_142.png">. Uses LQ-factorization and assumes that <img class="formulaInl" alt="$A$" src="form_138.png"> is full rank. Based on the LAPACK routine ZGELS.
1718<p>References <a class="el" href="itassert_8h-source.html#l00107">it_assert_debug</a>.</p>
1719
1720<p>Referenced by <a class="el" href="ls__solve_8cpp-source.html#l00651">itpp::backslash()</a>, and <a class="el" href="ls__solve_8cpp-source.html#l00612">itpp::ls_solve_ud()</a>.</p>
1721
1722</div>
1723</div><p>
1724<a class="anchor" name="g5a070b09b70e0cbf95a72c76f0b4f975"></a><!-- doxytag: member="itpp::ls_solve_ud" ref="g5a070b09b70e0cbf95a72c76f0b4f975" args="(const cmat &amp;A, const cmat &amp;B, cmat &amp;X)" -->
1725<div class="memitem">
1726<div class="memproto">
1727      <table class="memname">
1728        <tr>
1729          <td class="memname">bool itpp::ls_solve_ud           </td>
1730          <td>(</td>
1731          <td class="paramtype">const <a class="el" href="classitpp_1_1Mat.html#6fbac4b7184807da188e5b85d42f038b">cmat</a> &amp;&nbsp;</td>
1732          <td class="paramname"> <em>A</em>, </td>
1733        </tr>
1734        <tr>
1735          <td class="paramkey"></td>
1736          <td></td>
1737          <td class="paramtype">const <a class="el" href="classitpp_1_1Mat.html#6fbac4b7184807da188e5b85d42f038b">cmat</a> &amp;&nbsp;</td>
1738          <td class="paramname"> <em>B</em>, </td>
1739        </tr>
1740        <tr>
1741          <td class="paramkey"></td>
1742          <td></td>
1743          <td class="paramtype"><a class="el" href="classitpp_1_1Mat.html#6fbac4b7184807da188e5b85d42f038b">cmat</a> &amp;&nbsp;</td>
1744          <td class="paramname"> <em>X</em></td><td>&nbsp;</td>
1745        </tr>
1746        <tr>
1747          <td></td>
1748          <td>)</td>
1749          <td></td><td></td><td></td>
1750        </tr>
1751      </table>
1752</div>
1753<div class="memdoc">
1754
1755<p>
1756Solves underdetermined linear equation systems.
1757<p>
1758Solves the underdetermined linear system <img class="formulaInl" alt="$AX=B$" src="form_139.png">, where <img class="formulaInl" alt="$A$" src="form_138.png"> is a <img class="formulaInl" alt="$m \times n$" src="form_140.png"> matrix and <img class="formulaInl" alt="$m \leq n$" src="form_142.png">. Uses LQ-factorization and assumes that <img class="formulaInl" alt="$A$" src="form_138.png"> is full rank. Based on the LAPACK routine ZGELS.
1759<p>References <a class="el" href="itassert_8h-source.html#l00126">it_error</a>.</p>
1760
1761</div>
1762</div><p>
1763<a class="anchor" name="g126eb1902b5853564750c86339183586"></a><!-- doxytag: member="itpp::ls_solve_ud" ref="g126eb1902b5853564750c86339183586" args="(const cmat &amp;A, const cvec &amp;b)" -->
1764<div class="memitem">
1765<div class="memproto">
1766      <table class="memname">
1767        <tr>
1768          <td class="memname"><a class="el" href="classitpp_1_1Vec.html#e83c1408740e41a7e29c383b71d4d544">cvec</a> itpp::ls_solve_ud           </td>
1769          <td>(</td>
1770          <td class="paramtype">const <a class="el" href="classitpp_1_1Mat.html#6fbac4b7184807da188e5b85d42f038b">cmat</a> &amp;&nbsp;</td>
1771          <td class="paramname"> <em>A</em>, </td>
1772        </tr>
1773        <tr>
1774          <td class="paramkey"></td>
1775          <td></td>
1776          <td class="paramtype">const <a class="el" href="classitpp_1_1Vec.html#e83c1408740e41a7e29c383b71d4d544">cvec</a> &amp;&nbsp;</td>
1777          <td class="paramname"> <em>b</em></td><td>&nbsp;</td>
1778        </tr>
1779        <tr>
1780          <td></td>
1781          <td>)</td>
1782          <td></td><td></td><td></td>
1783        </tr>
1784      </table>
1785</div>
1786<div class="memdoc">
1787
1788<p>
1789Solves overdetermined linear equation systems.
1790<p>
1791Solves the underdetermined linear system <img class="formulaInl" alt="$Ax=b$" src="form_137.png">, where <img class="formulaInl" alt="$A$" src="form_138.png"> is a <img class="formulaInl" alt="$m \times n$" src="form_140.png"> matrix and <img class="formulaInl" alt="$m \leq n$" src="form_142.png">. Uses LQ-factorization and assumes that <img class="formulaInl" alt="$A$" src="form_138.png"> is full rank. Based on the LAPACK routine ZGELS.
1792<p>References <a class="el" href="itassert_8h-source.html#l00107">it_assert_debug</a>, and <a class="el" href="ls__solve_8cpp-source.html#l00639">itpp::ls_solve_ud()</a>.</p>
1793
1794</div>
1795</div><p>
1796<a class="anchor" name="g90a505b0fd80f7aa15d869a3176549ec"></a><!-- doxytag: member="itpp::ls_solve_ud" ref="g90a505b0fd80f7aa15d869a3176549ec" args="(const cmat &amp;A, const cvec &amp;b, cvec &amp;x)" -->
1797<div class="memitem">
1798<div class="memproto">
1799      <table class="memname">
1800        <tr>
1801          <td class="memname">bool itpp::ls_solve_ud           </td>
1802          <td>(</td>
1803          <td class="paramtype">const <a class="el" href="classitpp_1_1Mat.html#6fbac4b7184807da188e5b85d42f038b">cmat</a> &amp;&nbsp;</td>
1804          <td class="paramname"> <em>A</em>, </td>
1805        </tr>
1806        <tr>
1807          <td class="paramkey"></td>
1808          <td></td>
1809          <td class="paramtype">const <a class="el" href="classitpp_1_1Vec.html#e83c1408740e41a7e29c383b71d4d544">cvec</a> &amp;&nbsp;</td>
1810          <td class="paramname"> <em>b</em>, </td>
1811        </tr>
1812        <tr>
1813          <td class="paramkey"></td>
1814          <td></td>
1815          <td class="paramtype"><a class="el" href="classitpp_1_1Vec.html#e83c1408740e41a7e29c383b71d4d544">cvec</a> &amp;&nbsp;</td>
1816          <td class="paramname"> <em>x</em></td><td>&nbsp;</td>
1817        </tr>
1818        <tr>
1819          <td></td>
1820          <td>)</td>
1821          <td></td><td></td><td></td>
1822        </tr>
1823      </table>
1824</div>
1825<div class="memdoc">
1826
1827<p>
1828Solves underdetermined linear equation systems.
1829<p>
1830Solves the underdetermined linear system <img class="formulaInl" alt="$Ax=b$" src="form_137.png">, where <img class="formulaInl" alt="$A$" src="form_138.png"> is a <img class="formulaInl" alt="$m \times n$" src="form_140.png"> matrix and <img class="formulaInl" alt="$m \leq n$" src="form_142.png">. Uses LQ-factorization and is built upon the LAPACK routine ZGELS.
1831<p>References <a class="el" href="itassert_8h-source.html#l00126">it_error</a>.</p>
1832
1833</div>
1834</div><p>
1835<a class="anchor" name="gd47cbd81c624acfc5715f6292dfd9cd4"></a><!-- doxytag: member="itpp::ls_solve_ud" ref="gd47cbd81c624acfc5715f6292dfd9cd4" args="(const mat &amp;A, const mat &amp;B)" -->
1836<div class="memitem">
1837<div class="memproto">
1838      <table class="memname">
1839        <tr>
1840          <td class="memname"><a class="el" href="classitpp_1_1Mat.html#6bba394f181c76fda12759568986c613">mat</a> itpp::ls_solve_ud           </td>
1841          <td>(</td>
1842          <td class="paramtype">const <a class="el" href="classitpp_1_1Mat.html#6bba394f181c76fda12759568986c613">mat</a> &amp;&nbsp;</td>
1843          <td class="paramname"> <em>A</em>, </td>
1844        </tr>
1845        <tr>
1846          <td class="paramkey"></td>
1847          <td></td>
1848          <td class="paramtype">const <a class="el" href="classitpp_1_1Mat.html#6bba394f181c76fda12759568986c613">mat</a> &amp;&nbsp;</td>
1849          <td class="paramname"> <em>B</em></td><td>&nbsp;</td>
1850        </tr>
1851        <tr>
1852          <td></td>
1853          <td>)</td>
1854          <td></td><td></td><td></td>
1855        </tr>
1856      </table>
1857</div>
1858<div class="memdoc">
1859
1860<p>
1861Solves underdetermined linear equation systems.
1862<p>
1863Solves the underdetermined linear system <img class="formulaInl" alt="$AX=B$" src="form_139.png">, where <img class="formulaInl" alt="$A$" src="form_138.png"> is a <img class="formulaInl" alt="$m \times n$" src="form_140.png"> matrix and <img class="formulaInl" alt="$m \leq n$" src="form_142.png">. Uses LQ-factorization and assumes that <img class="formulaInl" alt="$A$" src="form_138.png"> is full rank. Based on the LAPACK routine DGELS.
1864<p>References <a class="el" href="itassert_8h-source.html#l00107">it_assert_debug</a>, and <a class="el" href="ls__solve_8cpp-source.html#l00639">itpp::ls_solve_ud()</a>.</p>
1865
1866</div>
1867</div><p>
1868<a class="anchor" name="gf24d2c5baba027d772c2fbe4958a34ca"></a><!-- doxytag: member="itpp::ls_solve_ud" ref="gf24d2c5baba027d772c2fbe4958a34ca" args="(const mat &amp;A, const mat &amp;B, mat &amp;X)" -->
1869<div class="memitem">
1870<div class="memproto">
1871      <table class="memname">
1872        <tr>
1873          <td class="memname">bool itpp::ls_solve_ud           </td>
1874          <td>(</td>
1875          <td class="paramtype">const <a class="el" href="classitpp_1_1Mat.html#6bba394f181c76fda12759568986c613">mat</a> &amp;&nbsp;</td>
1876          <td class="paramname"> <em>A</em>, </td>
1877        </tr>
1878        <tr>
1879          <td class="paramkey"></td>
1880          <td></td>
1881          <td class="paramtype">const <a class="el" href="classitpp_1_1Mat.html#6bba394f181c76fda12759568986c613">mat</a> &amp;&nbsp;</td>
1882          <td class="paramname"> <em>B</em>, </td>
1883        </tr>
1884        <tr>
1885          <td class="paramkey"></td>
1886          <td></td>
1887          <td class="paramtype"><a class="el" href="classitpp_1_1Mat.html#6bba394f181c76fda12759568986c613">mat</a> &amp;&nbsp;</td>
1888          <td class="paramname"> <em>X</em></td><td>&nbsp;</td>
1889        </tr>
1890        <tr>
1891          <td></td>
1892          <td>)</td>
1893          <td></td><td></td><td></td>
1894        </tr>
1895      </table>
1896</div>
1897<div class="memdoc">
1898
1899<p>
1900Solves underdetermined linear equation systems.
1901<p>
1902Solves the underdetermined linear system <img class="formulaInl" alt="$AX=B$" src="form_139.png">, where <img class="formulaInl" alt="$A$" src="form_138.png"> is a <img class="formulaInl" alt="$m \times n$" src="form_140.png"> matrix and <img class="formulaInl" alt="$m \leq n$" src="form_142.png">. Uses LQ-factorization and assumes that <img class="formulaInl" alt="$A$" src="form_138.png"> is full rank. Based on the LAPACK routine DGELS.
1903<p>References <a class="el" href="itassert_8h-source.html#l00126">it_error</a>.</p>
1904
1905</div>
1906</div><p>
1907<a class="anchor" name="g70cd3ada0cecc2d675638a51ea0eee0d"></a><!-- doxytag: member="itpp::ls_solve_ud" ref="g70cd3ada0cecc2d675638a51ea0eee0d" args="(const mat &amp;A, const vec &amp;b)" -->
1908<div class="memitem">
1909<div class="memproto">
1910      <table class="memname">
1911        <tr>
1912          <td class="memname"><a class="el" href="classitpp_1_1Vec.html#02e1bb55f60f3c2eb7a020eb1c2cfcf4">vec</a> itpp::ls_solve_ud           </td>
1913          <td>(</td>
1914          <td class="paramtype">const <a class="el" href="classitpp_1_1Mat.html#6bba394f181c76fda12759568986c613">mat</a> &amp;&nbsp;</td>
1915          <td class="paramname"> <em>A</em>, </td>
1916        </tr>
1917        <tr>
1918          <td class="paramkey"></td>
1919          <td></td>
1920          <td class="paramtype">const <a class="el" href="classitpp_1_1Vec.html#02e1bb55f60f3c2eb7a020eb1c2cfcf4">vec</a> &amp;&nbsp;</td>
1921          <td class="paramname"> <em>b</em></td><td>&nbsp;</td>
1922        </tr>
1923        <tr>
1924          <td></td>
1925          <td>)</td>
1926          <td></td><td></td><td></td>
1927        </tr>
1928      </table>
1929</div>
1930<div class="memdoc">
1931
1932<p>
1933Solves overdetermined linear equation systems.
1934<p>
1935Solves the underdetermined linear system <img class="formulaInl" alt="$Ax=b$" src="form_137.png">, where <img class="formulaInl" alt="$A$" src="form_138.png"> is a <img class="formulaInl" alt="$m \times n$" src="form_140.png"> matrix and <img class="formulaInl" alt="$m \leq n$" src="form_142.png">. Uses LQ-factorization and assumes that <img class="formulaInl" alt="$A$" src="form_138.png"> is full rank. Based on the LAPACK routine DGELS.
1936<p>References <a class="el" href="itassert_8h-source.html#l00107">it_assert_debug</a>, and <a class="el" href="ls__solve_8cpp-source.html#l00639">itpp::ls_solve_ud()</a>.</p>
1937
1938</div>
1939</div><p>
1940<a class="anchor" name="gec926319b4d7faf913e1cf034af1899c"></a><!-- doxytag: member="itpp::ls_solve_ud" ref="gec926319b4d7faf913e1cf034af1899c" args="(const mat &amp;A, const vec &amp;b, vec &amp;x)" -->
1941<div class="memitem">
1942<div class="memproto">
1943      <table class="memname">
1944        <tr>
1945          <td class="memname">bool itpp::ls_solve_ud           </td>
1946          <td>(</td>
1947          <td class="paramtype">const <a class="el" href="classitpp_1_1Mat.html#6bba394f181c76fda12759568986c613">mat</a> &amp;&nbsp;</td>
1948          <td class="paramname"> <em>A</em>, </td>
1949        </tr>
1950        <tr>
1951          <td class="paramkey"></td>
1952          <td></td>
1953          <td class="paramtype">const <a class="el" href="classitpp_1_1Vec.html#02e1bb55f60f3c2eb7a020eb1c2cfcf4">vec</a> &amp;&nbsp;</td>
1954          <td class="paramname"> <em>b</em>, </td>
1955        </tr>
1956        <tr>
1957          <td class="paramkey"></td>
1958          <td></td>
1959          <td class="paramtype"><a class="el" href="classitpp_1_1Vec.html#02e1bb55f60f3c2eb7a020eb1c2cfcf4">vec</a> &amp;&nbsp;</td>
1960          <td class="paramname"> <em>x</em></td><td>&nbsp;</td>
1961        </tr>
1962        <tr>
1963          <td></td>
1964          <td>)</td>
1965          <td></td><td></td><td></td>
1966        </tr>
1967      </table>
1968</div>
1969<div class="memdoc">
1970
1971<p>
1972Solves underdetermined linear equation systems.
1973<p>
1974Solves the underdetermined linear system <img class="formulaInl" alt="$Ax=b$" src="form_137.png">, where <img class="formulaInl" alt="$A$" src="form_138.png"> is a <img class="formulaInl" alt="$m \times n$" src="form_140.png"> matrix and <img class="formulaInl" alt="$m \leq n$" src="form_142.png">. Uses LQ-factorization and is built upon the LAPACK routine DGELS.
1975<p>References <a class="el" href="itassert_8h-source.html#l00126">it_error</a>.</p>
1976
1977</div>
1978</div><p>
1979</div>
1980<hr size="1"><address style="text-align: right;"><small>Generated on Tue Jun 2 10:02:14 2009 for mixpp by&nbsp;
1981<a href="http://www.doxygen.org/index.html">
1982<img src="doxygen.png" alt="doxygen" align="middle" border="0"></a> 1.5.8 </small></address>
1983</body>
1984</html>
Note: See TracBrowser for help on using the browser.