[353] | 1 | <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"> |
---|
| 2 | <html><head><meta http-equiv="Content-Type" content="text/html;charset=UTF-8"> |
---|
| 3 | <title>mixpp: Matrix Decompositions</title> |
---|
| 4 | <link href="tabs.css" rel="stylesheet" type="text/css"> |
---|
| 5 | <link href="doxygen.css" rel="stylesheet" type="text/css"> |
---|
| 6 | </head><body> |
---|
| 7 | <!-- Generated by Doxygen 1.5.8 --> |
---|
| 8 | <script type="text/javascript"> |
---|
| 9 | <!-- |
---|
| 10 | function changeDisplayState (e){ |
---|
| 11 | var num=this.id.replace(/[^[0-9]/g,''); |
---|
| 12 | var button=this.firstChild; |
---|
| 13 | var sectionDiv=document.getElementById('dynsection'+num); |
---|
| 14 | if (sectionDiv.style.display=='none'||sectionDiv.style.display==''){ |
---|
| 15 | sectionDiv.style.display='block'; |
---|
| 16 | button.src='open.gif'; |
---|
| 17 | }else{ |
---|
| 18 | sectionDiv.style.display='none'; |
---|
| 19 | button.src='closed.gif'; |
---|
| 20 | } |
---|
| 21 | } |
---|
| 22 | function initDynSections(){ |
---|
| 23 | var divs=document.getElementsByTagName('div'); |
---|
| 24 | var sectionCounter=1; |
---|
| 25 | for(var i=0;i<divs.length-1;i++){ |
---|
| 26 | if(divs[i].className=='dynheader'&&divs[i+1].className=='dynsection'){ |
---|
| 27 | var header=divs[i]; |
---|
| 28 | var section=divs[i+1]; |
---|
| 29 | var button=header.firstChild; |
---|
| 30 | if (button!='IMG'){ |
---|
| 31 | divs[i].insertBefore(document.createTextNode(' '),divs[i].firstChild); |
---|
| 32 | button=document.createElement('img'); |
---|
| 33 | divs[i].insertBefore(button,divs[i].firstChild); |
---|
| 34 | } |
---|
| 35 | header.style.cursor='pointer'; |
---|
| 36 | header.onclick=changeDisplayState; |
---|
| 37 | header.id='dynheader'+sectionCounter; |
---|
| 38 | button.src='closed.gif'; |
---|
| 39 | section.id='dynsection'+sectionCounter; |
---|
| 40 | section.style.display='none'; |
---|
| 41 | section.style.marginLeft='14px'; |
---|
| 42 | sectionCounter++; |
---|
| 43 | } |
---|
| 44 | } |
---|
| 45 | } |
---|
| 46 | window.onload = initDynSections; |
---|
| 47 | --> |
---|
| 48 | </script> |
---|
| 49 | <div class="navigation" id="top"> |
---|
| 50 | <div class="tabs"> |
---|
| 51 | <ul> |
---|
| 52 | <li><a href="main.html"><span>Main Page</span></a></li> |
---|
| 53 | <li><a href="pages.html"><span>Related Pages</span></a></li> |
---|
| 54 | <li><a href="modules.html"><span>Modules</span></a></li> |
---|
| 55 | <li><a href="annotated.html"><span>Classes</span></a></li> |
---|
| 56 | <li><a href="files.html"><span>Files</span></a></li> |
---|
| 57 | </ul> |
---|
| 58 | </div> |
---|
| 59 | </div> |
---|
| 60 | <div class="contents"> |
---|
| 61 | <h1>Matrix Decompositions<br> |
---|
| 62 | <small> |
---|
| 63 | [<a class="el" href="group__algebra.html">Linear Algebra</a>]</small> |
---|
| 64 | </h1><table border="0" cellpadding="0" cellspacing="0"> |
---|
| 65 | <tr><td></td></tr> |
---|
| 66 | <tr><td colspan="2"><br><h2>Functions</h2></td></tr> |
---|
| 67 | <tr><td class="memItemLeft" nowrap align="right" valign="top">bool </td><td class="memItemRight" valign="bottom"><a class="el" href="group__matrixdecomp.html#g4d631e12d5d0079f7f75ee4f6451043e">itpp::chol</a> (const <a class="el" href="classitpp_1_1Mat.html#6bba394f181c76fda12759568986c613">mat</a> &X, <a class="el" href="classitpp_1_1Mat.html#6bba394f181c76fda12759568986c613">mat</a> &F)</td></tr> |
---|
| 68 | |
---|
| 69 | <tr><td class="mdescLeft"> </td><td class="mdescRight">Cholesky factorisation of real symmetric and positive definite matrix. <a href="#g4d631e12d5d0079f7f75ee4f6451043e"></a><br></td></tr> |
---|
| 70 | <tr><td class="memItemLeft" nowrap align="right" valign="top"><a class="el" href="classitpp_1_1Mat.html#6bba394f181c76fda12759568986c613">mat</a> </td><td class="memItemRight" valign="bottom"><a class="el" href="group__matrixdecomp.html#g8aa42136e884519422d4f2dd95e51cb5">itpp::chol</a> (const <a class="el" href="classitpp_1_1Mat.html#6bba394f181c76fda12759568986c613">mat</a> &X)</td></tr> |
---|
| 71 | |
---|
| 72 | <tr><td class="mdescLeft"> </td><td class="mdescRight">Cholesky factorisation of real symmetric and positive definite matrix. <a href="#g8aa42136e884519422d4f2dd95e51cb5"></a><br></td></tr> |
---|
| 73 | <tr><td class="memItemLeft" nowrap align="right" valign="top">bool </td><td class="memItemRight" valign="bottom"><a class="el" href="group__matrixdecomp.html#g217ccba3338767ac64ad1b2465b76029">itpp::chol</a> (const <a class="el" href="classitpp_1_1Mat.html#6fbac4b7184807da188e5b85d42f038b">cmat</a> &X, <a class="el" href="classitpp_1_1Mat.html#6fbac4b7184807da188e5b85d42f038b">cmat</a> &F)</td></tr> |
---|
| 74 | |
---|
| 75 | <tr><td class="mdescLeft"> </td><td class="mdescRight">Cholesky factorisation of complex hermitian and positive-definite matrix. <a href="#g217ccba3338767ac64ad1b2465b76029"></a><br></td></tr> |
---|
| 76 | <tr><td class="memItemLeft" nowrap align="right" valign="top"><a class="el" href="classitpp_1_1Mat.html#6fbac4b7184807da188e5b85d42f038b">cmat</a> </td><td class="memItemRight" valign="bottom"><a class="el" href="group__matrixdecomp.html#g976aa7781da316c23ea0aad3af2511d8">itpp::chol</a> (const <a class="el" href="classitpp_1_1Mat.html#6fbac4b7184807da188e5b85d42f038b">cmat</a> &X)</td></tr> |
---|
| 77 | |
---|
| 78 | <tr><td class="mdescLeft"> </td><td class="mdescRight">Cholesky factorisation of complex hermitian and positive-definite matrix. <a href="#g976aa7781da316c23ea0aad3af2511d8"></a><br></td></tr> |
---|
| 79 | <tr><td class="memItemLeft" nowrap align="right" valign="top">bool </td><td class="memItemRight" valign="bottom"><a class="el" href="group__matrixdecomp.html#g05eced45f3e27b8f60ffa422f02856df">itpp::eig_sym</a> (const <a class="el" href="classitpp_1_1Mat.html#6bba394f181c76fda12759568986c613">mat</a> &A, <a class="el" href="classitpp_1_1Vec.html#02e1bb55f60f3c2eb7a020eb1c2cfcf4">vec</a> &d, <a class="el" href="classitpp_1_1Mat.html#6bba394f181c76fda12759568986c613">mat</a> &V)</td></tr> |
---|
| 80 | |
---|
| 81 | <tr><td class="mdescLeft"> </td><td class="mdescRight">Calculates the eigenvalues and eigenvectors of a symmetric real matrix. <a href="#g05eced45f3e27b8f60ffa422f02856df"></a><br></td></tr> |
---|
| 82 | <tr><td class="memItemLeft" nowrap align="right" valign="top">bool </td><td class="memItemRight" valign="bottom"><a class="el" href="group__matrixdecomp.html#g282eeffd56bf6ac0fb3e8efedb755cee">itpp::eig_sym</a> (const <a class="el" href="classitpp_1_1Mat.html#6bba394f181c76fda12759568986c613">mat</a> &A, <a class="el" href="classitpp_1_1Vec.html#02e1bb55f60f3c2eb7a020eb1c2cfcf4">vec</a> &d)</td></tr> |
---|
| 83 | |
---|
| 84 | <tr><td class="mdescLeft"> </td><td class="mdescRight">Calculates the eigenvalues of a symmetric real matrix. <a href="#g282eeffd56bf6ac0fb3e8efedb755cee"></a><br></td></tr> |
---|
| 85 | <tr><td class="memItemLeft" nowrap align="right" valign="top"><a class="el" href="classitpp_1_1Vec.html#02e1bb55f60f3c2eb7a020eb1c2cfcf4">vec</a> </td><td class="memItemRight" valign="bottom"><a class="el" href="group__matrixdecomp.html#gebf551d77c5738033d081e35e7cd9cb6">itpp::eig_sym</a> (const <a class="el" href="classitpp_1_1Mat.html#6bba394f181c76fda12759568986c613">mat</a> &A)</td></tr> |
---|
| 86 | |
---|
| 87 | <tr><td class="mdescLeft"> </td><td class="mdescRight">Calculates the eigenvalues of a symmetric real matrix. <a href="#gebf551d77c5738033d081e35e7cd9cb6"></a><br></td></tr> |
---|
| 88 | <tr><td class="memItemLeft" nowrap align="right" valign="top">bool </td><td class="memItemRight" valign="bottom"><a class="el" href="group__matrixdecomp.html#g40bacb19d51c45a59837ab38f04dabef">itpp::eig_sym</a> (const <a class="el" href="classitpp_1_1Mat.html#6fbac4b7184807da188e5b85d42f038b">cmat</a> &A, <a class="el" href="classitpp_1_1Vec.html#02e1bb55f60f3c2eb7a020eb1c2cfcf4">vec</a> &d, <a class="el" href="classitpp_1_1Mat.html#6fbac4b7184807da188e5b85d42f038b">cmat</a> &V)</td></tr> |
---|
| 89 | |
---|
| 90 | <tr><td class="mdescLeft"> </td><td class="mdescRight">Calculates the eigenvalues and eigenvectors of a hermitian complex matrix. <a href="#g40bacb19d51c45a59837ab38f04dabef"></a><br></td></tr> |
---|
| 91 | <tr><td class="memItemLeft" nowrap align="right" valign="top">bool </td><td class="memItemRight" valign="bottom"><a class="el" href="group__matrixdecomp.html#g89faa81cc5408f5e1452d5fec9fea473">itpp::eig_sym</a> (const <a class="el" href="classitpp_1_1Mat.html#6fbac4b7184807da188e5b85d42f038b">cmat</a> &A, <a class="el" href="classitpp_1_1Vec.html#02e1bb55f60f3c2eb7a020eb1c2cfcf4">vec</a> &d)</td></tr> |
---|
| 92 | |
---|
| 93 | <tr><td class="mdescLeft"> </td><td class="mdescRight">Calculates the eigenvalues of a hermitian complex matrix. <a href="#g89faa81cc5408f5e1452d5fec9fea473"></a><br></td></tr> |
---|
| 94 | <tr><td class="memItemLeft" nowrap align="right" valign="top"><a class="el" href="classitpp_1_1Vec.html#02e1bb55f60f3c2eb7a020eb1c2cfcf4">vec</a> </td><td class="memItemRight" valign="bottom"><a class="el" href="group__matrixdecomp.html#g6dc61c925d40d736effa9dcbe7912df1">itpp::eig_sym</a> (const <a class="el" href="classitpp_1_1Mat.html#6fbac4b7184807da188e5b85d42f038b">cmat</a> &A)</td></tr> |
---|
| 95 | |
---|
| 96 | <tr><td class="mdescLeft"> </td><td class="mdescRight">Calculates the eigenvalues of a hermitian complex matrix. <a href="#g6dc61c925d40d736effa9dcbe7912df1"></a><br></td></tr> |
---|
| 97 | <tr><td class="memItemLeft" nowrap align="right" valign="top">bool </td><td class="memItemRight" valign="bottom"><a class="el" href="group__matrixdecomp.html#gdc7223ef54536dfc36d3e183468297b8">itpp::eig</a> (const <a class="el" href="classitpp_1_1Mat.html#6bba394f181c76fda12759568986c613">mat</a> &A, <a class="el" href="classitpp_1_1Vec.html#e83c1408740e41a7e29c383b71d4d544">cvec</a> &d, <a class="el" href="classitpp_1_1Mat.html#6fbac4b7184807da188e5b85d42f038b">cmat</a> &V)</td></tr> |
---|
| 98 | |
---|
| 99 | <tr><td class="mdescLeft"> </td><td class="mdescRight">Calculates the eigenvalues and eigenvectors of a real non-symmetric matrix. <a href="#gdc7223ef54536dfc36d3e183468297b8"></a><br></td></tr> |
---|
| 100 | <tr><td class="memItemLeft" nowrap align="right" valign="top">bool </td><td class="memItemRight" valign="bottom"><a class="el" href="group__matrixdecomp.html#ga4e8c2f66e19625dc7c1d15a04cf9e63">itpp::eig</a> (const <a class="el" href="classitpp_1_1Mat.html#6bba394f181c76fda12759568986c613">mat</a> &A, <a class="el" href="classitpp_1_1Vec.html#e83c1408740e41a7e29c383b71d4d544">cvec</a> &d)</td></tr> |
---|
| 101 | |
---|
| 102 | <tr><td class="mdescLeft"> </td><td class="mdescRight">Calculates the eigenvalues of a real non-symmetric matrix. <a href="#ga4e8c2f66e19625dc7c1d15a04cf9e63"></a><br></td></tr> |
---|
| 103 | <tr><td class="memItemLeft" nowrap align="right" valign="top"><a class="el" href="classitpp_1_1Vec.html#e83c1408740e41a7e29c383b71d4d544">cvec</a> </td><td class="memItemRight" valign="bottom"><a class="el" href="group__matrixdecomp.html#g7c9a5795e0c4e8e406977a95525557ba">itpp::eig</a> (const <a class="el" href="classitpp_1_1Mat.html#6bba394f181c76fda12759568986c613">mat</a> &A)</td></tr> |
---|
| 104 | |
---|
| 105 | <tr><td class="mdescLeft"> </td><td class="mdescRight">Calculates the eigenvalues of a real non-symmetric matrix. <a href="#g7c9a5795e0c4e8e406977a95525557ba"></a><br></td></tr> |
---|
| 106 | <tr><td class="memItemLeft" nowrap align="right" valign="top">bool </td><td class="memItemRight" valign="bottom"><a class="el" href="group__matrixdecomp.html#g8be5168b8699ab6772d2c24c183b5b44">itpp::eig</a> (const <a class="el" href="classitpp_1_1Mat.html#6fbac4b7184807da188e5b85d42f038b">cmat</a> &A, <a class="el" href="classitpp_1_1Vec.html#e83c1408740e41a7e29c383b71d4d544">cvec</a> &d, <a class="el" href="classitpp_1_1Mat.html#6fbac4b7184807da188e5b85d42f038b">cmat</a> &V)</td></tr> |
---|
| 107 | |
---|
| 108 | <tr><td class="mdescLeft"> </td><td class="mdescRight">Calculates the eigenvalues and eigenvectors of a complex non-hermitian matrix. <a href="#g8be5168b8699ab6772d2c24c183b5b44"></a><br></td></tr> |
---|
| 109 | <tr><td class="memItemLeft" nowrap align="right" valign="top">bool </td><td class="memItemRight" valign="bottom"><a class="el" href="group__matrixdecomp.html#gb874193ee0377616736ba5895a13dcab">itpp::eig</a> (const <a class="el" href="classitpp_1_1Mat.html#6fbac4b7184807da188e5b85d42f038b">cmat</a> &A, <a class="el" href="classitpp_1_1Vec.html#e83c1408740e41a7e29c383b71d4d544">cvec</a> &d)</td></tr> |
---|
| 110 | |
---|
| 111 | <tr><td class="mdescLeft"> </td><td class="mdescRight">Calculates the eigenvalues of a complex non-hermitian matrix. <a href="#gb874193ee0377616736ba5895a13dcab"></a><br></td></tr> |
---|
| 112 | <tr><td class="memItemLeft" nowrap align="right" valign="top"><a class="el" href="classitpp_1_1Vec.html#e83c1408740e41a7e29c383b71d4d544">cvec</a> </td><td class="memItemRight" valign="bottom"><a class="el" href="group__matrixdecomp.html#gffe65e88bce986d9ff527b06d573e4b7">itpp::eig</a> (const <a class="el" href="classitpp_1_1Mat.html#6fbac4b7184807da188e5b85d42f038b">cmat</a> &A)</td></tr> |
---|
| 113 | |
---|
| 114 | <tr><td class="mdescLeft"> </td><td class="mdescRight">Calculates the eigenvalues of a complex non-hermitian matrix. <a href="#gffe65e88bce986d9ff527b06d573e4b7"></a><br></td></tr> |
---|
| 115 | <tr><td class="memItemLeft" nowrap align="right" valign="top">bool </td><td class="memItemRight" valign="bottom"><a class="el" href="group__matrixdecomp.html#g470eed4741289d81759d441e316f92f0">itpp::lu</a> (const <a class="el" href="classitpp_1_1Mat.html#6bba394f181c76fda12759568986c613">mat</a> &X, <a class="el" href="classitpp_1_1Mat.html#6bba394f181c76fda12759568986c613">mat</a> &L, <a class="el" href="classitpp_1_1Mat.html#6bba394f181c76fda12759568986c613">mat</a> &U, <a class="el" href="classitpp_1_1Vec.html#b03757d874926a9be91535e71af1656e">ivec</a> &p)</td></tr> |
---|
| 116 | |
---|
| 117 | <tr><td class="mdescLeft"> </td><td class="mdescRight">LU factorisation of real matrix. <a href="#g470eed4741289d81759d441e316f92f0"></a><br></td></tr> |
---|
| 118 | <tr><td class="memItemLeft" nowrap align="right" valign="top">bool </td><td class="memItemRight" valign="bottom"><a class="el" href="group__matrixdecomp.html#g9912a15ea024f75442720c1bf3b5dac1">itpp::lu</a> (const <a class="el" href="classitpp_1_1Mat.html#6fbac4b7184807da188e5b85d42f038b">cmat</a> &X, <a class="el" href="classitpp_1_1Mat.html#6fbac4b7184807da188e5b85d42f038b">cmat</a> &L, <a class="el" href="classitpp_1_1Mat.html#6fbac4b7184807da188e5b85d42f038b">cmat</a> &U, <a class="el" href="classitpp_1_1Vec.html#b03757d874926a9be91535e71af1656e">ivec</a> &p)</td></tr> |
---|
| 119 | |
---|
| 120 | <tr><td class="mdescLeft"> </td><td class="mdescRight">LU factorisation of real matrix. <a href="#g9912a15ea024f75442720c1bf3b5dac1"></a><br></td></tr> |
---|
| 121 | <tr><td class="memItemLeft" nowrap align="right" valign="top"><a class="anchor" name="g2d3af51d172dd39a7f8a631a17120057"></a><!-- doxytag: member="matrixdecomp::interchange_permutations" ref="g2d3af51d172dd39a7f8a631a17120057" args="(vec &b, const ivec &p)" --> |
---|
| 122 | void </td><td class="memItemRight" valign="bottom"><a class="el" href="group__matrixdecomp.html#g2d3af51d172dd39a7f8a631a17120057">itpp::interchange_permutations</a> (<a class="el" href="classitpp_1_1Vec.html#02e1bb55f60f3c2eb7a020eb1c2cfcf4">vec</a> &b, const <a class="el" href="classitpp_1_1Vec.html#b03757d874926a9be91535e71af1656e">ivec</a> &p)</td></tr> |
---|
| 123 | |
---|
| 124 | <tr><td class="mdescLeft"> </td><td class="mdescRight">Makes swapping of vector b according to the interchange permutation vector p. <br></td></tr> |
---|
| 125 | <tr><td class="memItemLeft" nowrap align="right" valign="top"><a class="anchor" name="gb6e7ba47c63173084cf0cb6bebbff508"></a><!-- doxytag: member="matrixdecomp::permutation_matrix" ref="gb6e7ba47c63173084cf0cb6bebbff508" args="(const ivec &p)" --> |
---|
| 126 | <a class="el" href="mat_8h.html#f90acd1af41bf2d1d8a4bb23662fff69">bmat</a> </td><td class="memItemRight" valign="bottom"><a class="el" href="group__matrixdecomp.html#gb6e7ba47c63173084cf0cb6bebbff508">itpp::permutation_matrix</a> (const <a class="el" href="classitpp_1_1Vec.html#b03757d874926a9be91535e71af1656e">ivec</a> &p)</td></tr> |
---|
| 127 | |
---|
| 128 | <tr><td class="mdescLeft"> </td><td class="mdescRight">Make permutation matrix P from the interchange permutation vector p. <br></td></tr> |
---|
| 129 | <tr><td class="memItemLeft" nowrap align="right" valign="top">bool </td><td class="memItemRight" valign="bottom"><a class="el" href="group__matrixdecomp.html#g9e565beb0ca5841655a5ac3700821e2c">itpp::qr</a> (const <a class="el" href="classitpp_1_1Mat.html#6bba394f181c76fda12759568986c613">mat</a> &A, <a class="el" href="classitpp_1_1Mat.html#6bba394f181c76fda12759568986c613">mat</a> &Q, <a class="el" href="classitpp_1_1Mat.html#6bba394f181c76fda12759568986c613">mat</a> &R)</td></tr> |
---|
| 130 | |
---|
| 131 | <tr><td class="mdescLeft"> </td><td class="mdescRight">QR factorisation of real matrix. <a href="#g9e565beb0ca5841655a5ac3700821e2c"></a><br></td></tr> |
---|
| 132 | <tr><td class="memItemLeft" nowrap align="right" valign="top">bool </td><td class="memItemRight" valign="bottom"><a class="el" href="group__matrixdecomp.html#gbd50eeb4508aaf4b7296f3a904458886">itpp::qr</a> (const <a class="el" href="classitpp_1_1Mat.html#6bba394f181c76fda12759568986c613">mat</a> &A, <a class="el" href="classitpp_1_1Mat.html#6bba394f181c76fda12759568986c613">mat</a> &R)</td></tr> |
---|
| 133 | |
---|
| 134 | <tr><td class="mdescLeft"> </td><td class="mdescRight">QR factorisation of real matrix with suppressed evaluation of Q. <a href="#gbd50eeb4508aaf4b7296f3a904458886"></a><br></td></tr> |
---|
| 135 | <tr><td class="memItemLeft" nowrap align="right" valign="top">bool </td><td class="memItemRight" valign="bottom"><a class="el" href="group__matrixdecomp.html#g83c28d9b53d73b1d9527cf14341637ff">itpp::qr</a> (const <a class="el" href="classitpp_1_1Mat.html#6bba394f181c76fda12759568986c613">mat</a> &A, <a class="el" href="classitpp_1_1Mat.html#6bba394f181c76fda12759568986c613">mat</a> &Q, <a class="el" href="classitpp_1_1Mat.html#6bba394f181c76fda12759568986c613">mat</a> &R, <a class="el" href="mat_8h.html#f90acd1af41bf2d1d8a4bb23662fff69">bmat</a> &P)</td></tr> |
---|
| 136 | |
---|
| 137 | <tr><td class="mdescLeft"> </td><td class="mdescRight">QR factorisation of real matrix with pivoting. <a href="#g83c28d9b53d73b1d9527cf14341637ff"></a><br></td></tr> |
---|
| 138 | <tr><td class="memItemLeft" nowrap align="right" valign="top">bool </td><td class="memItemRight" valign="bottom"><a class="el" href="group__matrixdecomp.html#g321c23bad4ec43d1111f405587a9ffa2">itpp::qr</a> (const <a class="el" href="classitpp_1_1Mat.html#6fbac4b7184807da188e5b85d42f038b">cmat</a> &A, <a class="el" href="classitpp_1_1Mat.html#6fbac4b7184807da188e5b85d42f038b">cmat</a> &Q, <a class="el" href="classitpp_1_1Mat.html#6fbac4b7184807da188e5b85d42f038b">cmat</a> &R)</td></tr> |
---|
| 139 | |
---|
| 140 | <tr><td class="mdescLeft"> </td><td class="mdescRight">QR factorisation of a complex matrix. <a href="#g321c23bad4ec43d1111f405587a9ffa2"></a><br></td></tr> |
---|
| 141 | <tr><td class="memItemLeft" nowrap align="right" valign="top">bool </td><td class="memItemRight" valign="bottom"><a class="el" href="group__matrixdecomp.html#g1a880a8a274c14e51482293181b1a10e">itpp::qr</a> (const <a class="el" href="classitpp_1_1Mat.html#6fbac4b7184807da188e5b85d42f038b">cmat</a> &A, <a class="el" href="classitpp_1_1Mat.html#6fbac4b7184807da188e5b85d42f038b">cmat</a> &R)</td></tr> |
---|
| 142 | |
---|
| 143 | <tr><td class="mdescLeft"> </td><td class="mdescRight">QR factorisation of complex matrix with suppressed evaluation of Q. <a href="#g1a880a8a274c14e51482293181b1a10e"></a><br></td></tr> |
---|
| 144 | <tr><td class="memItemLeft" nowrap align="right" valign="top">bool </td><td class="memItemRight" valign="bottom"><a class="el" href="group__matrixdecomp.html#gdb3c49c28626013e0679b2ce088b8d70">itpp::qr</a> (const <a class="el" href="classitpp_1_1Mat.html#6fbac4b7184807da188e5b85d42f038b">cmat</a> &A, <a class="el" href="classitpp_1_1Mat.html#6fbac4b7184807da188e5b85d42f038b">cmat</a> &Q, <a class="el" href="classitpp_1_1Mat.html#6fbac4b7184807da188e5b85d42f038b">cmat</a> &R, <a class="el" href="mat_8h.html#f90acd1af41bf2d1d8a4bb23662fff69">bmat</a> &P)</td></tr> |
---|
| 145 | |
---|
| 146 | <tr><td class="mdescLeft"> </td><td class="mdescRight">QR factorisation of a complex matrix with pivoting. <a href="#gdb3c49c28626013e0679b2ce088b8d70"></a><br></td></tr> |
---|
| 147 | <tr><td class="memItemLeft" nowrap align="right" valign="top">bool </td><td class="memItemRight" valign="bottom"><a class="el" href="group__matrixdecomp.html#ga0c6711c11ece9641878d3ab19f39d33">itpp::schur</a> (const <a class="el" href="classitpp_1_1Mat.html#6bba394f181c76fda12759568986c613">mat</a> &A, <a class="el" href="classitpp_1_1Mat.html#6bba394f181c76fda12759568986c613">mat</a> &U, <a class="el" href="classitpp_1_1Mat.html#6bba394f181c76fda12759568986c613">mat</a> &T)</td></tr> |
---|
| 148 | |
---|
| 149 | <tr><td class="mdescLeft"> </td><td class="mdescRight">Schur decomposition of a real matrix. <a href="#ga0c6711c11ece9641878d3ab19f39d33"></a><br></td></tr> |
---|
| 150 | <tr><td class="memItemLeft" nowrap align="right" valign="top"><a class="el" href="classitpp_1_1Mat.html#6bba394f181c76fda12759568986c613">mat</a> </td><td class="memItemRight" valign="bottom"><a class="el" href="group__matrixdecomp.html#g5a511c9baeb36e803a006b3172848800">itpp::schur</a> (const <a class="el" href="classitpp_1_1Mat.html#6bba394f181c76fda12759568986c613">mat</a> &A)</td></tr> |
---|
| 151 | |
---|
| 152 | <tr><td class="mdescLeft"> </td><td class="mdescRight">Schur decomposition of a real matrix. <a href="#g5a511c9baeb36e803a006b3172848800"></a><br></td></tr> |
---|
| 153 | <tr><td class="memItemLeft" nowrap align="right" valign="top">bool </td><td class="memItemRight" valign="bottom"><a class="el" href="group__matrixdecomp.html#gcdfbe918727616dbc8eda854c4bf0cc4">itpp::schur</a> (const <a class="el" href="classitpp_1_1Mat.html#6fbac4b7184807da188e5b85d42f038b">cmat</a> &A, <a class="el" href="classitpp_1_1Mat.html#6fbac4b7184807da188e5b85d42f038b">cmat</a> &U, <a class="el" href="classitpp_1_1Mat.html#6fbac4b7184807da188e5b85d42f038b">cmat</a> &T)</td></tr> |
---|
| 154 | |
---|
| 155 | <tr><td class="mdescLeft"> </td><td class="mdescRight">Schur decomposition of a complex matrix. <a href="#gcdfbe918727616dbc8eda854c4bf0cc4"></a><br></td></tr> |
---|
| 156 | <tr><td class="memItemLeft" nowrap align="right" valign="top"><a class="el" href="classitpp_1_1Mat.html#6fbac4b7184807da188e5b85d42f038b">cmat</a> </td><td class="memItemRight" valign="bottom"><a class="el" href="group__matrixdecomp.html#gd1d1f3ad1c35dee4ded80cc86c5961cc">itpp::schur</a> (const <a class="el" href="classitpp_1_1Mat.html#6fbac4b7184807da188e5b85d42f038b">cmat</a> &A)</td></tr> |
---|
| 157 | |
---|
| 158 | <tr><td class="mdescLeft"> </td><td class="mdescRight">Schur decomposition of a complex matrix. <a href="#gd1d1f3ad1c35dee4ded80cc86c5961cc"></a><br></td></tr> |
---|
| 159 | <tr><td class="memItemLeft" nowrap align="right" valign="top">bool </td><td class="memItemRight" valign="bottom"><a class="el" href="group__matrixdecomp.html#g9fcc7191c3cee4db65e51d93123c7fba">itpp::svd</a> (const <a class="el" href="classitpp_1_1Mat.html#6bba394f181c76fda12759568986c613">mat</a> &A, <a class="el" href="classitpp_1_1Vec.html#02e1bb55f60f3c2eb7a020eb1c2cfcf4">vec</a> &s)</td></tr> |
---|
| 160 | |
---|
| 161 | <tr><td class="mdescLeft"> </td><td class="mdescRight">Get singular values <code>s</code> of a real matrix <code>A</code> using SVD. <a href="#g9fcc7191c3cee4db65e51d93123c7fba"></a><br></td></tr> |
---|
| 162 | <tr><td class="memItemLeft" nowrap align="right" valign="top">bool </td><td class="memItemRight" valign="bottom"><a class="el" href="group__matrixdecomp.html#g92dd138100c619c71ba24b3dae0dec72">itpp::svd</a> (const <a class="el" href="classitpp_1_1Mat.html#6fbac4b7184807da188e5b85d42f038b">cmat</a> &A, <a class="el" href="classitpp_1_1Vec.html#02e1bb55f60f3c2eb7a020eb1c2cfcf4">vec</a> &s)</td></tr> |
---|
| 163 | |
---|
| 164 | <tr><td class="mdescLeft"> </td><td class="mdescRight">Get singular values <code>s</code> of a complex matrix <code>A</code> using SVD. <a href="#g92dd138100c619c71ba24b3dae0dec72"></a><br></td></tr> |
---|
| 165 | <tr><td class="memItemLeft" nowrap align="right" valign="top"><a class="el" href="classitpp_1_1Vec.html#02e1bb55f60f3c2eb7a020eb1c2cfcf4">vec</a> </td><td class="memItemRight" valign="bottom"><a class="el" href="group__matrixdecomp.html#ge3b83ff6532c19ec15ffe76450b70e2c">itpp::svd</a> (const <a class="el" href="classitpp_1_1Mat.html#6bba394f181c76fda12759568986c613">mat</a> &A)</td></tr> |
---|
| 166 | |
---|
| 167 | <tr><td class="mdescLeft"> </td><td class="mdescRight">Return singular values of a real matrix <code>A</code> using SVD. <a href="#ge3b83ff6532c19ec15ffe76450b70e2c"></a><br></td></tr> |
---|
| 168 | <tr><td class="memItemLeft" nowrap align="right" valign="top"><a class="el" href="classitpp_1_1Vec.html#02e1bb55f60f3c2eb7a020eb1c2cfcf4">vec</a> </td><td class="memItemRight" valign="bottom"><a class="el" href="group__matrixdecomp.html#ga53763a60632139d71957ea7cf0080c9">itpp::svd</a> (const <a class="el" href="classitpp_1_1Mat.html#6fbac4b7184807da188e5b85d42f038b">cmat</a> &A)</td></tr> |
---|
| 169 | |
---|
| 170 | <tr><td class="mdescLeft"> </td><td class="mdescRight">Return singular values of a complex matrix <code>A</code> using SVD. <a href="#ga53763a60632139d71957ea7cf0080c9"></a><br></td></tr> |
---|
| 171 | <tr><td class="memItemLeft" nowrap align="right" valign="top">bool </td><td class="memItemRight" valign="bottom"><a class="el" href="group__matrixdecomp.html#g908131485c5c53ed2e84e2f0a258db8c">itpp::svd</a> (const <a class="el" href="classitpp_1_1Mat.html#6bba394f181c76fda12759568986c613">mat</a> &A, <a class="el" href="classitpp_1_1Mat.html#6bba394f181c76fda12759568986c613">mat</a> &U, <a class="el" href="classitpp_1_1Vec.html#02e1bb55f60f3c2eb7a020eb1c2cfcf4">vec</a> &s, <a class="el" href="classitpp_1_1Mat.html#6bba394f181c76fda12759568986c613">mat</a> &V)</td></tr> |
---|
| 172 | |
---|
| 173 | <tr><td class="mdescLeft"> </td><td class="mdescRight">Perform Singular Value Decomposition (SVD) of a real matrix <code>A</code>. <a href="#g908131485c5c53ed2e84e2f0a258db8c"></a><br></td></tr> |
---|
| 174 | <tr><td class="memItemLeft" nowrap align="right" valign="top">bool </td><td class="memItemRight" valign="bottom"><a class="el" href="group__matrixdecomp.html#g98a4dc87128a758f82ed05d7b060958b">itpp::svd</a> (const <a class="el" href="classitpp_1_1Mat.html#6fbac4b7184807da188e5b85d42f038b">cmat</a> &A, <a class="el" href="classitpp_1_1Mat.html#6fbac4b7184807da188e5b85d42f038b">cmat</a> &U, <a class="el" href="classitpp_1_1Vec.html#02e1bb55f60f3c2eb7a020eb1c2cfcf4">vec</a> &s, <a class="el" href="classitpp_1_1Mat.html#6fbac4b7184807da188e5b85d42f038b">cmat</a> &V)</td></tr> |
---|
| 175 | |
---|
| 176 | <tr><td class="mdescLeft"> </td><td class="mdescRight">Perform Singular Value Decomposition (SVD) of a complex matrix <code>A</code>. <a href="#g98a4dc87128a758f82ed05d7b060958b"></a><br></td></tr> |
---|
| 177 | </table> |
---|
| 178 | <hr><h2>Function Documentation</h2> |
---|
| 179 | <a class="anchor" name="g976aa7781da316c23ea0aad3af2511d8"></a><!-- doxytag: member="itpp::chol" ref="g976aa7781da316c23ea0aad3af2511d8" args="(const cmat &X)" --> |
---|
| 180 | <div class="memitem"> |
---|
| 181 | <div class="memproto"> |
---|
| 182 | <table class="memname"> |
---|
| 183 | <tr> |
---|
| 184 | <td class="memname"><a class="el" href="classitpp_1_1Mat.html#6fbac4b7184807da188e5b85d42f038b">cmat</a> itpp::chol </td> |
---|
| 185 | <td>(</td> |
---|
| 186 | <td class="paramtype">const <a class="el" href="classitpp_1_1Mat.html#6fbac4b7184807da188e5b85d42f038b">cmat</a> & </td> |
---|
| 187 | <td class="paramname"> <em>X</em> </td> |
---|
| 188 | <td> ) </td> |
---|
| 189 | <td></td> |
---|
| 190 | </tr> |
---|
| 191 | </table> |
---|
| 192 | </div> |
---|
| 193 | <div class="memdoc"> |
---|
| 194 | |
---|
| 195 | <p> |
---|
| 196 | Cholesky factorisation of complex hermitian and positive-definite matrix. |
---|
| 197 | <p> |
---|
| 198 | The Cholesky factorisation of a hermitian positive-definite matrix <img class="formulaInl" alt="$\mathbf{X}$" src="form_125.png"> of size <img class="formulaInl" alt="$n \times n$" src="form_126.png"> is given by <p class="formulaDsp"> |
---|
| 199 | <img class="formulaDsp" alt="\[ \mathbf{X} = \mathbf{F}^H \mathbf{F} \]" src="form_129.png"> |
---|
| 200 | <p> |
---|
| 201 | where <img class="formulaInl" alt="$\mathbf{F}$" src="form_128.png"> is an upper triangular <img class="formulaInl" alt="$n \times n$" src="form_126.png"> matrix. |
---|
| 202 | <p>References <a class="el" href="cholesky_8cpp-source.html#l00111">itpp::chol()</a>, and <a class="el" href="itassert_8h-source.html#l00173">it_warning</a>.</p> |
---|
| 203 | |
---|
| 204 | </div> |
---|
| 205 | </div><p> |
---|
| 206 | <a class="anchor" name="g217ccba3338767ac64ad1b2465b76029"></a><!-- doxytag: member="itpp::chol" ref="g217ccba3338767ac64ad1b2465b76029" args="(const cmat &X, cmat &F)" --> |
---|
| 207 | <div class="memitem"> |
---|
| 208 | <div class="memproto"> |
---|
| 209 | <table class="memname"> |
---|
| 210 | <tr> |
---|
| 211 | <td class="memname">bool itpp::chol </td> |
---|
| 212 | <td>(</td> |
---|
| 213 | <td class="paramtype">const <a class="el" href="classitpp_1_1Mat.html#6fbac4b7184807da188e5b85d42f038b">cmat</a> & </td> |
---|
| 214 | <td class="paramname"> <em>X</em>, </td> |
---|
| 215 | </tr> |
---|
| 216 | <tr> |
---|
| 217 | <td class="paramkey"></td> |
---|
| 218 | <td></td> |
---|
| 219 | <td class="paramtype"><a class="el" href="classitpp_1_1Mat.html#6fbac4b7184807da188e5b85d42f038b">cmat</a> & </td> |
---|
| 220 | <td class="paramname"> <em>F</em></td><td> </td> |
---|
| 221 | </tr> |
---|
| 222 | <tr> |
---|
| 223 | <td></td> |
---|
| 224 | <td>)</td> |
---|
| 225 | <td></td><td></td><td></td> |
---|
| 226 | </tr> |
---|
| 227 | </table> |
---|
| 228 | </div> |
---|
| 229 | <div class="memdoc"> |
---|
| 230 | |
---|
| 231 | <p> |
---|
| 232 | Cholesky factorisation of complex hermitian and positive-definite matrix. |
---|
| 233 | <p> |
---|
| 234 | The Cholesky factorisation of a hermitian positive-definite matrix <img class="formulaInl" alt="$\mathbf{X}$" src="form_125.png"> of size <img class="formulaInl" alt="$n \times n$" src="form_126.png"> is given by <p class="formulaDsp"> |
---|
| 235 | <img class="formulaDsp" alt="\[ \mathbf{X} = \mathbf{F}^H \mathbf{F} \]" src="form_129.png"> |
---|
| 236 | <p> |
---|
| 237 | where <img class="formulaInl" alt="$\mathbf{F}$" src="form_128.png"> is an upper triangular <img class="formulaInl" alt="$n \times n$" src="form_126.png"> matrix.<p> |
---|
| 238 | Returns true if calculation succeeded. False otherwise.<p> |
---|
| 239 | If <code>X</code> is positive definite, true is returned and <code>F=chol</code>(X) produces an upper triangular <code>F</code>. If also <code>X</code> is symmetric then <code>F'*F</code> = X. If <code>X</code> is not positive definite, false is returned. |
---|
| 240 | <p>References <a class="el" href="itassert_8h-source.html#l00126">it_error</a>.</p> |
---|
| 241 | |
---|
| 242 | </div> |
---|
| 243 | </div><p> |
---|
| 244 | <a class="anchor" name="g8aa42136e884519422d4f2dd95e51cb5"></a><!-- doxytag: member="itpp::chol" ref="g8aa42136e884519422d4f2dd95e51cb5" args="(const mat &X)" --> |
---|
| 245 | <div class="memitem"> |
---|
| 246 | <div class="memproto"> |
---|
| 247 | <table class="memname"> |
---|
| 248 | <tr> |
---|
| 249 | <td class="memname"><a class="el" href="classitpp_1_1Mat.html#6bba394f181c76fda12759568986c613">mat</a> itpp::chol </td> |
---|
| 250 | <td>(</td> |
---|
| 251 | <td class="paramtype">const <a class="el" href="classitpp_1_1Mat.html#6bba394f181c76fda12759568986c613">mat</a> & </td> |
---|
| 252 | <td class="paramname"> <em>X</em> </td> |
---|
| 253 | <td> ) </td> |
---|
| 254 | <td></td> |
---|
| 255 | </tr> |
---|
| 256 | </table> |
---|
| 257 | </div> |
---|
| 258 | <div class="memdoc"> |
---|
| 259 | |
---|
| 260 | <p> |
---|
| 261 | Cholesky factorisation of real symmetric and positive definite matrix. |
---|
| 262 | <p> |
---|
| 263 | The Cholesky factorisation of a real symmetric positive-definite matrix <img class="formulaInl" alt="$\mathbf{X}$" src="form_125.png"> of size <img class="formulaInl" alt="$n \times n$" src="form_126.png"> is given by <p class="formulaDsp"> |
---|
| 264 | <img class="formulaDsp" alt="\[ \mathbf{X} = \mathbf{F}^T \mathbf{F} \]" src="form_127.png"> |
---|
| 265 | <p> |
---|
| 266 | where <img class="formulaInl" alt="$\mathbf{F}$" src="form_128.png"> is an upper triangular <img class="formulaInl" alt="$n \times n$" src="form_126.png"> matrix. |
---|
| 267 | <p>References <a class="el" href="itassert_8h-source.html#l00173">it_warning</a>.</p> |
---|
| 268 | |
---|
| 269 | <p>Referenced by <a class="el" href="chmat_8h-source.html#l00059">chmat::chmat()</a>, <a class="el" href="cholesky_8cpp-source.html#l00101">itpp::chol()</a>, <a class="el" href="libDC_8cpp-source.html#l00046">ldmat::ldmat()</a>, and <a class="el" href="libDC_8h-source.html#l00159">fsqmat::sqrt_mult()</a>.</p> |
---|
| 270 | |
---|
| 271 | </div> |
---|
| 272 | </div><p> |
---|
| 273 | <a class="anchor" name="g4d631e12d5d0079f7f75ee4f6451043e"></a><!-- doxytag: member="itpp::chol" ref="g4d631e12d5d0079f7f75ee4f6451043e" args="(const mat &X, mat &F)" --> |
---|
| 274 | <div class="memitem"> |
---|
| 275 | <div class="memproto"> |
---|
| 276 | <table class="memname"> |
---|
| 277 | <tr> |
---|
| 278 | <td class="memname">bool itpp::chol </td> |
---|
| 279 | <td>(</td> |
---|
| 280 | <td class="paramtype">const <a class="el" href="classitpp_1_1Mat.html#6bba394f181c76fda12759568986c613">mat</a> & </td> |
---|
| 281 | <td class="paramname"> <em>X</em>, </td> |
---|
| 282 | </tr> |
---|
| 283 | <tr> |
---|
| 284 | <td class="paramkey"></td> |
---|
| 285 | <td></td> |
---|
| 286 | <td class="paramtype"><a class="el" href="classitpp_1_1Mat.html#6bba394f181c76fda12759568986c613">mat</a> & </td> |
---|
| 287 | <td class="paramname"> <em>F</em></td><td> </td> |
---|
| 288 | </tr> |
---|
| 289 | <tr> |
---|
| 290 | <td></td> |
---|
| 291 | <td>)</td> |
---|
| 292 | <td></td><td></td><td></td> |
---|
| 293 | </tr> |
---|
| 294 | </table> |
---|
| 295 | </div> |
---|
| 296 | <div class="memdoc"> |
---|
| 297 | |
---|
| 298 | <p> |
---|
| 299 | Cholesky factorisation of real symmetric and positive definite matrix. |
---|
| 300 | <p> |
---|
| 301 | The Cholesky factorisation of a real symmetric positive-definite matrix <img class="formulaInl" alt="$\mathbf{X}$" src="form_125.png"> of size <img class="formulaInl" alt="$n \times n$" src="form_126.png"> is given by <p class="formulaDsp"> |
---|
| 302 | <img class="formulaDsp" alt="\[ \mathbf{X} = \mathbf{F}^T \mathbf{F} \]" src="form_127.png"> |
---|
| 303 | <p> |
---|
| 304 | where <img class="formulaInl" alt="$\mathbf{F}$" src="form_128.png"> is an upper triangular <img class="formulaInl" alt="$n \times n$" src="form_126.png"> matrix.<p> |
---|
| 305 | Returns true if calculation succeeded. False otherwise. |
---|
| 306 | <p>References <a class="el" href="itassert_8h-source.html#l00126">it_error</a>.</p> |
---|
| 307 | |
---|
| 308 | </div> |
---|
| 309 | </div><p> |
---|
| 310 | <a class="anchor" name="gffe65e88bce986d9ff527b06d573e4b7"></a><!-- doxytag: member="itpp::eig" ref="gffe65e88bce986d9ff527b06d573e4b7" args="(const cmat &A)" --> |
---|
| 311 | <div class="memitem"> |
---|
| 312 | <div class="memproto"> |
---|
| 313 | <table class="memname"> |
---|
| 314 | <tr> |
---|
| 315 | <td class="memname"><a class="el" href="classitpp_1_1Vec.html#e83c1408740e41a7e29c383b71d4d544">cvec</a> itpp::eig </td> |
---|
| 316 | <td>(</td> |
---|
| 317 | <td class="paramtype">const <a class="el" href="classitpp_1_1Mat.html#6fbac4b7184807da188e5b85d42f038b">cmat</a> & </td> |
---|
| 318 | <td class="paramname"> <em>A</em> </td> |
---|
| 319 | <td> ) </td> |
---|
| 320 | <td></td> |
---|
| 321 | </tr> |
---|
| 322 | </table> |
---|
| 323 | </div> |
---|
| 324 | <div class="memdoc"> |
---|
| 325 | |
---|
| 326 | <p> |
---|
| 327 | Calculates the eigenvalues of a complex non-hermitian matrix. |
---|
| 328 | <p> |
---|
| 329 | The Eigenvalues <img class="formulaInl" alt="$\mathbf{d}(d_0, d_1, \ldots, d_{n-1})$" src="form_132.png"> and the eigenvectors <img class="formulaInl" alt="$\mathbf{v}_i, \: i=0, \ldots, n-1$" src="form_133.png"> of the complex <img class="formulaInl" alt="$n \times n$" src="form_126.png"> matrix <img class="formulaInl" alt="$\mathbf{A}$" src="form_134.png"> satisfies <p class="formulaDsp"> |
---|
| 330 | <img class="formulaDsp" alt="\[ \mathbf{A} \mathbf{v}_i = d_i \mathbf{v}_i\: i=0, \ldots, n-1. \]" src="form_135.png"> |
---|
| 331 | <p> |
---|
| 332 | <p> |
---|
| 333 | Uses the LAPACK routine ZGEEV. |
---|
| 334 | <p>Referenced by <a class="el" href="eigen_8cpp-source.html#l00318">itpp::eig()</a>, and <a class="el" href="poly_8cpp-source.html#l00066">itpp::roots()</a>.</p> |
---|
| 335 | |
---|
| 336 | </div> |
---|
| 337 | </div><p> |
---|
| 338 | <a class="anchor" name="gb874193ee0377616736ba5895a13dcab"></a><!-- doxytag: member="itpp::eig" ref="gb874193ee0377616736ba5895a13dcab" args="(const cmat &A, cvec &d)" --> |
---|
| 339 | <div class="memitem"> |
---|
| 340 | <div class="memproto"> |
---|
| 341 | <table class="memname"> |
---|
| 342 | <tr> |
---|
| 343 | <td class="memname">bool itpp::eig </td> |
---|
| 344 | <td>(</td> |
---|
| 345 | <td class="paramtype">const <a class="el" href="classitpp_1_1Mat.html#6fbac4b7184807da188e5b85d42f038b">cmat</a> & </td> |
---|
| 346 | <td class="paramname"> <em>A</em>, </td> |
---|
| 347 | </tr> |
---|
| 348 | <tr> |
---|
| 349 | <td class="paramkey"></td> |
---|
| 350 | <td></td> |
---|
| 351 | <td class="paramtype"><a class="el" href="classitpp_1_1Vec.html#e83c1408740e41a7e29c383b71d4d544">cvec</a> & </td> |
---|
| 352 | <td class="paramname"> <em>d</em></td><td> </td> |
---|
| 353 | </tr> |
---|
| 354 | <tr> |
---|
| 355 | <td></td> |
---|
| 356 | <td>)</td> |
---|
| 357 | <td></td><td></td><td></td> |
---|
| 358 | </tr> |
---|
| 359 | </table> |
---|
| 360 | </div> |
---|
| 361 | <div class="memdoc"> |
---|
| 362 | |
---|
| 363 | <p> |
---|
| 364 | Calculates the eigenvalues of a complex non-hermitian matrix. |
---|
| 365 | <p> |
---|
| 366 | The Eigenvalues <img class="formulaInl" alt="$\mathbf{d}(d_0, d_1, \ldots, d_{n-1})$" src="form_132.png"> and the eigenvectors <img class="formulaInl" alt="$\mathbf{v}_i, \: i=0, \ldots, n-1$" src="form_133.png"> of the complex <img class="formulaInl" alt="$n \times n$" src="form_126.png"> matrix <img class="formulaInl" alt="$\mathbf{A}$" src="form_134.png"> satisfies <p class="formulaDsp"> |
---|
| 367 | <img class="formulaDsp" alt="\[ \mathbf{A} \mathbf{v}_i = d_i \mathbf{v}_i\: i=0, \ldots, n-1. \]" src="form_135.png"> |
---|
| 368 | <p> |
---|
| 369 | True is returned if the calculation was successful. Otherwise false.<p> |
---|
| 370 | Uses the LAPACK routine ZGEEV. |
---|
| 371 | <p>References <a class="el" href="itassert_8h-source.html#l00126">it_error</a>.</p> |
---|
| 372 | |
---|
| 373 | </div> |
---|
| 374 | </div><p> |
---|
| 375 | <a class="anchor" name="g8be5168b8699ab6772d2c24c183b5b44"></a><!-- doxytag: member="itpp::eig" ref="g8be5168b8699ab6772d2c24c183b5b44" args="(const cmat &A, cvec &d, cmat &V)" --> |
---|
| 376 | <div class="memitem"> |
---|
| 377 | <div class="memproto"> |
---|
| 378 | <table class="memname"> |
---|
| 379 | <tr> |
---|
| 380 | <td class="memname">bool itpp::eig </td> |
---|
| 381 | <td>(</td> |
---|
| 382 | <td class="paramtype">const <a class="el" href="classitpp_1_1Mat.html#6fbac4b7184807da188e5b85d42f038b">cmat</a> & </td> |
---|
| 383 | <td class="paramname"> <em>A</em>, </td> |
---|
| 384 | </tr> |
---|
| 385 | <tr> |
---|
| 386 | <td class="paramkey"></td> |
---|
| 387 | <td></td> |
---|
| 388 | <td class="paramtype"><a class="el" href="classitpp_1_1Vec.html#e83c1408740e41a7e29c383b71d4d544">cvec</a> & </td> |
---|
| 389 | <td class="paramname"> <em>d</em>, </td> |
---|
| 390 | </tr> |
---|
| 391 | <tr> |
---|
| 392 | <td class="paramkey"></td> |
---|
| 393 | <td></td> |
---|
| 394 | <td class="paramtype"><a class="el" href="classitpp_1_1Mat.html#6fbac4b7184807da188e5b85d42f038b">cmat</a> & </td> |
---|
| 395 | <td class="paramname"> <em>V</em></td><td> </td> |
---|
| 396 | </tr> |
---|
| 397 | <tr> |
---|
| 398 | <td></td> |
---|
| 399 | <td>)</td> |
---|
| 400 | <td></td><td></td><td></td> |
---|
| 401 | </tr> |
---|
| 402 | </table> |
---|
| 403 | </div> |
---|
| 404 | <div class="memdoc"> |
---|
| 405 | |
---|
| 406 | <p> |
---|
| 407 | Calculates the eigenvalues and eigenvectors of a complex non-hermitian matrix. |
---|
| 408 | <p> |
---|
| 409 | The Eigenvalues <img class="formulaInl" alt="$\mathbf{d}(d_0, d_1, \ldots, d_{n-1})$" src="form_132.png"> and the eigenvectors <img class="formulaInl" alt="$\mathbf{v}_i, \: i=0, \ldots, n-1$" src="form_133.png"> of the complex <img class="formulaInl" alt="$n \times n$" src="form_126.png"> matrix <img class="formulaInl" alt="$\mathbf{A}$" src="form_134.png"> satisfies <p class="formulaDsp"> |
---|
| 410 | <img class="formulaDsp" alt="\[ \mathbf{A} \mathbf{v}_i = d_i \mathbf{v}_i\: i=0, \ldots, n-1. \]" src="form_135.png"> |
---|
| 411 | <p> |
---|
| 412 | The eigenvectors are the columns of the matrix V. True is returned if the calculation was successful. Otherwise false.<p> |
---|
| 413 | Uses the LAPACK routine ZGEEV. |
---|
| 414 | <p>References <a class="el" href="itassert_8h-source.html#l00126">it_error</a>.</p> |
---|
| 415 | |
---|
| 416 | </div> |
---|
| 417 | </div><p> |
---|
| 418 | <a class="anchor" name="g7c9a5795e0c4e8e406977a95525557ba"></a><!-- doxytag: member="itpp::eig" ref="g7c9a5795e0c4e8e406977a95525557ba" args="(const mat &A)" --> |
---|
| 419 | <div class="memitem"> |
---|
| 420 | <div class="memproto"> |
---|
| 421 | <table class="memname"> |
---|
| 422 | <tr> |
---|
| 423 | <td class="memname"><a class="el" href="classitpp_1_1Vec.html#e83c1408740e41a7e29c383b71d4d544">cvec</a> itpp::eig </td> |
---|
| 424 | <td>(</td> |
---|
| 425 | <td class="paramtype">const <a class="el" href="classitpp_1_1Mat.html#6bba394f181c76fda12759568986c613">mat</a> & </td> |
---|
| 426 | <td class="paramname"> <em>A</em> </td> |
---|
| 427 | <td> ) </td> |
---|
| 428 | <td></td> |
---|
| 429 | </tr> |
---|
| 430 | </table> |
---|
| 431 | </div> |
---|
| 432 | <div class="memdoc"> |
---|
| 433 | |
---|
| 434 | <p> |
---|
| 435 | Calculates the eigenvalues of a real non-symmetric matrix. |
---|
| 436 | <p> |
---|
| 437 | The Eigenvalues <img class="formulaInl" alt="$\mathbf{d}(d_0, d_1, \ldots, d_{n-1})$" src="form_132.png"> and the eigenvectors <img class="formulaInl" alt="$\mathbf{v}_i, \: i=0, \ldots, n-1$" src="form_133.png"> of the real <img class="formulaInl" alt="$n \times n$" src="form_126.png"> matrix <img class="formulaInl" alt="$\mathbf{A}$" src="form_134.png"> satisfies <p class="formulaDsp"> |
---|
| 438 | <img class="formulaDsp" alt="\[ \mathbf{A} \mathbf{v}_i = d_i \mathbf{v}_i\: i=0, \ldots, n-1. \]" src="form_135.png"> |
---|
| 439 | <p> |
---|
| 440 | <p> |
---|
| 441 | Uses the LAPACK routine DGEEV. |
---|
| 442 | <p>References <a class="el" href="eigen_8cpp-source.html#l00325">itpp::eig()</a>.</p> |
---|
| 443 | |
---|
| 444 | </div> |
---|
| 445 | </div><p> |
---|
| 446 | <a class="anchor" name="ga4e8c2f66e19625dc7c1d15a04cf9e63"></a><!-- doxytag: member="itpp::eig" ref="ga4e8c2f66e19625dc7c1d15a04cf9e63" args="(const mat &A, cvec &d)" --> |
---|
| 447 | <div class="memitem"> |
---|
| 448 | <div class="memproto"> |
---|
| 449 | <table class="memname"> |
---|
| 450 | <tr> |
---|
| 451 | <td class="memname">bool itpp::eig </td> |
---|
| 452 | <td>(</td> |
---|
| 453 | <td class="paramtype">const <a class="el" href="classitpp_1_1Mat.html#6bba394f181c76fda12759568986c613">mat</a> & </td> |
---|
| 454 | <td class="paramname"> <em>A</em>, </td> |
---|
| 455 | </tr> |
---|
| 456 | <tr> |
---|
| 457 | <td class="paramkey"></td> |
---|
| 458 | <td></td> |
---|
| 459 | <td class="paramtype"><a class="el" href="classitpp_1_1Vec.html#e83c1408740e41a7e29c383b71d4d544">cvec</a> & </td> |
---|
| 460 | <td class="paramname"> <em>d</em></td><td> </td> |
---|
| 461 | </tr> |
---|
| 462 | <tr> |
---|
| 463 | <td></td> |
---|
| 464 | <td>)</td> |
---|
| 465 | <td></td><td></td><td></td> |
---|
| 466 | </tr> |
---|
| 467 | </table> |
---|
| 468 | </div> |
---|
| 469 | <div class="memdoc"> |
---|
| 470 | |
---|
| 471 | <p> |
---|
| 472 | Calculates the eigenvalues of a real non-symmetric matrix. |
---|
| 473 | <p> |
---|
| 474 | The Eigenvalues <img class="formulaInl" alt="$\mathbf{d}(d_0, d_1, \ldots, d_{n-1})$" src="form_132.png"> and the eigenvectors <img class="formulaInl" alt="$\mathbf{v}_i, \: i=0, \ldots, n-1$" src="form_133.png"> of the real <img class="formulaInl" alt="$n \times n$" src="form_126.png"> matrix <img class="formulaInl" alt="$\mathbf{A}$" src="form_134.png"> satisfies <p class="formulaDsp"> |
---|
| 475 | <img class="formulaDsp" alt="\[ \mathbf{A} \mathbf{v}_i = d_i \mathbf{v}_i\: i=0, \ldots, n-1. \]" src="form_135.png"> |
---|
| 476 | <p> |
---|
| 477 | True is returned if the calculation was successful. Otherwise false.<p> |
---|
| 478 | Uses the LAPACK routine DGEEV. |
---|
| 479 | <p>References <a class="el" href="itassert_8h-source.html#l00126">it_error</a>.</p> |
---|
| 480 | |
---|
| 481 | </div> |
---|
| 482 | </div><p> |
---|
| 483 | <a class="anchor" name="gdc7223ef54536dfc36d3e183468297b8"></a><!-- doxytag: member="itpp::eig" ref="gdc7223ef54536dfc36d3e183468297b8" args="(const mat &A, cvec &d, cmat &V)" --> |
---|
| 484 | <div class="memitem"> |
---|
| 485 | <div class="memproto"> |
---|
| 486 | <table class="memname"> |
---|
| 487 | <tr> |
---|
| 488 | <td class="memname">bool itpp::eig </td> |
---|
| 489 | <td>(</td> |
---|
| 490 | <td class="paramtype">const <a class="el" href="classitpp_1_1Mat.html#6bba394f181c76fda12759568986c613">mat</a> & </td> |
---|
| 491 | <td class="paramname"> <em>A</em>, </td> |
---|
| 492 | </tr> |
---|
| 493 | <tr> |
---|
| 494 | <td class="paramkey"></td> |
---|
| 495 | <td></td> |
---|
| 496 | <td class="paramtype"><a class="el" href="classitpp_1_1Vec.html#e83c1408740e41a7e29c383b71d4d544">cvec</a> & </td> |
---|
| 497 | <td class="paramname"> <em>d</em>, </td> |
---|
| 498 | </tr> |
---|
| 499 | <tr> |
---|
| 500 | <td class="paramkey"></td> |
---|
| 501 | <td></td> |
---|
| 502 | <td class="paramtype"><a class="el" href="classitpp_1_1Mat.html#6fbac4b7184807da188e5b85d42f038b">cmat</a> & </td> |
---|
| 503 | <td class="paramname"> <em>V</em></td><td> </td> |
---|
| 504 | </tr> |
---|
| 505 | <tr> |
---|
| 506 | <td></td> |
---|
| 507 | <td>)</td> |
---|
| 508 | <td></td><td></td><td></td> |
---|
| 509 | </tr> |
---|
| 510 | </table> |
---|
| 511 | </div> |
---|
| 512 | <div class="memdoc"> |
---|
| 513 | |
---|
| 514 | <p> |
---|
| 515 | Calculates the eigenvalues and eigenvectors of a real non-symmetric matrix. |
---|
| 516 | <p> |
---|
| 517 | The Eigenvalues <img class="formulaInl" alt="$\mathbf{d}(d_0, d_1, \ldots, d_{n-1})$" src="form_132.png"> and the eigenvectors <img class="formulaInl" alt="$\mathbf{v}_i, \: i=0, \ldots, n-1$" src="form_133.png"> of the real <img class="formulaInl" alt="$n \times n$" src="form_126.png"> matrix <img class="formulaInl" alt="$\mathbf{A}$" src="form_134.png"> satisfies <p class="formulaDsp"> |
---|
| 518 | <img class="formulaDsp" alt="\[ \mathbf{A} \mathbf{v}_i = d_i \mathbf{v}_i\: i=0, \ldots, n-1. \]" src="form_135.png"> |
---|
| 519 | <p> |
---|
| 520 | The eigenvectors are the columns of the matrix V. True is returned if the calculation was successful. Otherwise false.<p> |
---|
| 521 | Uses the LAPACK routine DGEEV. |
---|
| 522 | <p>References <a class="el" href="itassert_8h-source.html#l00126">it_error</a>.</p> |
---|
| 523 | |
---|
| 524 | </div> |
---|
| 525 | </div><p> |
---|
| 526 | <a class="anchor" name="g6dc61c925d40d736effa9dcbe7912df1"></a><!-- doxytag: member="itpp::eig_sym" ref="g6dc61c925d40d736effa9dcbe7912df1" args="(const cmat &A)" --> |
---|
| 527 | <div class="memitem"> |
---|
| 528 | <div class="memproto"> |
---|
| 529 | <table class="memname"> |
---|
| 530 | <tr> |
---|
| 531 | <td class="memname"><a class="el" href="classitpp_1_1Vec.html#02e1bb55f60f3c2eb7a020eb1c2cfcf4">vec</a> itpp::eig_sym </td> |
---|
| 532 | <td>(</td> |
---|
| 533 | <td class="paramtype">const <a class="el" href="classitpp_1_1Mat.html#6fbac4b7184807da188e5b85d42f038b">cmat</a> & </td> |
---|
| 534 | <td class="paramname"> <em>A</em> </td> |
---|
| 535 | <td> ) </td> |
---|
| 536 | <td></td> |
---|
| 537 | </tr> |
---|
| 538 | </table> |
---|
| 539 | </div> |
---|
| 540 | <div class="memdoc"> |
---|
| 541 | |
---|
| 542 | <p> |
---|
| 543 | Calculates the eigenvalues of a hermitian complex matrix. |
---|
| 544 | <p> |
---|
| 545 | The Eigenvalues <img class="formulaInl" alt="$\mathbf{d}(d_0, d_1, \ldots, d_{n-1})$" src="form_132.png"> and the eigenvectors <img class="formulaInl" alt="$\mathbf{v}_i, \: i=0, \ldots, n-1$" src="form_133.png"> of the complex and hermitian <img class="formulaInl" alt="$n \times n$" src="form_126.png"> matrix <img class="formulaInl" alt="$\mathbf{A}$" src="form_134.png"> satisfies <p class="formulaDsp"> |
---|
| 546 | <img class="formulaDsp" alt="\[ \mathbf{A} \mathbf{v}_i = d_i \mathbf{v}_i\: i=0, \ldots, n-1. \]" src="form_135.png"> |
---|
| 547 | <p> |
---|
| 548 | <p> |
---|
| 549 | Uses the LAPACK routine ZHEEV. |
---|
| 550 | <p>Referenced by <a class="el" href="eigen_8cpp-source.html#l00303">itpp::eig_sym()</a>.</p> |
---|
| 551 | |
---|
| 552 | </div> |
---|
| 553 | </div><p> |
---|
| 554 | <a class="anchor" name="g89faa81cc5408f5e1452d5fec9fea473"></a><!-- doxytag: member="itpp::eig_sym" ref="g89faa81cc5408f5e1452d5fec9fea473" args="(const cmat &A, vec &d)" --> |
---|
| 555 | <div class="memitem"> |
---|
| 556 | <div class="memproto"> |
---|
| 557 | <table class="memname"> |
---|
| 558 | <tr> |
---|
| 559 | <td class="memname">bool itpp::eig_sym </td> |
---|
| 560 | <td>(</td> |
---|
| 561 | <td class="paramtype">const <a class="el" href="classitpp_1_1Mat.html#6fbac4b7184807da188e5b85d42f038b">cmat</a> & </td> |
---|
| 562 | <td class="paramname"> <em>A</em>, </td> |
---|
| 563 | </tr> |
---|
| 564 | <tr> |
---|
| 565 | <td class="paramkey"></td> |
---|
| 566 | <td></td> |
---|
| 567 | <td class="paramtype"><a class="el" href="classitpp_1_1Vec.html#02e1bb55f60f3c2eb7a020eb1c2cfcf4">vec</a> & </td> |
---|
| 568 | <td class="paramname"> <em>d</em></td><td> </td> |
---|
| 569 | </tr> |
---|
| 570 | <tr> |
---|
| 571 | <td></td> |
---|
| 572 | <td>)</td> |
---|
| 573 | <td></td><td></td><td></td> |
---|
| 574 | </tr> |
---|
| 575 | </table> |
---|
| 576 | </div> |
---|
| 577 | <div class="memdoc"> |
---|
| 578 | |
---|
| 579 | <p> |
---|
| 580 | Calculates the eigenvalues of a hermitian complex matrix. |
---|
| 581 | <p> |
---|
| 582 | The Eigenvalues <img class="formulaInl" alt="$\mathbf{d}(d_0, d_1, \ldots, d_{n-1})$" src="form_132.png"> and the eigenvectors <img class="formulaInl" alt="$\mathbf{v}_i, \: i=0, \ldots, n-1$" src="form_133.png"> of the complex and hermitian <img class="formulaInl" alt="$n \times n$" src="form_126.png"> matrix <img class="formulaInl" alt="$\mathbf{A}$" src="form_134.png"> satisfies <p class="formulaDsp"> |
---|
| 583 | <img class="formulaDsp" alt="\[ \mathbf{A} \mathbf{v}_i = d_i \mathbf{v}_i\: i=0, \ldots, n-1. \]" src="form_135.png"> |
---|
| 584 | <p> |
---|
| 585 | True is returned if the calculation was successful. Otherwise false.<p> |
---|
| 586 | Uses the LAPACK routine ZHEEV. |
---|
| 587 | <p>References <a class="el" href="itassert_8h-source.html#l00126">it_error</a>.</p> |
---|
| 588 | |
---|
| 589 | </div> |
---|
| 590 | </div><p> |
---|
| 591 | <a class="anchor" name="g40bacb19d51c45a59837ab38f04dabef"></a><!-- doxytag: member="itpp::eig_sym" ref="g40bacb19d51c45a59837ab38f04dabef" args="(const cmat &A, vec &d, cmat &V)" --> |
---|
| 592 | <div class="memitem"> |
---|
| 593 | <div class="memproto"> |
---|
| 594 | <table class="memname"> |
---|
| 595 | <tr> |
---|
| 596 | <td class="memname">bool itpp::eig_sym </td> |
---|
| 597 | <td>(</td> |
---|
| 598 | <td class="paramtype">const <a class="el" href="classitpp_1_1Mat.html#6fbac4b7184807da188e5b85d42f038b">cmat</a> & </td> |
---|
| 599 | <td class="paramname"> <em>A</em>, </td> |
---|
| 600 | </tr> |
---|
| 601 | <tr> |
---|
| 602 | <td class="paramkey"></td> |
---|
| 603 | <td></td> |
---|
| 604 | <td class="paramtype"><a class="el" href="classitpp_1_1Vec.html#02e1bb55f60f3c2eb7a020eb1c2cfcf4">vec</a> & </td> |
---|
| 605 | <td class="paramname"> <em>d</em>, </td> |
---|
| 606 | </tr> |
---|
| 607 | <tr> |
---|
| 608 | <td class="paramkey"></td> |
---|
| 609 | <td></td> |
---|
| 610 | <td class="paramtype"><a class="el" href="classitpp_1_1Mat.html#6fbac4b7184807da188e5b85d42f038b">cmat</a> & </td> |
---|
| 611 | <td class="paramname"> <em>V</em></td><td> </td> |
---|
| 612 | </tr> |
---|
| 613 | <tr> |
---|
| 614 | <td></td> |
---|
| 615 | <td>)</td> |
---|
| 616 | <td></td><td></td><td></td> |
---|
| 617 | </tr> |
---|
| 618 | </table> |
---|
| 619 | </div> |
---|
| 620 | <div class="memdoc"> |
---|
| 621 | |
---|
| 622 | <p> |
---|
| 623 | Calculates the eigenvalues and eigenvectors of a hermitian complex matrix. |
---|
| 624 | <p> |
---|
| 625 | The Eigenvalues <img class="formulaInl" alt="$\mathbf{d}(d_0, d_1, \ldots, d_{n-1})$" src="form_132.png"> and the eigenvectors <img class="formulaInl" alt="$\mathbf{v}_i, \: i=0, \ldots, n-1$" src="form_133.png"> of the complex and hermitian <img class="formulaInl" alt="$n \times n$" src="form_126.png"> matrix <img class="formulaInl" alt="$\mathbf{A}$" src="form_134.png"> satisfies <p class="formulaDsp"> |
---|
| 626 | <img class="formulaDsp" alt="\[ \mathbf{A} \mathbf{v}_i = d_i \mathbf{v}_i\: i=0, \ldots, n-1. \]" src="form_135.png"> |
---|
| 627 | <p> |
---|
| 628 | The eigenvectors are the columns of the matrix V. True is returned if the calculation was successful. Otherwise false.<p> |
---|
| 629 | Uses the LAPACK routine ZHEEV. |
---|
| 630 | <p>References <a class="el" href="itassert_8h-source.html#l00126">it_error</a>.</p> |
---|
| 631 | |
---|
| 632 | </div> |
---|
| 633 | </div><p> |
---|
| 634 | <a class="anchor" name="gebf551d77c5738033d081e35e7cd9cb6"></a><!-- doxytag: member="itpp::eig_sym" ref="gebf551d77c5738033d081e35e7cd9cb6" args="(const mat &A)" --> |
---|
| 635 | <div class="memitem"> |
---|
| 636 | <div class="memproto"> |
---|
| 637 | <table class="memname"> |
---|
| 638 | <tr> |
---|
| 639 | <td class="memname"><a class="el" href="classitpp_1_1Vec.html#02e1bb55f60f3c2eb7a020eb1c2cfcf4">vec</a> itpp::eig_sym </td> |
---|
| 640 | <td>(</td> |
---|
| 641 | <td class="paramtype">const <a class="el" href="classitpp_1_1Mat.html#6bba394f181c76fda12759568986c613">mat</a> & </td> |
---|
| 642 | <td class="paramname"> <em>A</em> </td> |
---|
| 643 | <td> ) </td> |
---|
| 644 | <td></td> |
---|
| 645 | </tr> |
---|
| 646 | </table> |
---|
| 647 | </div> |
---|
| 648 | <div class="memdoc"> |
---|
| 649 | |
---|
| 650 | <p> |
---|
| 651 | Calculates the eigenvalues of a symmetric real matrix. |
---|
| 652 | <p> |
---|
| 653 | The Eigenvalues <img class="formulaInl" alt="$\mathbf{d}(d_0, d_1, \ldots, d_{n-1})$" src="form_132.png"> and the eigenvectors <img class="formulaInl" alt="$\mathbf{v}_i, \: i=0, \ldots, n-1$" src="form_133.png"> of the real and symmetric <img class="formulaInl" alt="$n \times n$" src="form_126.png"> matrix <img class="formulaInl" alt="$\mathbf{A}$" src="form_134.png"> satisfies <p class="formulaDsp"> |
---|
| 654 | <img class="formulaDsp" alt="\[ \mathbf{A} \mathbf{v}_i = d_i \mathbf{v}_i\: i=0, \ldots, n-1. \]" src="form_135.png"> |
---|
| 655 | <p> |
---|
| 656 | <p> |
---|
| 657 | Uses the LAPACK routine DSYEV. |
---|
| 658 | <p>References <a class="el" href="eigen_8cpp-source.html#l00310">itpp::eig_sym()</a>.</p> |
---|
| 659 | |
---|
| 660 | </div> |
---|
| 661 | </div><p> |
---|
| 662 | <a class="anchor" name="g282eeffd56bf6ac0fb3e8efedb755cee"></a><!-- doxytag: member="itpp::eig_sym" ref="g282eeffd56bf6ac0fb3e8efedb755cee" args="(const mat &A, vec &d)" --> |
---|
| 663 | <div class="memitem"> |
---|
| 664 | <div class="memproto"> |
---|
| 665 | <table class="memname"> |
---|
| 666 | <tr> |
---|
| 667 | <td class="memname">bool itpp::eig_sym </td> |
---|
| 668 | <td>(</td> |
---|
| 669 | <td class="paramtype">const <a class="el" href="classitpp_1_1Mat.html#6bba394f181c76fda12759568986c613">mat</a> & </td> |
---|
| 670 | <td class="paramname"> <em>A</em>, </td> |
---|
| 671 | </tr> |
---|
| 672 | <tr> |
---|
| 673 | <td class="paramkey"></td> |
---|
| 674 | <td></td> |
---|
| 675 | <td class="paramtype"><a class="el" href="classitpp_1_1Vec.html#02e1bb55f60f3c2eb7a020eb1c2cfcf4">vec</a> & </td> |
---|
| 676 | <td class="paramname"> <em>d</em></td><td> </td> |
---|
| 677 | </tr> |
---|
| 678 | <tr> |
---|
| 679 | <td></td> |
---|
| 680 | <td>)</td> |
---|
| 681 | <td></td><td></td><td></td> |
---|
| 682 | </tr> |
---|
| 683 | </table> |
---|
| 684 | </div> |
---|
| 685 | <div class="memdoc"> |
---|
| 686 | |
---|
| 687 | <p> |
---|
| 688 | Calculates the eigenvalues of a symmetric real matrix. |
---|
| 689 | <p> |
---|
| 690 | The Eigenvalues <img class="formulaInl" alt="$\mathbf{d}(d_0, d_1, \ldots, d_{n-1})$" src="form_132.png"> and the eigenvectors <img class="formulaInl" alt="$\mathbf{v}_i, \: i=0, \ldots, n-1$" src="form_133.png"> of the real and symmetric <img class="formulaInl" alt="$n \times n$" src="form_126.png"> matrix <img class="formulaInl" alt="$\mathbf{A}$" src="form_134.png"> satisfies <p class="formulaDsp"> |
---|
| 691 | <img class="formulaDsp" alt="\[ \mathbf{A} \mathbf{v}_i = d_i \mathbf{v}_i\: i=0, \ldots, n-1. \]" src="form_135.png"> |
---|
| 692 | <p> |
---|
| 693 | True is returned if the calculation was successful. Otherwise false.<p> |
---|
| 694 | Uses the LAPACK routine DSYEV. |
---|
| 695 | <p>References <a class="el" href="itassert_8h-source.html#l00126">it_error</a>.</p> |
---|
| 696 | |
---|
| 697 | </div> |
---|
| 698 | </div><p> |
---|
| 699 | <a class="anchor" name="g05eced45f3e27b8f60ffa422f02856df"></a><!-- doxytag: member="itpp::eig_sym" ref="g05eced45f3e27b8f60ffa422f02856df" args="(const mat &A, vec &d, mat &V)" --> |
---|
| 700 | <div class="memitem"> |
---|
| 701 | <div class="memproto"> |
---|
| 702 | <table class="memname"> |
---|
| 703 | <tr> |
---|
| 704 | <td class="memname">bool itpp::eig_sym </td> |
---|
| 705 | <td>(</td> |
---|
| 706 | <td class="paramtype">const <a class="el" href="classitpp_1_1Mat.html#6bba394f181c76fda12759568986c613">mat</a> & </td> |
---|
| 707 | <td class="paramname"> <em>A</em>, </td> |
---|
| 708 | </tr> |
---|
| 709 | <tr> |
---|
| 710 | <td class="paramkey"></td> |
---|
| 711 | <td></td> |
---|
| 712 | <td class="paramtype"><a class="el" href="classitpp_1_1Vec.html#02e1bb55f60f3c2eb7a020eb1c2cfcf4">vec</a> & </td> |
---|
| 713 | <td class="paramname"> <em>d</em>, </td> |
---|
| 714 | </tr> |
---|
| 715 | <tr> |
---|
| 716 | <td class="paramkey"></td> |
---|
| 717 | <td></td> |
---|
| 718 | <td class="paramtype"><a class="el" href="classitpp_1_1Mat.html#6bba394f181c76fda12759568986c613">mat</a> & </td> |
---|
| 719 | <td class="paramname"> <em>V</em></td><td> </td> |
---|
| 720 | </tr> |
---|
| 721 | <tr> |
---|
| 722 | <td></td> |
---|
| 723 | <td>)</td> |
---|
| 724 | <td></td><td></td><td></td> |
---|
| 725 | </tr> |
---|
| 726 | </table> |
---|
| 727 | </div> |
---|
| 728 | <div class="memdoc"> |
---|
| 729 | |
---|
| 730 | <p> |
---|
| 731 | Calculates the eigenvalues and eigenvectors of a symmetric real matrix. |
---|
| 732 | <p> |
---|
| 733 | The Eigenvalues <img class="formulaInl" alt="$\mathbf{d}(d_0, d_1, \ldots, d_{n-1})$" src="form_132.png"> and the eigenvectors <img class="formulaInl" alt="$\mathbf{v}_i, \: i=0, \ldots, n-1$" src="form_133.png"> of the real and symmetric <img class="formulaInl" alt="$n \times n$" src="form_126.png"> matrix <img class="formulaInl" alt="$\mathbf{A}$" src="form_134.png"> satisfies <p class="formulaDsp"> |
---|
| 734 | <img class="formulaDsp" alt="\[ \mathbf{A} \mathbf{v}_i = d_i \mathbf{v}_i\: i=0, \ldots, n-1. \]" src="form_135.png"> |
---|
| 735 | <p> |
---|
| 736 | The eigenvectors are the columns of the matrix V. True is returned if the calculation was successful. Otherwise false.<p> |
---|
| 737 | Uses the LAPACK routine DSYEV. |
---|
| 738 | <p>References <a class="el" href="itassert_8h-source.html#l00126">it_error</a>.</p> |
---|
| 739 | |
---|
| 740 | </div> |
---|
| 741 | </div><p> |
---|
| 742 | <a class="anchor" name="g9912a15ea024f75442720c1bf3b5dac1"></a><!-- doxytag: member="itpp::lu" ref="g9912a15ea024f75442720c1bf3b5dac1" args="(const cmat &X, cmat &L, cmat &U, ivec &p)" --> |
---|
| 743 | <div class="memitem"> |
---|
| 744 | <div class="memproto"> |
---|
| 745 | <table class="memname"> |
---|
| 746 | <tr> |
---|
| 747 | <td class="memname">bool itpp::lu </td> |
---|
| 748 | <td>(</td> |
---|
| 749 | <td class="paramtype">const <a class="el" href="classitpp_1_1Mat.html#6fbac4b7184807da188e5b85d42f038b">cmat</a> & </td> |
---|
| 750 | <td class="paramname"> <em>X</em>, </td> |
---|
| 751 | </tr> |
---|
| 752 | <tr> |
---|
| 753 | <td class="paramkey"></td> |
---|
| 754 | <td></td> |
---|
| 755 | <td class="paramtype"><a class="el" href="classitpp_1_1Mat.html#6fbac4b7184807da188e5b85d42f038b">cmat</a> & </td> |
---|
| 756 | <td class="paramname"> <em>L</em>, </td> |
---|
| 757 | </tr> |
---|
| 758 | <tr> |
---|
| 759 | <td class="paramkey"></td> |
---|
| 760 | <td></td> |
---|
| 761 | <td class="paramtype"><a class="el" href="classitpp_1_1Mat.html#6fbac4b7184807da188e5b85d42f038b">cmat</a> & </td> |
---|
| 762 | <td class="paramname"> <em>U</em>, </td> |
---|
| 763 | </tr> |
---|
| 764 | <tr> |
---|
| 765 | <td class="paramkey"></td> |
---|
| 766 | <td></td> |
---|
| 767 | <td class="paramtype"><a class="el" href="classitpp_1_1Vec.html#b03757d874926a9be91535e71af1656e">ivec</a> & </td> |
---|
| 768 | <td class="paramname"> <em>p</em></td><td> </td> |
---|
| 769 | </tr> |
---|
| 770 | <tr> |
---|
| 771 | <td></td> |
---|
| 772 | <td>)</td> |
---|
| 773 | <td></td><td></td><td></td> |
---|
| 774 | </tr> |
---|
| 775 | </table> |
---|
| 776 | </div> |
---|
| 777 | <div class="memdoc"> |
---|
| 778 | |
---|
| 779 | <p> |
---|
| 780 | LU factorisation of real matrix. |
---|
| 781 | <p> |
---|
| 782 | The LU factorization of the complex matrix <img class="formulaInl" alt="$\mathbf{X}$" src="form_125.png"> of size <img class="formulaInl" alt="$n \times n$" src="form_126.png"> is given by <p class="formulaDsp"> |
---|
| 783 | <img class="formulaDsp" alt="\[ \mathbf{X} = \mathbf{P}^T \mathbf{L} \mathbf{U} , \]" src="form_143.png"> |
---|
| 784 | <p> |
---|
| 785 | where <img class="formulaInl" alt="$\mathbf{L}$" src="form_144.png"> and <img class="formulaInl" alt="$\mathbf{U}$" src="form_145.png"> are lower and upper triangular matrices and <img class="formulaInl" alt="$\mathbf{P}$" src="form_146.png"> is a permutation matrix.<p> |
---|
| 786 | The interchange permutation vector <em>p</em> is such that <em>k</em> and <em>p(k)</em> should be changed for all <em>k</em>. Given this vector a permutation matrix can be constructed using the function <div class="fragment"><pre class="fragment"> <a class="code" href="mat_8h.html#f90acd1af41bf2d1d8a4bb23662fff69" title="bin matrix">bmat</a> <a class="code" href="group__matrixdecomp.html#gb6e7ba47c63173084cf0cb6bebbff508" title="Make permutation matrix P from the interchange permutation vector p.">permutation_matrix</a>(<span class="keyword">const</span> ivec &p) |
---|
| 787 | </pre></div><p> |
---|
| 788 | If <em>X</em> is an <em>n</em> by <em>n</em> matrix <em>lu(X,L,U,p)</em> computes the LU decomposition. <em>L</em> is a lower triangular, <em>U</em> an upper triangular matrix. <em>p</em> is the interchange permutation vector such that elements <em>k</em> and row <em>p(k)</em> should be interchanged.<p> |
---|
| 789 | Returns true is calculation succeeds. False otherwise. |
---|
| 790 | <p>References <a class="el" href="itassert_8h-source.html#l00126">it_error</a>.</p> |
---|
| 791 | |
---|
| 792 | <p>Referenced by <a class="el" href="det_8cpp-source.html#l00043">itpp::det()</a>.</p> |
---|
| 793 | |
---|
| 794 | </div> |
---|
| 795 | </div><p> |
---|
| 796 | <a class="anchor" name="g470eed4741289d81759d441e316f92f0"></a><!-- doxytag: member="itpp::lu" ref="g470eed4741289d81759d441e316f92f0" args="(const mat &X, mat &L, mat &U, ivec &p)" --> |
---|
| 797 | <div class="memitem"> |
---|
| 798 | <div class="memproto"> |
---|
| 799 | <table class="memname"> |
---|
| 800 | <tr> |
---|
| 801 | <td class="memname">bool itpp::lu </td> |
---|
| 802 | <td>(</td> |
---|
| 803 | <td class="paramtype">const <a class="el" href="classitpp_1_1Mat.html#6bba394f181c76fda12759568986c613">mat</a> & </td> |
---|
| 804 | <td class="paramname"> <em>X</em>, </td> |
---|
| 805 | </tr> |
---|
| 806 | <tr> |
---|
| 807 | <td class="paramkey"></td> |
---|
| 808 | <td></td> |
---|
| 809 | <td class="paramtype"><a class="el" href="classitpp_1_1Mat.html#6bba394f181c76fda12759568986c613">mat</a> & </td> |
---|
| 810 | <td class="paramname"> <em>L</em>, </td> |
---|
| 811 | </tr> |
---|
| 812 | <tr> |
---|
| 813 | <td class="paramkey"></td> |
---|
| 814 | <td></td> |
---|
| 815 | <td class="paramtype"><a class="el" href="classitpp_1_1Mat.html#6bba394f181c76fda12759568986c613">mat</a> & </td> |
---|
| 816 | <td class="paramname"> <em>U</em>, </td> |
---|
| 817 | </tr> |
---|
| 818 | <tr> |
---|
| 819 | <td class="paramkey"></td> |
---|
| 820 | <td></td> |
---|
| 821 | <td class="paramtype"><a class="el" href="classitpp_1_1Vec.html#b03757d874926a9be91535e71af1656e">ivec</a> & </td> |
---|
| 822 | <td class="paramname"> <em>p</em></td><td> </td> |
---|
| 823 | </tr> |
---|
| 824 | <tr> |
---|
| 825 | <td></td> |
---|
| 826 | <td>)</td> |
---|
| 827 | <td></td><td></td><td></td> |
---|
| 828 | </tr> |
---|
| 829 | </table> |
---|
| 830 | </div> |
---|
| 831 | <div class="memdoc"> |
---|
| 832 | |
---|
| 833 | <p> |
---|
| 834 | LU factorisation of real matrix. |
---|
| 835 | <p> |
---|
| 836 | The LU factorization of the real matrix <img class="formulaInl" alt="$\mathbf{X}$" src="form_125.png"> of size <img class="formulaInl" alt="$n \times n$" src="form_126.png"> is given by <p class="formulaDsp"> |
---|
| 837 | <img class="formulaDsp" alt="\[ \mathbf{X} = \mathbf{P}^T \mathbf{L} \mathbf{U} , \]" src="form_143.png"> |
---|
| 838 | <p> |
---|
| 839 | where <img class="formulaInl" alt="$\mathbf{L}$" src="form_144.png"> and <img class="formulaInl" alt="$\mathbf{U}$" src="form_145.png"> are lower and upper triangular matrices and <img class="formulaInl" alt="$\mathbf{P}$" src="form_146.png"> is a permutation matrix.<p> |
---|
| 840 | The interchange permutation vector <em>p</em> is such that <em>k</em> and <em>p(k)</em> should be changed for all <em>k</em>. Given this vector a permutation matrix can be constructed using the function <div class="fragment"><pre class="fragment"> <a class="code" href="mat_8h.html#f90acd1af41bf2d1d8a4bb23662fff69" title="bin matrix">bmat</a> <a class="code" href="group__matrixdecomp.html#gb6e7ba47c63173084cf0cb6bebbff508" title="Make permutation matrix P from the interchange permutation vector p.">permutation_matrix</a>(<span class="keyword">const</span> ivec &p) |
---|
| 841 | </pre></div><p> |
---|
| 842 | If <em>X</em> is an <em>n</em> by <em>n</em> matrix <em>lu(X,L,U,p)</em> computes the LU decomposition. <em>L</em> is a lower triangular, <em>U</em> an upper triangular matrix. <em>p</em> is the interchange permutation vector such that <em>k</em> and <em>p(k)</em> should be changed for all <em>k</em>.<p> |
---|
| 843 | Returns true is calculation succeeds. False otherwise. |
---|
| 844 | <p>References <a class="el" href="itassert_8h-source.html#l00126">it_error</a>.</p> |
---|
| 845 | |
---|
| 846 | </div> |
---|
| 847 | </div><p> |
---|
| 848 | <a class="anchor" name="gdb3c49c28626013e0679b2ce088b8d70"></a><!-- doxytag: member="itpp::qr" ref="gdb3c49c28626013e0679b2ce088b8d70" args="(const cmat &A, cmat &Q, cmat &R, bmat &P)" --> |
---|
| 849 | <div class="memitem"> |
---|
| 850 | <div class="memproto"> |
---|
| 851 | <table class="memname"> |
---|
| 852 | <tr> |
---|
| 853 | <td class="memname">bool itpp::qr </td> |
---|
| 854 | <td>(</td> |
---|
| 855 | <td class="paramtype">const <a class="el" href="classitpp_1_1Mat.html#6fbac4b7184807da188e5b85d42f038b">cmat</a> & </td> |
---|
| 856 | <td class="paramname"> <em>A</em>, </td> |
---|
| 857 | </tr> |
---|
| 858 | <tr> |
---|
| 859 | <td class="paramkey"></td> |
---|
| 860 | <td></td> |
---|
| 861 | <td class="paramtype"><a class="el" href="classitpp_1_1Mat.html#6fbac4b7184807da188e5b85d42f038b">cmat</a> & </td> |
---|
| 862 | <td class="paramname"> <em>Q</em>, </td> |
---|
| 863 | </tr> |
---|
| 864 | <tr> |
---|
| 865 | <td class="paramkey"></td> |
---|
| 866 | <td></td> |
---|
| 867 | <td class="paramtype"><a class="el" href="classitpp_1_1Mat.html#6fbac4b7184807da188e5b85d42f038b">cmat</a> & </td> |
---|
| 868 | <td class="paramname"> <em>R</em>, </td> |
---|
| 869 | </tr> |
---|
| 870 | <tr> |
---|
| 871 | <td class="paramkey"></td> |
---|
| 872 | <td></td> |
---|
| 873 | <td class="paramtype"><a class="el" href="mat_8h.html#f90acd1af41bf2d1d8a4bb23662fff69">bmat</a> & </td> |
---|
| 874 | <td class="paramname"> <em>P</em></td><td> </td> |
---|
| 875 | </tr> |
---|
| 876 | <tr> |
---|
| 877 | <td></td> |
---|
| 878 | <td>)</td> |
---|
| 879 | <td></td><td></td><td></td> |
---|
| 880 | </tr> |
---|
| 881 | </table> |
---|
| 882 | </div> |
---|
| 883 | <div class="memdoc"> |
---|
| 884 | |
---|
| 885 | <p> |
---|
| 886 | QR factorisation of a complex matrix with pivoting. |
---|
| 887 | <p> |
---|
| 888 | The QR factorization of the complex matrix <img class="formulaInl" alt="$\mathbf{A}$" src="form_134.png"> of size <img class="formulaInl" alt="$m \times n$" src="form_140.png"> is given by <p class="formulaDsp"> |
---|
| 889 | <img class="formulaDsp" alt="\[ \mathbf{A} \mathbf{P} = \mathbf{Q} \mathbf{R} , \]" src="form_153.png"> |
---|
| 890 | <p> |
---|
| 891 | where <img class="formulaInl" alt="$\mathbf{Q}$" src="form_148.png"> is an <img class="formulaInl" alt="$m \times m$" src="form_149.png"> unitary matrix, <img class="formulaInl" alt="$\mathbf{R}$" src="form_150.png"> is an <img class="formulaInl" alt="$m \times n$" src="form_140.png"> upper triangular matrix and <img class="formulaInl" alt="$\mathbf{P}$" src="form_146.png"> is an <img class="formulaInl" alt="$n \times n$" src="form_126.png"> permutation matrix.<p> |
---|
| 892 | Returns true is calculation succeeds. False otherwise. Uses the LAPACK routines ZGEQP3 and ZUNGQR. |
---|
| 893 | <p>References <a class="el" href="itassert_8h-source.html#l00126">it_error</a>.</p> |
---|
| 894 | |
---|
| 895 | <p>Referenced by <a class="el" href="libKF_8cpp-source.html#l00199">bdm::EKFCh::bayes()</a>, <a class="el" href="libKF_8cpp-source.html#l00130">bdm::KalmanCh::bayes()</a>, and <a class="el" href="chmat_8cpp-source.html#l00007">chmat::opupdt()</a>.</p> |
---|
| 896 | |
---|
| 897 | </div> |
---|
| 898 | </div><p> |
---|
| 899 | <a class="anchor" name="g1a880a8a274c14e51482293181b1a10e"></a><!-- doxytag: member="itpp::qr" ref="g1a880a8a274c14e51482293181b1a10e" args="(const cmat &A, cmat &R)" --> |
---|
| 900 | <div class="memitem"> |
---|
| 901 | <div class="memproto"> |
---|
| 902 | <table class="memname"> |
---|
| 903 | <tr> |
---|
| 904 | <td class="memname">bool itpp::qr </td> |
---|
| 905 | <td>(</td> |
---|
| 906 | <td class="paramtype">const <a class="el" href="classitpp_1_1Mat.html#6fbac4b7184807da188e5b85d42f038b">cmat</a> & </td> |
---|
| 907 | <td class="paramname"> <em>A</em>, </td> |
---|
| 908 | </tr> |
---|
| 909 | <tr> |
---|
| 910 | <td class="paramkey"></td> |
---|
| 911 | <td></td> |
---|
| 912 | <td class="paramtype"><a class="el" href="classitpp_1_1Mat.html#6fbac4b7184807da188e5b85d42f038b">cmat</a> & </td> |
---|
| 913 | <td class="paramname"> <em>R</em></td><td> </td> |
---|
| 914 | </tr> |
---|
| 915 | <tr> |
---|
| 916 | <td></td> |
---|
| 917 | <td>)</td> |
---|
| 918 | <td></td><td></td><td></td> |
---|
| 919 | </tr> |
---|
| 920 | </table> |
---|
| 921 | </div> |
---|
| 922 | <div class="memdoc"> |
---|
| 923 | |
---|
| 924 | <p> |
---|
| 925 | QR factorisation of complex matrix with suppressed evaluation of Q. |
---|
| 926 | <p> |
---|
| 927 | For certain type of applications only the <img class="formulaInl" alt="$\mathbf{R}$" src="form_150.png"> matrix of full QR factorization of the complex matrix <img class="formulaInl" alt="$\mathbf{A}=\mathbf{Q}\mathbf{R}$" src="form_151.png"> is needed. These situations arise typically in designs of square-root algorithms where it is required that <img class="formulaInl" alt="$\mathbf{A}^{H}\mathbf{A}=\mathbf{R}^{H}\mathbf{R}$" src="form_154.png">. In such cases, evaluation of <img class="formulaInl" alt="$\mathbf{Q}$" src="form_148.png"> can be skipped.<p> |
---|
| 928 | Modification of qr(A,Q,R).<p> |
---|
| 929 | <dl class="author" compact><dt><b>Author:</b></dt><dd>Vasek Smidl </dd></dl> |
---|
| 930 | |
---|
| 931 | <p>References <a class="el" href="itassert_8h-source.html#l00126">it_error</a>.</p> |
---|
| 932 | |
---|
| 933 | </div> |
---|
| 934 | </div><p> |
---|
| 935 | <a class="anchor" name="g321c23bad4ec43d1111f405587a9ffa2"></a><!-- doxytag: member="itpp::qr" ref="g321c23bad4ec43d1111f405587a9ffa2" args="(const cmat &A, cmat &Q, cmat &R)" --> |
---|
| 936 | <div class="memitem"> |
---|
| 937 | <div class="memproto"> |
---|
| 938 | <table class="memname"> |
---|
| 939 | <tr> |
---|
| 940 | <td class="memname">bool itpp::qr </td> |
---|
| 941 | <td>(</td> |
---|
| 942 | <td class="paramtype">const <a class="el" href="classitpp_1_1Mat.html#6fbac4b7184807da188e5b85d42f038b">cmat</a> & </td> |
---|
| 943 | <td class="paramname"> <em>A</em>, </td> |
---|
| 944 | </tr> |
---|
| 945 | <tr> |
---|
| 946 | <td class="paramkey"></td> |
---|
| 947 | <td></td> |
---|
| 948 | <td class="paramtype"><a class="el" href="classitpp_1_1Mat.html#6fbac4b7184807da188e5b85d42f038b">cmat</a> & </td> |
---|
| 949 | <td class="paramname"> <em>Q</em>, </td> |
---|
| 950 | </tr> |
---|
| 951 | <tr> |
---|
| 952 | <td class="paramkey"></td> |
---|
| 953 | <td></td> |
---|
| 954 | <td class="paramtype"><a class="el" href="classitpp_1_1Mat.html#6fbac4b7184807da188e5b85d42f038b">cmat</a> & </td> |
---|
| 955 | <td class="paramname"> <em>R</em></td><td> </td> |
---|
| 956 | </tr> |
---|
| 957 | <tr> |
---|
| 958 | <td></td> |
---|
| 959 | <td>)</td> |
---|
| 960 | <td></td><td></td><td></td> |
---|
| 961 | </tr> |
---|
| 962 | </table> |
---|
| 963 | </div> |
---|
| 964 | <div class="memdoc"> |
---|
| 965 | |
---|
| 966 | <p> |
---|
| 967 | QR factorisation of a complex matrix. |
---|
| 968 | <p> |
---|
| 969 | The QR factorization of the complex matrix <img class="formulaInl" alt="$\mathbf{A}$" src="form_134.png"> of size <img class="formulaInl" alt="$m \times n$" src="form_140.png"> is given by <p class="formulaDsp"> |
---|
| 970 | <img class="formulaDsp" alt="\[ \mathbf{A} = \mathbf{Q} \mathbf{R} , \]" src="form_147.png"> |
---|
| 971 | <p> |
---|
| 972 | where <img class="formulaInl" alt="$\mathbf{Q}$" src="form_148.png"> is an <img class="formulaInl" alt="$m \times m$" src="form_149.png"> unitary matrix and <img class="formulaInl" alt="$\mathbf{R}$" src="form_150.png"> is an <img class="formulaInl" alt="$m \times n$" src="form_140.png"> upper triangular matrix.<p> |
---|
| 973 | Returns true is calculation succeeds. False otherwise. Uses the LAPACK routines ZGEQRF and ZUNGQR. |
---|
| 974 | <p>References <a class="el" href="itassert_8h-source.html#l00126">it_error</a>.</p> |
---|
| 975 | |
---|
| 976 | </div> |
---|
| 977 | </div><p> |
---|
| 978 | <a class="anchor" name="g83c28d9b53d73b1d9527cf14341637ff"></a><!-- doxytag: member="itpp::qr" ref="g83c28d9b53d73b1d9527cf14341637ff" args="(const mat &A, mat &Q, mat &R, bmat &P)" --> |
---|
| 979 | <div class="memitem"> |
---|
| 980 | <div class="memproto"> |
---|
| 981 | <table class="memname"> |
---|
| 982 | <tr> |
---|
| 983 | <td class="memname">bool itpp::qr </td> |
---|
| 984 | <td>(</td> |
---|
| 985 | <td class="paramtype">const <a class="el" href="classitpp_1_1Mat.html#6bba394f181c76fda12759568986c613">mat</a> & </td> |
---|
| 986 | <td class="paramname"> <em>A</em>, </td> |
---|
| 987 | </tr> |
---|
| 988 | <tr> |
---|
| 989 | <td class="paramkey"></td> |
---|
| 990 | <td></td> |
---|
| 991 | <td class="paramtype"><a class="el" href="classitpp_1_1Mat.html#6bba394f181c76fda12759568986c613">mat</a> & </td> |
---|
| 992 | <td class="paramname"> <em>Q</em>, </td> |
---|
| 993 | </tr> |
---|
| 994 | <tr> |
---|
| 995 | <td class="paramkey"></td> |
---|
| 996 | <td></td> |
---|
| 997 | <td class="paramtype"><a class="el" href="classitpp_1_1Mat.html#6bba394f181c76fda12759568986c613">mat</a> & </td> |
---|
| 998 | <td class="paramname"> <em>R</em>, </td> |
---|
| 999 | </tr> |
---|
| 1000 | <tr> |
---|
| 1001 | <td class="paramkey"></td> |
---|
| 1002 | <td></td> |
---|
| 1003 | <td class="paramtype"><a class="el" href="mat_8h.html#f90acd1af41bf2d1d8a4bb23662fff69">bmat</a> & </td> |
---|
| 1004 | <td class="paramname"> <em>P</em></td><td> </td> |
---|
| 1005 | </tr> |
---|
| 1006 | <tr> |
---|
| 1007 | <td></td> |
---|
| 1008 | <td>)</td> |
---|
| 1009 | <td></td><td></td><td></td> |
---|
| 1010 | </tr> |
---|
| 1011 | </table> |
---|
| 1012 | </div> |
---|
| 1013 | <div class="memdoc"> |
---|
| 1014 | |
---|
| 1015 | <p> |
---|
| 1016 | QR factorisation of real matrix with pivoting. |
---|
| 1017 | <p> |
---|
| 1018 | The QR factorization of the real matrix <img class="formulaInl" alt="$\mathbf{A}$" src="form_134.png"> of size <img class="formulaInl" alt="$m \times n$" src="form_140.png"> is given by <p class="formulaDsp"> |
---|
| 1019 | <img class="formulaDsp" alt="\[ \mathbf{A} \mathbf{P} = \mathbf{Q} \mathbf{R} , \]" src="form_153.png"> |
---|
| 1020 | <p> |
---|
| 1021 | where <img class="formulaInl" alt="$\mathbf{Q}$" src="form_148.png"> is an <img class="formulaInl" alt="$m \times m$" src="form_149.png"> orthogonal matrix, <img class="formulaInl" alt="$\mathbf{R}$" src="form_150.png"> is an <img class="formulaInl" alt="$m \times n$" src="form_140.png"> upper triangular matrix and <img class="formulaInl" alt="$\mathbf{P}$" src="form_146.png"> is an <img class="formulaInl" alt="$n \times n$" src="form_126.png"> permutation matrix.<p> |
---|
| 1022 | Returns true is calculation succeeds. False otherwise. Uses the LAPACK routines DGEQP3 and DORGQR. |
---|
| 1023 | <p>References <a class="el" href="itassert_8h-source.html#l00126">it_error</a>.</p> |
---|
| 1024 | |
---|
| 1025 | </div> |
---|
| 1026 | </div><p> |
---|
| 1027 | <a class="anchor" name="gbd50eeb4508aaf4b7296f3a904458886"></a><!-- doxytag: member="itpp::qr" ref="gbd50eeb4508aaf4b7296f3a904458886" args="(const mat &A, mat &R)" --> |
---|
| 1028 | <div class="memitem"> |
---|
| 1029 | <div class="memproto"> |
---|
| 1030 | <table class="memname"> |
---|
| 1031 | <tr> |
---|
| 1032 | <td class="memname">bool itpp::qr </td> |
---|
| 1033 | <td>(</td> |
---|
| 1034 | <td class="paramtype">const <a class="el" href="classitpp_1_1Mat.html#6bba394f181c76fda12759568986c613">mat</a> & </td> |
---|
| 1035 | <td class="paramname"> <em>A</em>, </td> |
---|
| 1036 | </tr> |
---|
| 1037 | <tr> |
---|
| 1038 | <td class="paramkey"></td> |
---|
| 1039 | <td></td> |
---|
| 1040 | <td class="paramtype"><a class="el" href="classitpp_1_1Mat.html#6bba394f181c76fda12759568986c613">mat</a> & </td> |
---|
| 1041 | <td class="paramname"> <em>R</em></td><td> </td> |
---|
| 1042 | </tr> |
---|
| 1043 | <tr> |
---|
| 1044 | <td></td> |
---|
| 1045 | <td>)</td> |
---|
| 1046 | <td></td><td></td><td></td> |
---|
| 1047 | </tr> |
---|
| 1048 | </table> |
---|
| 1049 | </div> |
---|
| 1050 | <div class="memdoc"> |
---|
| 1051 | |
---|
| 1052 | <p> |
---|
| 1053 | QR factorisation of real matrix with suppressed evaluation of Q. |
---|
| 1054 | <p> |
---|
| 1055 | For certain type of applications only the <img class="formulaInl" alt="$\mathbf{R}$" src="form_150.png"> matrix of full QR factorization of the real matrix <img class="formulaInl" alt="$\mathbf{A}=\mathbf{Q}\mathbf{R}$" src="form_151.png"> is needed. These situations arise typically in designs of square-root algorithms where it is required that <img class="formulaInl" alt="$\mathbf{A}^{T}\mathbf{A}=\mathbf{R}^{T}\mathbf{R}$" src="form_152.png">. In such cases, evaluation of <img class="formulaInl" alt="$\mathbf{Q}$" src="form_148.png"> can be skipped.<p> |
---|
| 1056 | Modification of qr(A,Q,R).<p> |
---|
| 1057 | <dl class="author" compact><dt><b>Author:</b></dt><dd>Vasek Smidl </dd></dl> |
---|
| 1058 | |
---|
| 1059 | <p>References <a class="el" href="itassert_8h-source.html#l00126">it_error</a>.</p> |
---|
| 1060 | |
---|
| 1061 | </div> |
---|
| 1062 | </div><p> |
---|
| 1063 | <a class="anchor" name="g9e565beb0ca5841655a5ac3700821e2c"></a><!-- doxytag: member="itpp::qr" ref="g9e565beb0ca5841655a5ac3700821e2c" args="(const mat &A, mat &Q, mat &R)" --> |
---|
| 1064 | <div class="memitem"> |
---|
| 1065 | <div class="memproto"> |
---|
| 1066 | <table class="memname"> |
---|
| 1067 | <tr> |
---|
| 1068 | <td class="memname">bool itpp::qr </td> |
---|
| 1069 | <td>(</td> |
---|
| 1070 | <td class="paramtype">const <a class="el" href="classitpp_1_1Mat.html#6bba394f181c76fda12759568986c613">mat</a> & </td> |
---|
| 1071 | <td class="paramname"> <em>A</em>, </td> |
---|
| 1072 | </tr> |
---|
| 1073 | <tr> |
---|
| 1074 | <td class="paramkey"></td> |
---|
| 1075 | <td></td> |
---|
| 1076 | <td class="paramtype"><a class="el" href="classitpp_1_1Mat.html#6bba394f181c76fda12759568986c613">mat</a> & </td> |
---|
| 1077 | <td class="paramname"> <em>Q</em>, </td> |
---|
| 1078 | </tr> |
---|
| 1079 | <tr> |
---|
| 1080 | <td class="paramkey"></td> |
---|
| 1081 | <td></td> |
---|
| 1082 | <td class="paramtype"><a class="el" href="classitpp_1_1Mat.html#6bba394f181c76fda12759568986c613">mat</a> & </td> |
---|
| 1083 | <td class="paramname"> <em>R</em></td><td> </td> |
---|
| 1084 | </tr> |
---|
| 1085 | <tr> |
---|
| 1086 | <td></td> |
---|
| 1087 | <td>)</td> |
---|
| 1088 | <td></td><td></td><td></td> |
---|
| 1089 | </tr> |
---|
| 1090 | </table> |
---|
| 1091 | </div> |
---|
| 1092 | <div class="memdoc"> |
---|
| 1093 | |
---|
| 1094 | <p> |
---|
| 1095 | QR factorisation of real matrix. |
---|
| 1096 | <p> |
---|
| 1097 | The QR factorization of the real matrix <img class="formulaInl" alt="$\mathbf{A}$" src="form_134.png"> of size <img class="formulaInl" alt="$m \times n$" src="form_140.png"> is given by <p class="formulaDsp"> |
---|
| 1098 | <img class="formulaDsp" alt="\[ \mathbf{A} = \mathbf{Q} \mathbf{R} , \]" src="form_147.png"> |
---|
| 1099 | <p> |
---|
| 1100 | where <img class="formulaInl" alt="$\mathbf{Q}$" src="form_148.png"> is an <img class="formulaInl" alt="$m \times m$" src="form_149.png"> orthogonal matrix and <img class="formulaInl" alt="$\mathbf{R}$" src="form_150.png"> is an <img class="formulaInl" alt="$m \times n$" src="form_140.png"> upper triangular matrix.<p> |
---|
| 1101 | Returns true is calculation succeeds. False otherwise. Uses the LAPACK routine DGEQRF and DORGQR. |
---|
| 1102 | <p>References <a class="el" href="itassert_8h-source.html#l00126">it_error</a>.</p> |
---|
| 1103 | |
---|
| 1104 | </div> |
---|
| 1105 | </div><p> |
---|
| 1106 | <a class="anchor" name="gd1d1f3ad1c35dee4ded80cc86c5961cc"></a><!-- doxytag: member="itpp::schur" ref="gd1d1f3ad1c35dee4ded80cc86c5961cc" args="(const cmat &A)" --> |
---|
| 1107 | <div class="memitem"> |
---|
| 1108 | <div class="memproto"> |
---|
| 1109 | <table class="memname"> |
---|
| 1110 | <tr> |
---|
| 1111 | <td class="memname"><a class="el" href="classitpp_1_1Mat.html#6fbac4b7184807da188e5b85d42f038b">cmat</a> itpp::schur </td> |
---|
| 1112 | <td>(</td> |
---|
| 1113 | <td class="paramtype">const <a class="el" href="classitpp_1_1Mat.html#6fbac4b7184807da188e5b85d42f038b">cmat</a> & </td> |
---|
| 1114 | <td class="paramname"> <em>A</em> </td> |
---|
| 1115 | <td> ) </td> |
---|
| 1116 | <td></td> |
---|
| 1117 | </tr> |
---|
| 1118 | </table> |
---|
| 1119 | </div> |
---|
| 1120 | <div class="memdoc"> |
---|
| 1121 | |
---|
| 1122 | <p> |
---|
| 1123 | Schur decomposition of a complex matrix. |
---|
| 1124 | <p> |
---|
| 1125 | This function computes the Schur form of a square complex matrix <img class="formulaInl" alt="$ \mathbf{A} $" src="form_155.png">. The Schur decomposition satisfies the following equation: <p class="formulaDsp"> |
---|
| 1126 | <img class="formulaDsp" alt="\[ \mathbf{U} \mathbf{T} \mathbf{U}^{H} = \mathbf{A} \]" src="form_161.png"> |
---|
| 1127 | <p> |
---|
| 1128 | where: <img class="formulaInl" alt="$ \mathbf{U} $" src="form_157.png"> is a unitary, <img class="formulaInl" alt="$ \mathbf{T} $" src="form_158.png"> is upper triangular, and <img class="formulaInl" alt="$ \mathbf{U}^{H} $" src="form_162.png"> is the Hermitian transposition of the <img class="formulaInl" alt="$ \mathbf{U} $" src="form_157.png"> matrix.<p> |
---|
| 1129 | <dl class="return" compact><dt><b>Returns:</b></dt><dd>Complex Schur matrix <img class="formulaInl" alt="$ \mathbf{T} $" src="form_158.png"></dd></dl> |
---|
| 1130 | Uses the LAPACK routine ZGEES. |
---|
| 1131 | <p>Referenced by <a class="el" href="schur_8cpp-source.html#l00119">itpp::schur()</a>.</p> |
---|
| 1132 | |
---|
| 1133 | </div> |
---|
| 1134 | </div><p> |
---|
| 1135 | <a class="anchor" name="gcdfbe918727616dbc8eda854c4bf0cc4"></a><!-- doxytag: member="itpp::schur" ref="gcdfbe918727616dbc8eda854c4bf0cc4" args="(const cmat &A, cmat &U, cmat &T)" --> |
---|
| 1136 | <div class="memitem"> |
---|
| 1137 | <div class="memproto"> |
---|
| 1138 | <table class="memname"> |
---|
| 1139 | <tr> |
---|
| 1140 | <td class="memname">bool itpp::schur </td> |
---|
| 1141 | <td>(</td> |
---|
| 1142 | <td class="paramtype">const <a class="el" href="classitpp_1_1Mat.html#6fbac4b7184807da188e5b85d42f038b">cmat</a> & </td> |
---|
| 1143 | <td class="paramname"> <em>A</em>, </td> |
---|
| 1144 | </tr> |
---|
| 1145 | <tr> |
---|
| 1146 | <td class="paramkey"></td> |
---|
| 1147 | <td></td> |
---|
| 1148 | <td class="paramtype"><a class="el" href="classitpp_1_1Mat.html#6fbac4b7184807da188e5b85d42f038b">cmat</a> & </td> |
---|
| 1149 | <td class="paramname"> <em>U</em>, </td> |
---|
| 1150 | </tr> |
---|
| 1151 | <tr> |
---|
| 1152 | <td class="paramkey"></td> |
---|
| 1153 | <td></td> |
---|
| 1154 | <td class="paramtype"><a class="el" href="classitpp_1_1Mat.html#6fbac4b7184807da188e5b85d42f038b">cmat</a> & </td> |
---|
| 1155 | <td class="paramname"> <em>T</em></td><td> </td> |
---|
| 1156 | </tr> |
---|
| 1157 | <tr> |
---|
| 1158 | <td></td> |
---|
| 1159 | <td>)</td> |
---|
| 1160 | <td></td><td></td><td></td> |
---|
| 1161 | </tr> |
---|
| 1162 | </table> |
---|
| 1163 | </div> |
---|
| 1164 | <div class="memdoc"> |
---|
| 1165 | |
---|
| 1166 | <p> |
---|
| 1167 | Schur decomposition of a complex matrix. |
---|
| 1168 | <p> |
---|
| 1169 | This function computes the Schur form of a square complex matrix <img class="formulaInl" alt="$ \mathbf{A} $" src="form_155.png">. The Schur decomposition satisfies the following equation: <p class="formulaDsp"> |
---|
| 1170 | <img class="formulaDsp" alt="\[ \mathbf{U} \mathbf{T} \mathbf{U}^{H} = \mathbf{A} \]" src="form_161.png"> |
---|
| 1171 | <p> |
---|
| 1172 | where: <img class="formulaInl" alt="$ \mathbf{U} $" src="form_157.png"> is a unitary, <img class="formulaInl" alt="$ \mathbf{T} $" src="form_158.png"> is upper triangular, and <img class="formulaInl" alt="$ \mathbf{U}^{H} $" src="form_162.png"> is the Hermitian transposition of the <img class="formulaInl" alt="$ \mathbf{U} $" src="form_157.png"> matrix.<p> |
---|
| 1173 | Uses the LAPACK routine ZGEES. |
---|
| 1174 | <p>References <a class="el" href="itassert_8h-source.html#l00126">it_error</a>.</p> |
---|
| 1175 | |
---|
| 1176 | </div> |
---|
| 1177 | </div><p> |
---|
| 1178 | <a class="anchor" name="g5a511c9baeb36e803a006b3172848800"></a><!-- doxytag: member="itpp::schur" ref="g5a511c9baeb36e803a006b3172848800" args="(const mat &A)" --> |
---|
| 1179 | <div class="memitem"> |
---|
| 1180 | <div class="memproto"> |
---|
| 1181 | <table class="memname"> |
---|
| 1182 | <tr> |
---|
| 1183 | <td class="memname"><a class="el" href="classitpp_1_1Mat.html#6bba394f181c76fda12759568986c613">mat</a> itpp::schur </td> |
---|
| 1184 | <td>(</td> |
---|
| 1185 | <td class="paramtype">const <a class="el" href="classitpp_1_1Mat.html#6bba394f181c76fda12759568986c613">mat</a> & </td> |
---|
| 1186 | <td class="paramname"> <em>A</em> </td> |
---|
| 1187 | <td> ) </td> |
---|
| 1188 | <td></td> |
---|
| 1189 | </tr> |
---|
| 1190 | </table> |
---|
| 1191 | </div> |
---|
| 1192 | <div class="memdoc"> |
---|
| 1193 | |
---|
| 1194 | <p> |
---|
| 1195 | Schur decomposition of a real matrix. |
---|
| 1196 | <p> |
---|
| 1197 | This function computes the Schur form of a square real matrix <img class="formulaInl" alt="$ \mathbf{A} $" src="form_155.png">. The Schur decomposition satisfies the following equation: <p class="formulaDsp"> |
---|
| 1198 | <img class="formulaDsp" alt="\[ \mathbf{U} \mathbf{T} \mathbf{U}^{T} = \mathbf{A} \]" src="form_156.png"> |
---|
| 1199 | <p> |
---|
| 1200 | where: <img class="formulaInl" alt="$ \mathbf{U} $" src="form_157.png"> is a unitary, <img class="formulaInl" alt="$ \mathbf{T} $" src="form_158.png"> is upper quasi-triangular, and <img class="formulaInl" alt="$ \mathbf{U}^{T} $" src="form_159.png"> is the transposed <img class="formulaInl" alt="$ \mathbf{U} $" src="form_157.png"> matrix.<p> |
---|
| 1201 | The upper quasi-triangular matrix may have <img class="formulaInl" alt="$ 2 \times 2 $" src="form_160.png"> blocks on its diagonal.<p> |
---|
| 1202 | <dl class="return" compact><dt><b>Returns:</b></dt><dd>Real Schur matrix <img class="formulaInl" alt="$ \mathbf{T} $" src="form_158.png"></dd></dl> |
---|
| 1203 | uses the LAPACK routine DGEES. |
---|
| 1204 | <p>References <a class="el" href="schur_8cpp-source.html#l00127">itpp::schur()</a>.</p> |
---|
| 1205 | |
---|
| 1206 | </div> |
---|
| 1207 | </div><p> |
---|
| 1208 | <a class="anchor" name="ga0c6711c11ece9641878d3ab19f39d33"></a><!-- doxytag: member="itpp::schur" ref="ga0c6711c11ece9641878d3ab19f39d33" args="(const mat &A, mat &U, mat &T)" --> |
---|
| 1209 | <div class="memitem"> |
---|
| 1210 | <div class="memproto"> |
---|
| 1211 | <table class="memname"> |
---|
| 1212 | <tr> |
---|
| 1213 | <td class="memname">bool itpp::schur </td> |
---|
| 1214 | <td>(</td> |
---|
| 1215 | <td class="paramtype">const <a class="el" href="classitpp_1_1Mat.html#6bba394f181c76fda12759568986c613">mat</a> & </td> |
---|
| 1216 | <td class="paramname"> <em>A</em>, </td> |
---|
| 1217 | </tr> |
---|
| 1218 | <tr> |
---|
| 1219 | <td class="paramkey"></td> |
---|
| 1220 | <td></td> |
---|
| 1221 | <td class="paramtype"><a class="el" href="classitpp_1_1Mat.html#6bba394f181c76fda12759568986c613">mat</a> & </td> |
---|
| 1222 | <td class="paramname"> <em>U</em>, </td> |
---|
| 1223 | </tr> |
---|
| 1224 | <tr> |
---|
| 1225 | <td class="paramkey"></td> |
---|
| 1226 | <td></td> |
---|
| 1227 | <td class="paramtype"><a class="el" href="classitpp_1_1Mat.html#6bba394f181c76fda12759568986c613">mat</a> & </td> |
---|
| 1228 | <td class="paramname"> <em>T</em></td><td> </td> |
---|
| 1229 | </tr> |
---|
| 1230 | <tr> |
---|
| 1231 | <td></td> |
---|
| 1232 | <td>)</td> |
---|
| 1233 | <td></td><td></td><td></td> |
---|
| 1234 | </tr> |
---|
| 1235 | </table> |
---|
| 1236 | </div> |
---|
| 1237 | <div class="memdoc"> |
---|
| 1238 | |
---|
| 1239 | <p> |
---|
| 1240 | Schur decomposition of a real matrix. |
---|
| 1241 | <p> |
---|
| 1242 | This function computes the Schur form of a square real matrix <img class="formulaInl" alt="$ \mathbf{A} $" src="form_155.png">. The Schur decomposition satisfies the following equation: <p class="formulaDsp"> |
---|
| 1243 | <img class="formulaDsp" alt="\[ \mathbf{U} \mathbf{T} \mathbf{U}^{T} = \mathbf{A} \]" src="form_156.png"> |
---|
| 1244 | <p> |
---|
| 1245 | where: <img class="formulaInl" alt="$ \mathbf{U} $" src="form_157.png"> is a unitary, <img class="formulaInl" alt="$ \mathbf{T} $" src="form_158.png"> is upper quasi-triangular, and <img class="formulaInl" alt="$ \mathbf{U}^{T} $" src="form_159.png"> is the transposed <img class="formulaInl" alt="$ \mathbf{U} $" src="form_157.png"> matrix.<p> |
---|
| 1246 | The upper quasi-triangular matrix may have <img class="formulaInl" alt="$ 2 \times 2 $" src="form_160.png"> blocks on its diagonal.<p> |
---|
| 1247 | Uses the LAPACK routine DGEES. |
---|
| 1248 | <p>References <a class="el" href="itassert_8h-source.html#l00126">it_error</a>.</p> |
---|
| 1249 | |
---|
| 1250 | </div> |
---|
| 1251 | </div><p> |
---|
| 1252 | <a class="anchor" name="g98a4dc87128a758f82ed05d7b060958b"></a><!-- doxytag: member="itpp::svd" ref="g98a4dc87128a758f82ed05d7b060958b" args="(const cmat &A, cmat &U, vec &s, cmat &V)" --> |
---|
| 1253 | <div class="memitem"> |
---|
| 1254 | <div class="memproto"> |
---|
| 1255 | <table class="memname"> |
---|
| 1256 | <tr> |
---|
| 1257 | <td class="memname">bool itpp::svd </td> |
---|
| 1258 | <td>(</td> |
---|
| 1259 | <td class="paramtype">const <a class="el" href="classitpp_1_1Mat.html#6fbac4b7184807da188e5b85d42f038b">cmat</a> & </td> |
---|
| 1260 | <td class="paramname"> <em>A</em>, </td> |
---|
| 1261 | </tr> |
---|
| 1262 | <tr> |
---|
| 1263 | <td class="paramkey"></td> |
---|
| 1264 | <td></td> |
---|
| 1265 | <td class="paramtype"><a class="el" href="classitpp_1_1Mat.html#6fbac4b7184807da188e5b85d42f038b">cmat</a> & </td> |
---|
| 1266 | <td class="paramname"> <em>U</em>, </td> |
---|
| 1267 | </tr> |
---|
| 1268 | <tr> |
---|
| 1269 | <td class="paramkey"></td> |
---|
| 1270 | <td></td> |
---|
| 1271 | <td class="paramtype"><a class="el" href="classitpp_1_1Vec.html#02e1bb55f60f3c2eb7a020eb1c2cfcf4">vec</a> & </td> |
---|
| 1272 | <td class="paramname"> <em>s</em>, </td> |
---|
| 1273 | </tr> |
---|
| 1274 | <tr> |
---|
| 1275 | <td class="paramkey"></td> |
---|
| 1276 | <td></td> |
---|
| 1277 | <td class="paramtype"><a class="el" href="classitpp_1_1Mat.html#6fbac4b7184807da188e5b85d42f038b">cmat</a> & </td> |
---|
| 1278 | <td class="paramname"> <em>V</em></td><td> </td> |
---|
| 1279 | </tr> |
---|
| 1280 | <tr> |
---|
| 1281 | <td></td> |
---|
| 1282 | <td>)</td> |
---|
| 1283 | <td></td><td></td><td></td> |
---|
| 1284 | </tr> |
---|
| 1285 | </table> |
---|
| 1286 | </div> |
---|
| 1287 | <div class="memdoc"> |
---|
| 1288 | |
---|
| 1289 | <p> |
---|
| 1290 | Perform Singular Value Decomposition (SVD) of a complex matrix <code>A</code>. |
---|
| 1291 | <p> |
---|
| 1292 | This function returns two orthonormal matrices <img class="formulaInl" alt="$U$" src="form_32.png"> and <img class="formulaInl" alt="$V$" src="form_29.png"> and a vector of singular values <img class="formulaInl" alt="$s$" src="form_163.png">. The SVD algorithm computes the decomposition of a complex <img class="formulaInl" alt="$m \times n$" src="form_140.png"> matrix <img class="formulaInl" alt="$\mathbf{A}$" src="form_134.png"> so that <p class="formulaDsp"> |
---|
| 1293 | <img class="formulaDsp" alt="\[ \mathrm{diag}(\mathbf{U}^H \mathbf{A} \mathbf{V}) = \mathbf{s} = \sigma_1, \ldots, \sigma_p \]" src="form_168.png"> |
---|
| 1294 | <p> |
---|
| 1295 | where the elements of <img class="formulaInl" alt="$\mathbf{s}$" src="form_170.png">, <img class="formulaInl" alt="$\sigma_1 \geq \sigma_2 \geq \ldots \sigma_p \geq 0$" src="form_165.png"> are the singular values of <img class="formulaInl" alt="$\mathbf{A}$" src="form_134.png">. Or put differently: <p class="formulaDsp"> |
---|
| 1296 | <img class="formulaDsp" alt="\[ \mathbf{A} = \mathbf{U} \mathbf{S} \mathbf{V}^H \]" src="form_169.png"> |
---|
| 1297 | <p> |
---|
| 1298 | where <img class="formulaInl" alt="$ \mathrm{diag}(\mathbf{S}) = \mathbf{s} $" src="form_167.png"><p> |
---|
| 1299 | <dl class="note" compact><dt><b>Note:</b></dt><dd>An external LAPACK library is required by this function. </dd></dl> |
---|
| 1300 | |
---|
| 1301 | <p>References <a class="el" href="itassert_8h-source.html#l00126">it_error</a>.</p> |
---|
| 1302 | |
---|
| 1303 | </div> |
---|
| 1304 | </div><p> |
---|
| 1305 | <a class="anchor" name="g908131485c5c53ed2e84e2f0a258db8c"></a><!-- doxytag: member="itpp::svd" ref="g908131485c5c53ed2e84e2f0a258db8c" args="(const mat &A, mat &U, vec &s, mat &V)" --> |
---|
| 1306 | <div class="memitem"> |
---|
| 1307 | <div class="memproto"> |
---|
| 1308 | <table class="memname"> |
---|
| 1309 | <tr> |
---|
| 1310 | <td class="memname">bool itpp::svd </td> |
---|
| 1311 | <td>(</td> |
---|
| 1312 | <td class="paramtype">const <a class="el" href="classitpp_1_1Mat.html#6bba394f181c76fda12759568986c613">mat</a> & </td> |
---|
| 1313 | <td class="paramname"> <em>A</em>, </td> |
---|
| 1314 | </tr> |
---|
| 1315 | <tr> |
---|
| 1316 | <td class="paramkey"></td> |
---|
| 1317 | <td></td> |
---|
| 1318 | <td class="paramtype"><a class="el" href="classitpp_1_1Mat.html#6bba394f181c76fda12759568986c613">mat</a> & </td> |
---|
| 1319 | <td class="paramname"> <em>U</em>, </td> |
---|
| 1320 | </tr> |
---|
| 1321 | <tr> |
---|
| 1322 | <td class="paramkey"></td> |
---|
| 1323 | <td></td> |
---|
| 1324 | <td class="paramtype"><a class="el" href="classitpp_1_1Vec.html#02e1bb55f60f3c2eb7a020eb1c2cfcf4">vec</a> & </td> |
---|
| 1325 | <td class="paramname"> <em>s</em>, </td> |
---|
| 1326 | </tr> |
---|
| 1327 | <tr> |
---|
| 1328 | <td class="paramkey"></td> |
---|
| 1329 | <td></td> |
---|
| 1330 | <td class="paramtype"><a class="el" href="classitpp_1_1Mat.html#6bba394f181c76fda12759568986c613">mat</a> & </td> |
---|
| 1331 | <td class="paramname"> <em>V</em></td><td> </td> |
---|
| 1332 | </tr> |
---|
| 1333 | <tr> |
---|
| 1334 | <td></td> |
---|
| 1335 | <td>)</td> |
---|
| 1336 | <td></td><td></td><td></td> |
---|
| 1337 | </tr> |
---|
| 1338 | </table> |
---|
| 1339 | </div> |
---|
| 1340 | <div class="memdoc"> |
---|
| 1341 | |
---|
| 1342 | <p> |
---|
| 1343 | Perform Singular Value Decomposition (SVD) of a real matrix <code>A</code>. |
---|
| 1344 | <p> |
---|
| 1345 | This function returns two orthonormal matrices <img class="formulaInl" alt="$U$" src="form_32.png"> and <img class="formulaInl" alt="$V$" src="form_29.png"> and a vector of singular values <img class="formulaInl" alt="$s$" src="form_163.png">. The SVD algorithm computes the decomposition of a real <img class="formulaInl" alt="$m \times n$" src="form_140.png"> matrix <img class="formulaInl" alt="$\mathbf{A}$" src="form_134.png"> so that <p class="formulaDsp"> |
---|
| 1346 | <img class="formulaDsp" alt="\[ \mathrm{diag}(\mathbf{U}^T \mathbf{A} \mathbf{V}) = \mathbf{s} = \sigma_1, \ldots, \sigma_p \]" src="form_164.png"> |
---|
| 1347 | <p> |
---|
| 1348 | where the elements of <img class="formulaInl" alt="$\mathbf{s}$" src="form_170.png">, <img class="formulaInl" alt="$\sigma_1 \geq \sigma_2 \geq \ldots \sigma_p \geq 0$" src="form_165.png"> are the singular values of <img class="formulaInl" alt="$\mathbf{A}$" src="form_134.png">. Or put differently: <p class="formulaDsp"> |
---|
| 1349 | <img class="formulaDsp" alt="\[ \mathbf{A} = \mathbf{U} \mathbf{S} \mathbf{V}^T \]" src="form_166.png"> |
---|
| 1350 | <p> |
---|
| 1351 | where <img class="formulaInl" alt="$ \mathrm{diag}(\mathbf{S}) = \mathbf{s} $" src="form_167.png"><p> |
---|
| 1352 | <dl class="note" compact><dt><b>Note:</b></dt><dd>An external LAPACK library is required by this function. </dd></dl> |
---|
| 1353 | |
---|
| 1354 | <p>References <a class="el" href="itassert_8h-source.html#l00126">it_error</a>.</p> |
---|
| 1355 | |
---|
| 1356 | </div> |
---|
| 1357 | </div><p> |
---|
| 1358 | <a class="anchor" name="ga53763a60632139d71957ea7cf0080c9"></a><!-- doxytag: member="itpp::svd" ref="ga53763a60632139d71957ea7cf0080c9" args="(const cmat &A)" --> |
---|
| 1359 | <div class="memitem"> |
---|
| 1360 | <div class="memproto"> |
---|
| 1361 | <table class="memname"> |
---|
| 1362 | <tr> |
---|
| 1363 | <td class="memname"><a class="el" href="classitpp_1_1Vec.html#02e1bb55f60f3c2eb7a020eb1c2cfcf4">vec</a> itpp::svd </td> |
---|
| 1364 | <td>(</td> |
---|
| 1365 | <td class="paramtype">const <a class="el" href="classitpp_1_1Mat.html#6fbac4b7184807da188e5b85d42f038b">cmat</a> & </td> |
---|
| 1366 | <td class="paramname"> <em>A</em> </td> |
---|
| 1367 | <td> ) </td> |
---|
| 1368 | <td></td> |
---|
| 1369 | </tr> |
---|
| 1370 | </table> |
---|
| 1371 | </div> |
---|
| 1372 | <div class="memdoc"> |
---|
| 1373 | |
---|
| 1374 | <p> |
---|
| 1375 | Return singular values of a complex matrix <code>A</code> using SVD. |
---|
| 1376 | <p> |
---|
| 1377 | This function returns singular values from the SVD decomposition of a complex matrix <img class="formulaInl" alt="$A$" src="form_138.png">. The SVD algorithm computes the decomposition of a complex <img class="formulaInl" alt="$m \times n$" src="form_140.png"> matrix <img class="formulaInl" alt="$\mathbf{A}$" src="form_134.png"> so that <p class="formulaDsp"> |
---|
| 1378 | <img class="formulaDsp" alt="\[ \mathrm{diag}(\mathbf{U}^H \mathbf{A} \mathbf{V}) = \mathbf{s} = \sigma_1, \ldots, \sigma_p \]" src="form_168.png"> |
---|
| 1379 | <p> |
---|
| 1380 | where <img class="formulaInl" alt="$\sigma_1 \geq \sigma_2 \geq \ldots \sigma_p \geq 0$" src="form_165.png"> are the singular values of <img class="formulaInl" alt="$\mathbf{A}$" src="form_134.png">. Or put differently: <p class="formulaDsp"> |
---|
| 1381 | <img class="formulaDsp" alt="\[ \mathbf{A} = \mathbf{U} \mathbf{S} \mathbf{V}^H \]" src="form_169.png"> |
---|
| 1382 | <p> |
---|
| 1383 | where <img class="formulaInl" alt="$ \mathrm{diag}(\mathbf{S}) = \mathbf{s} $" src="form_167.png"><p> |
---|
| 1384 | <dl class="note" compact><dt><b>Note:</b></dt><dd>An external LAPACK library is required by this function. </dd></dl> |
---|
| 1385 | |
---|
| 1386 | <p>Referenced by <a class="el" href="misc__stat_8cpp-source.html#l00105">itpp::norm()</a>, <a class="el" href="matfunc_8h-source.html#l00493">itpp::rank()</a>, and <a class="el" href="svd_8cpp-source.html#l00211">itpp::svd()</a>.</p> |
---|
| 1387 | |
---|
| 1388 | </div> |
---|
| 1389 | </div><p> |
---|
| 1390 | <a class="anchor" name="ge3b83ff6532c19ec15ffe76450b70e2c"></a><!-- doxytag: member="itpp::svd" ref="ge3b83ff6532c19ec15ffe76450b70e2c" args="(const mat &A)" --> |
---|
| 1391 | <div class="memitem"> |
---|
| 1392 | <div class="memproto"> |
---|
| 1393 | <table class="memname"> |
---|
| 1394 | <tr> |
---|
| 1395 | <td class="memname"><a class="el" href="classitpp_1_1Vec.html#02e1bb55f60f3c2eb7a020eb1c2cfcf4">vec</a> itpp::svd </td> |
---|
| 1396 | <td>(</td> |
---|
| 1397 | <td class="paramtype">const <a class="el" href="classitpp_1_1Mat.html#6bba394f181c76fda12759568986c613">mat</a> & </td> |
---|
| 1398 | <td class="paramname"> <em>A</em> </td> |
---|
| 1399 | <td> ) </td> |
---|
| 1400 | <td></td> |
---|
| 1401 | </tr> |
---|
| 1402 | </table> |
---|
| 1403 | </div> |
---|
| 1404 | <div class="memdoc"> |
---|
| 1405 | |
---|
| 1406 | <p> |
---|
| 1407 | Return singular values of a real matrix <code>A</code> using SVD. |
---|
| 1408 | <p> |
---|
| 1409 | This function returns singular values from the SVD decomposition of a real matrix <img class="formulaInl" alt="$A$" src="form_138.png">. The SVD algorithm computes the decomposition of a real <img class="formulaInl" alt="$m \times n$" src="form_140.png"> matrix <img class="formulaInl" alt="$\mathbf{A}$" src="form_134.png"> so that <p class="formulaDsp"> |
---|
| 1410 | <img class="formulaDsp" alt="\[ \mathrm{diag}(\mathbf{U}^T \mathbf{A} \mathbf{V}) = \mathbf{s} = \sigma_1, \ldots, \sigma_p \]" src="form_164.png"> |
---|
| 1411 | <p> |
---|
| 1412 | where <img class="formulaInl" alt="$\sigma_1 \geq \sigma_2 \geq \ldots \sigma_p \geq 0$" src="form_165.png"> are the singular values of <img class="formulaInl" alt="$\mathbf{A}$" src="form_134.png">. Or put differently: <p class="formulaDsp"> |
---|
| 1413 | <img class="formulaDsp" alt="\[ \mathbf{A} = \mathbf{U} \mathbf{S} \mathbf{V}^T \]" src="form_166.png"> |
---|
| 1414 | <p> |
---|
| 1415 | where <img class="formulaInl" alt="$ \mathrm{diag}(\mathbf{S}) = \mathbf{s} $" src="form_167.png"><p> |
---|
| 1416 | <dl class="note" compact><dt><b>Note:</b></dt><dd>An external LAPACK library is required by this function. </dd></dl> |
---|
| 1417 | |
---|
| 1418 | <p>References <a class="el" href="svd_8cpp-source.html#l00218">itpp::svd()</a>.</p> |
---|
| 1419 | |
---|
| 1420 | </div> |
---|
| 1421 | </div><p> |
---|
| 1422 | <a class="anchor" name="g92dd138100c619c71ba24b3dae0dec72"></a><!-- doxytag: member="itpp::svd" ref="g92dd138100c619c71ba24b3dae0dec72" args="(const cmat &A, vec &s)" --> |
---|
| 1423 | <div class="memitem"> |
---|
| 1424 | <div class="memproto"> |
---|
| 1425 | <table class="memname"> |
---|
| 1426 | <tr> |
---|
| 1427 | <td class="memname">bool itpp::svd </td> |
---|
| 1428 | <td>(</td> |
---|
| 1429 | <td class="paramtype">const <a class="el" href="classitpp_1_1Mat.html#6fbac4b7184807da188e5b85d42f038b">cmat</a> & </td> |
---|
| 1430 | <td class="paramname"> <em>A</em>, </td> |
---|
| 1431 | </tr> |
---|
| 1432 | <tr> |
---|
| 1433 | <td class="paramkey"></td> |
---|
| 1434 | <td></td> |
---|
| 1435 | <td class="paramtype"><a class="el" href="classitpp_1_1Vec.html#02e1bb55f60f3c2eb7a020eb1c2cfcf4">vec</a> & </td> |
---|
| 1436 | <td class="paramname"> <em>s</em></td><td> </td> |
---|
| 1437 | </tr> |
---|
| 1438 | <tr> |
---|
| 1439 | <td></td> |
---|
| 1440 | <td>)</td> |
---|
| 1441 | <td></td><td></td><td></td> |
---|
| 1442 | </tr> |
---|
| 1443 | </table> |
---|
| 1444 | </div> |
---|
| 1445 | <div class="memdoc"> |
---|
| 1446 | |
---|
| 1447 | <p> |
---|
| 1448 | Get singular values <code>s</code> of a complex matrix <code>A</code> using SVD. |
---|
| 1449 | <p> |
---|
| 1450 | This function calculates singular values <img class="formulaInl" alt="$s$" src="form_163.png"> from the SVD decomposition of a complex matrix <img class="formulaInl" alt="$A$" src="form_138.png">. The SVD algorithm computes the decomposition of a complex <img class="formulaInl" alt="$m \times n$" src="form_140.png"> matrix <img class="formulaInl" alt="$\mathbf{A}$" src="form_134.png"> so that <p class="formulaDsp"> |
---|
| 1451 | <img class="formulaDsp" alt="\[ \mathrm{diag}(\mathbf{U}^H \mathbf{A} \mathbf{V}) = \mathbf{s} = \sigma_1, \ldots, \sigma_p \]" src="form_168.png"> |
---|
| 1452 | <p> |
---|
| 1453 | where <img class="formulaInl" alt="$\sigma_1 \geq \sigma_2 \geq \ldots \sigma_p \geq 0$" src="form_165.png"> are the singular values of <img class="formulaInl" alt="$\mathbf{A}$" src="form_134.png">. Or put differently: <p class="formulaDsp"> |
---|
| 1454 | <img class="formulaDsp" alt="\[ \mathbf{A} = \mathbf{U} \mathbf{S} \mathbf{V}^H \]" src="form_169.png"> |
---|
| 1455 | <p> |
---|
| 1456 | where <img class="formulaInl" alt="$ \mathrm{diag}(\mathbf{S}) = \mathbf{s} $" src="form_167.png"><p> |
---|
| 1457 | <dl class="note" compact><dt><b>Note:</b></dt><dd>An external LAPACK library is required by this function. </dd></dl> |
---|
| 1458 | |
---|
| 1459 | <p>References <a class="el" href="itassert_8h-source.html#l00126">it_error</a>.</p> |
---|
| 1460 | |
---|
| 1461 | </div> |
---|
| 1462 | </div><p> |
---|
| 1463 | <a class="anchor" name="g9fcc7191c3cee4db65e51d93123c7fba"></a><!-- doxytag: member="itpp::svd" ref="g9fcc7191c3cee4db65e51d93123c7fba" args="(const mat &A, vec &s)" --> |
---|
| 1464 | <div class="memitem"> |
---|
| 1465 | <div class="memproto"> |
---|
| 1466 | <table class="memname"> |
---|
| 1467 | <tr> |
---|
| 1468 | <td class="memname">bool itpp::svd </td> |
---|
| 1469 | <td>(</td> |
---|
| 1470 | <td class="paramtype">const <a class="el" href="classitpp_1_1Mat.html#6bba394f181c76fda12759568986c613">mat</a> & </td> |
---|
| 1471 | <td class="paramname"> <em>A</em>, </td> |
---|
| 1472 | </tr> |
---|
| 1473 | <tr> |
---|
| 1474 | <td class="paramkey"></td> |
---|
| 1475 | <td></td> |
---|
| 1476 | <td class="paramtype"><a class="el" href="classitpp_1_1Vec.html#02e1bb55f60f3c2eb7a020eb1c2cfcf4">vec</a> & </td> |
---|
| 1477 | <td class="paramname"> <em>s</em></td><td> </td> |
---|
| 1478 | </tr> |
---|
| 1479 | <tr> |
---|
| 1480 | <td></td> |
---|
| 1481 | <td>)</td> |
---|
| 1482 | <td></td><td></td><td></td> |
---|
| 1483 | </tr> |
---|
| 1484 | </table> |
---|
| 1485 | </div> |
---|
| 1486 | <div class="memdoc"> |
---|
| 1487 | |
---|
| 1488 | <p> |
---|
| 1489 | Get singular values <code>s</code> of a real matrix <code>A</code> using SVD. |
---|
| 1490 | <p> |
---|
| 1491 | This function calculates singular values <img class="formulaInl" alt="$s$" src="form_163.png"> from the SVD decomposition of a real matrix <img class="formulaInl" alt="$A$" src="form_138.png">. The SVD algorithm computes the decomposition of a real <img class="formulaInl" alt="$m \times n$" src="form_140.png"> matrix <img class="formulaInl" alt="$\mathbf{A}$" src="form_134.png"> so that <p class="formulaDsp"> |
---|
| 1492 | <img class="formulaDsp" alt="\[ \mathrm{diag}(\mathbf{U}^T \mathbf{A} \mathbf{V}) = \mathbf{s} = \sigma_1, \ldots, \sigma_p \]" src="form_164.png"> |
---|
| 1493 | <p> |
---|
| 1494 | where <img class="formulaInl" alt="$\sigma_1 \geq \sigma_2 \geq \ldots \sigma_p \geq 0$" src="form_165.png"> are the singular values of <img class="formulaInl" alt="$\mathbf{A}$" src="form_134.png">. Or put differently: <p class="formulaDsp"> |
---|
| 1495 | <img class="formulaDsp" alt="\[ \mathbf{A} = \mathbf{U} \mathbf{S} \mathbf{V}^T \]" src="form_166.png"> |
---|
| 1496 | <p> |
---|
| 1497 | where <img class="formulaInl" alt="$ \mathrm{diag}(\mathbf{S}) = \mathbf{s} $" src="form_167.png"><p> |
---|
| 1498 | <dl class="note" compact><dt><b>Note:</b></dt><dd>An external LAPACK library is required by this function. </dd></dl> |
---|
| 1499 | |
---|
| 1500 | <p>References <a class="el" href="itassert_8h-source.html#l00126">it_error</a>.</p> |
---|
| 1501 | |
---|
| 1502 | </div> |
---|
| 1503 | </div><p> |
---|
| 1504 | </div> |
---|
| 1505 | <hr size="1"><address style="text-align: right;"><small>Generated on Tue Jun 2 10:02:14 2009 for mixpp by |
---|
| 1506 | <a href="http://www.doxygen.org/index.html"> |
---|
| 1507 | <img src="doxygen.png" alt="doxygen" align="middle" border="0"></a> 1.5.8 </small></address> |
---|
| 1508 | </body> |
---|
| 1509 | </html> |
---|