[353] | 1 | <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"> |
---|
| 2 | <html><head><meta http-equiv="Content-Type" content="text/html;charset=UTF-8"> |
---|
| 3 | <title>mixpp: Polynomial Functions</title> |
---|
| 4 | <link href="tabs.css" rel="stylesheet" type="text/css"> |
---|
| 5 | <link href="doxygen.css" rel="stylesheet" type="text/css"> |
---|
| 6 | </head><body> |
---|
| 7 | <!-- Generated by Doxygen 1.5.8 --> |
---|
| 8 | <script type="text/javascript"> |
---|
| 9 | <!-- |
---|
| 10 | function changeDisplayState (e){ |
---|
| 11 | var num=this.id.replace(/[^[0-9]/g,''); |
---|
| 12 | var button=this.firstChild; |
---|
| 13 | var sectionDiv=document.getElementById('dynsection'+num); |
---|
| 14 | if (sectionDiv.style.display=='none'||sectionDiv.style.display==''){ |
---|
| 15 | sectionDiv.style.display='block'; |
---|
| 16 | button.src='open.gif'; |
---|
| 17 | }else{ |
---|
| 18 | sectionDiv.style.display='none'; |
---|
| 19 | button.src='closed.gif'; |
---|
| 20 | } |
---|
| 21 | } |
---|
| 22 | function initDynSections(){ |
---|
| 23 | var divs=document.getElementsByTagName('div'); |
---|
| 24 | var sectionCounter=1; |
---|
| 25 | for(var i=0;i<divs.length-1;i++){ |
---|
| 26 | if(divs[i].className=='dynheader'&&divs[i+1].className=='dynsection'){ |
---|
| 27 | var header=divs[i]; |
---|
| 28 | var section=divs[i+1]; |
---|
| 29 | var button=header.firstChild; |
---|
| 30 | if (button!='IMG'){ |
---|
| 31 | divs[i].insertBefore(document.createTextNode(' '),divs[i].firstChild); |
---|
| 32 | button=document.createElement('img'); |
---|
| 33 | divs[i].insertBefore(button,divs[i].firstChild); |
---|
| 34 | } |
---|
| 35 | header.style.cursor='pointer'; |
---|
| 36 | header.onclick=changeDisplayState; |
---|
| 37 | header.id='dynheader'+sectionCounter; |
---|
| 38 | button.src='closed.gif'; |
---|
| 39 | section.id='dynsection'+sectionCounter; |
---|
| 40 | section.style.display='none'; |
---|
| 41 | section.style.marginLeft='14px'; |
---|
| 42 | sectionCounter++; |
---|
| 43 | } |
---|
| 44 | } |
---|
| 45 | } |
---|
| 46 | window.onload = initDynSections; |
---|
| 47 | --> |
---|
| 48 | </script> |
---|
| 49 | <div class="navigation" id="top"> |
---|
| 50 | <div class="tabs"> |
---|
| 51 | <ul> |
---|
| 52 | <li><a href="main.html"><span>Main Page</span></a></li> |
---|
| 53 | <li><a href="pages.html"><span>Related Pages</span></a></li> |
---|
| 54 | <li><a href="modules.html"><span>Modules</span></a></li> |
---|
| 55 | <li><a href="annotated.html"><span>Classes</span></a></li> |
---|
| 56 | <li><a href="files.html"><span>Files</span></a></li> |
---|
| 57 | </ul> |
---|
| 58 | </div> |
---|
| 59 | </div> |
---|
| 60 | <div class="contents"> |
---|
| 61 | <h1>Polynomial Functions<br> |
---|
| 62 | <small> |
---|
| 63 | [<a class="el" href="group__signal.html">Signal Processing (SP) Module</a>]</small> |
---|
| 64 | </h1><table border="0" cellpadding="0" cellspacing="0"> |
---|
| 65 | <tr><td></td></tr> |
---|
| 66 | <tr><td colspan="2"><br><h2>Functions</h2></td></tr> |
---|
| 67 | <tr><td class="memItemLeft" nowrap align="right" valign="top">double </td><td class="memItemRight" valign="bottom"><a class="el" href="group__poly.html#g8de86444d21f007b0eb2f43730a9d693">itpp::cheb</a> (int n, double x)</td></tr> |
---|
| 68 | |
---|
| 69 | <tr><td class="mdescLeft"> </td><td class="mdescRight">Chebyshev polynomial of the first kind<p> |
---|
| 70 | Chebyshev polynomials of the first kind can be defined as follows: <p class="formulaDsp"> |
---|
| 71 | <img class="formulaDsp" alt="\[ T(x) = \left\{ \begin{array}{ll} \cos(n\arccos(x)),& |x| \leq 0 \\ \cosh(n\mathrm{arccosh}(x)),& x > 1 \\ (-1)^n \cosh(n\mathrm{arccosh}(-x)),& x < -1 \end{array} \right. \]" src="form_355.png"> |
---|
| 72 | <p> |
---|
| 73 | . <a href="#g8de86444d21f007b0eb2f43730a9d693"></a><br></td></tr> |
---|
| 74 | <tr><td class="memItemLeft" nowrap align="right" valign="top"><a class="el" href="classitpp_1_1Vec.html#02e1bb55f60f3c2eb7a020eb1c2cfcf4">vec</a> </td><td class="memItemRight" valign="bottom"><a class="el" href="group__poly.html#g5a2bb27c029a001ea07977fc0b2ad084">itpp::cheb</a> (int n, const <a class="el" href="classitpp_1_1Vec.html#02e1bb55f60f3c2eb7a020eb1c2cfcf4">vec</a> &x)</td></tr> |
---|
| 75 | |
---|
| 76 | <tr><td class="mdescLeft"> </td><td class="mdescRight">Chebyshev polynomial of the first kind<p> |
---|
| 77 | Chebyshev polynomials of the first kind can be defined as follows: <p class="formulaDsp"> |
---|
| 78 | <img class="formulaDsp" alt="\[ T(x) = \left\{ \begin{array}{ll} \cos(n\arccos(x)),& |x| \leq 0 \\ \cosh(n\mathrm{arccosh}(x)),& x > 1 \\ (-1)^n \cosh(n\mathrm{arccosh}(-x)),& x < -1 \end{array} \right. \]" src="form_355.png"> |
---|
| 79 | <p> |
---|
| 80 | . <a href="#g5a2bb27c029a001ea07977fc0b2ad084"></a><br></td></tr> |
---|
| 81 | <tr><td class="memItemLeft" nowrap align="right" valign="top"><a class="el" href="classitpp_1_1Mat.html#6bba394f181c76fda12759568986c613">mat</a> </td><td class="memItemRight" valign="bottom"><a class="el" href="group__poly.html#gdc7b40bdfa59f4690108b0af6032a28e">itpp::cheb</a> (int n, const <a class="el" href="classitpp_1_1Mat.html#6bba394f181c76fda12759568986c613">mat</a> &x)</td></tr> |
---|
| 82 | |
---|
| 83 | <tr><td class="mdescLeft"> </td><td class="mdescRight">Chebyshev polynomial of the first kind<p> |
---|
| 84 | Chebyshev polynomials of the first kind can be defined as follows: <p class="formulaDsp"> |
---|
| 85 | <img class="formulaDsp" alt="\[ T(x) = \left\{ \begin{array}{ll} \cos(n\arccos(x)),& |x| \leq 0 \\ \cosh(n\mathrm{arccosh}(x)),& x > 1 \\ (-1)^n \cosh(n\mathrm{arccosh}(-x)),& x < -1 \end{array} \right. \]" src="form_355.png"> |
---|
| 86 | <p> |
---|
| 87 | . <a href="#gdc7b40bdfa59f4690108b0af6032a28e"></a><br></td></tr> |
---|
| 88 | <tr><td class="memItemLeft" nowrap align="right" valign="top"><a class="anchor" name="gab3633500ff808dd810c8c4ed982b8a3"></a><!-- doxytag: member="poly::poly" ref="gab3633500ff808dd810c8c4ed982b8a3" args="(const vec &r, vec &p)" --> |
---|
| 89 | void </td><td class="memItemRight" valign="bottom"><a class="el" href="group__poly.html#gab3633500ff808dd810c8c4ed982b8a3">itpp::poly</a> (const <a class="el" href="classitpp_1_1Vec.html#02e1bb55f60f3c2eb7a020eb1c2cfcf4">vec</a> &r, <a class="el" href="classitpp_1_1Vec.html#02e1bb55f60f3c2eb7a020eb1c2cfcf4">vec</a> &p)</td></tr> |
---|
| 90 | |
---|
| 91 | <tr><td class="mdescLeft"> </td><td class="mdescRight">Create a polynomial of the given roots<p> |
---|
| 92 | Create a polynomial <code>p</code> with roots <code>r</code>. <br></td></tr> |
---|
| 93 | <tr><td class="memItemLeft" nowrap align="right" valign="top"><a class="anchor" name="g976038e6562ce114820cd05478249e68"></a><!-- doxytag: member="poly::poly" ref="g976038e6562ce114820cd05478249e68" args="(const cvec &r, cvec &p)" --> |
---|
| 94 | void </td><td class="memItemRight" valign="bottom"><b>itpp::poly</b> (const <a class="el" href="classitpp_1_1Vec.html#e83c1408740e41a7e29c383b71d4d544">cvec</a> &r, <a class="el" href="classitpp_1_1Vec.html#e83c1408740e41a7e29c383b71d4d544">cvec</a> &p)</td></tr> |
---|
| 95 | |
---|
| 96 | <tr><td class="memItemLeft" nowrap align="right" valign="top"><a class="anchor" name="gb62c0f2cb5cb5151c79a575891693316"></a><!-- doxytag: member="poly::poly" ref="gb62c0f2cb5cb5151c79a575891693316" args="(const vec &r)" --> |
---|
| 97 | <a class="el" href="classitpp_1_1Vec.html#02e1bb55f60f3c2eb7a020eb1c2cfcf4">vec</a> </td><td class="memItemRight" valign="bottom"><b>itpp::poly</b> (const <a class="el" href="classitpp_1_1Vec.html#02e1bb55f60f3c2eb7a020eb1c2cfcf4">vec</a> &r)</td></tr> |
---|
| 98 | |
---|
| 99 | <tr><td class="memItemLeft" nowrap align="right" valign="top"><a class="anchor" name="g21cfb2107f66b8b55bc398a020856377"></a><!-- doxytag: member="poly::poly" ref="g21cfb2107f66b8b55bc398a020856377" args="(const cvec &r)" --> |
---|
| 100 | <a class="el" href="classitpp_1_1Vec.html#e83c1408740e41a7e29c383b71d4d544">cvec</a> </td><td class="memItemRight" valign="bottom"><b>itpp::poly</b> (const <a class="el" href="classitpp_1_1Vec.html#e83c1408740e41a7e29c383b71d4d544">cvec</a> &r)</td></tr> |
---|
| 101 | |
---|
| 102 | <tr><td class="memItemLeft" nowrap align="right" valign="top"><a class="anchor" name="gf849a0862dc9bcd2e429732e577fe006"></a><!-- doxytag: member="poly::roots" ref="gf849a0862dc9bcd2e429732e577fe006" args="(const vec &p, cvec &r)" --> |
---|
| 103 | void </td><td class="memItemRight" valign="bottom"><a class="el" href="group__poly.html#gf849a0862dc9bcd2e429732e577fe006">itpp::roots</a> (const <a class="el" href="classitpp_1_1Vec.html#02e1bb55f60f3c2eb7a020eb1c2cfcf4">vec</a> &p, <a class="el" href="classitpp_1_1Vec.html#e83c1408740e41a7e29c383b71d4d544">cvec</a> &r)</td></tr> |
---|
| 104 | |
---|
| 105 | <tr><td class="mdescLeft"> </td><td class="mdescRight">Calculate the roots of the polynomial<p> |
---|
| 106 | Calculate the roots <code>r</code> of the polynomial <code>p</code>. <br></td></tr> |
---|
| 107 | <tr><td class="memItemLeft" nowrap align="right" valign="top"><a class="anchor" name="g7032851d6d528bc2cf86e6efd338185b"></a><!-- doxytag: member="poly::roots" ref="g7032851d6d528bc2cf86e6efd338185b" args="(const cvec &p, cvec &r)" --> |
---|
| 108 | void </td><td class="memItemRight" valign="bottom"><b>itpp::roots</b> (const <a class="el" href="classitpp_1_1Vec.html#e83c1408740e41a7e29c383b71d4d544">cvec</a> &p, <a class="el" href="classitpp_1_1Vec.html#e83c1408740e41a7e29c383b71d4d544">cvec</a> &r)</td></tr> |
---|
| 109 | |
---|
| 110 | <tr><td class="memItemLeft" nowrap align="right" valign="top"><a class="anchor" name="g9f52ae9ce005cea38fc6172ed4322213"></a><!-- doxytag: member="poly::roots" ref="g9f52ae9ce005cea38fc6172ed4322213" args="(const vec &p)" --> |
---|
| 111 | <a class="el" href="classitpp_1_1Vec.html#e83c1408740e41a7e29c383b71d4d544">cvec</a> </td><td class="memItemRight" valign="bottom"><b>itpp::roots</b> (const <a class="el" href="classitpp_1_1Vec.html#02e1bb55f60f3c2eb7a020eb1c2cfcf4">vec</a> &p)</td></tr> |
---|
| 112 | |
---|
| 113 | <tr><td class="memItemLeft" nowrap align="right" valign="top"><a class="anchor" name="g740d31b3bf4bb8604864e4b6ac85b87c"></a><!-- doxytag: member="poly::roots" ref="g740d31b3bf4bb8604864e4b6ac85b87c" args="(const cvec &p)" --> |
---|
| 114 | <a class="el" href="classitpp_1_1Vec.html#e83c1408740e41a7e29c383b71d4d544">cvec</a> </td><td class="memItemRight" valign="bottom"><b>itpp::roots</b> (const <a class="el" href="classitpp_1_1Vec.html#e83c1408740e41a7e29c383b71d4d544">cvec</a> &p)</td></tr> |
---|
| 115 | |
---|
| 116 | <tr><td class="memItemLeft" nowrap align="right" valign="top"><a class="anchor" name="g59f5bb49a251bf31f40538f5fca4b9b2"></a><!-- doxytag: member="poly::polyval" ref="g59f5bb49a251bf31f40538f5fca4b9b2" args="(const vec &p, const vec &x)" --> |
---|
| 117 | <a class="el" href="classitpp_1_1Vec.html#02e1bb55f60f3c2eb7a020eb1c2cfcf4">vec</a> </td><td class="memItemRight" valign="bottom"><a class="el" href="group__poly.html#g59f5bb49a251bf31f40538f5fca4b9b2">itpp::polyval</a> (const <a class="el" href="classitpp_1_1Vec.html#02e1bb55f60f3c2eb7a020eb1c2cfcf4">vec</a> &p, const <a class="el" href="classitpp_1_1Vec.html#02e1bb55f60f3c2eb7a020eb1c2cfcf4">vec</a> &x)</td></tr> |
---|
| 118 | |
---|
| 119 | <tr><td class="mdescLeft"> </td><td class="mdescRight">Evaluate polynomial<p> |
---|
| 120 | Evaluate the polynomial <code>p</code> (of length <img class="formulaInl" alt="$N+1$" src="form_353.png"> at the points <code>x</code> The output is given by <p class="formulaDsp"> |
---|
| 121 | <img class="formulaDsp" alt="\[ p_0 x^N + p_1 x^{N-1} + \ldots + p_{N-1} x + p_N \]" src="form_354.png"> |
---|
| 122 | <p> |
---|
| 123 | . <br></td></tr> |
---|
| 124 | <tr><td class="memItemLeft" nowrap align="right" valign="top"><a class="anchor" name="g34523a27f81ea97aa996bbcb898f4858"></a><!-- doxytag: member="poly::polyval" ref="g34523a27f81ea97aa996bbcb898f4858" args="(const vec &p, const cvec &x)" --> |
---|
| 125 | <a class="el" href="classitpp_1_1Vec.html#e83c1408740e41a7e29c383b71d4d544">cvec</a> </td><td class="memItemRight" valign="bottom"><b>itpp::polyval</b> (const <a class="el" href="classitpp_1_1Vec.html#02e1bb55f60f3c2eb7a020eb1c2cfcf4">vec</a> &p, const <a class="el" href="classitpp_1_1Vec.html#e83c1408740e41a7e29c383b71d4d544">cvec</a> &x)</td></tr> |
---|
| 126 | |
---|
| 127 | <tr><td class="memItemLeft" nowrap align="right" valign="top"><a class="anchor" name="g2b96f640c406de26b21d9c17a6500f80"></a><!-- doxytag: member="poly::polyval" ref="g2b96f640c406de26b21d9c17a6500f80" args="(const cvec &p, const vec &x)" --> |
---|
| 128 | <a class="el" href="classitpp_1_1Vec.html#e83c1408740e41a7e29c383b71d4d544">cvec</a> </td><td class="memItemRight" valign="bottom"><b>itpp::polyval</b> (const <a class="el" href="classitpp_1_1Vec.html#e83c1408740e41a7e29c383b71d4d544">cvec</a> &p, const <a class="el" href="classitpp_1_1Vec.html#02e1bb55f60f3c2eb7a020eb1c2cfcf4">vec</a> &x)</td></tr> |
---|
| 129 | |
---|
| 130 | <tr><td class="memItemLeft" nowrap align="right" valign="top"><a class="anchor" name="g9bdf5c1688d8df8155d3ff8d86302838"></a><!-- doxytag: member="poly::polyval" ref="g9bdf5c1688d8df8155d3ff8d86302838" args="(const cvec &p, const cvec &x)" --> |
---|
| 131 | <a class="el" href="classitpp_1_1Vec.html#e83c1408740e41a7e29c383b71d4d544">cvec</a> </td><td class="memItemRight" valign="bottom"><b>itpp::polyval</b> (const <a class="el" href="classitpp_1_1Vec.html#e83c1408740e41a7e29c383b71d4d544">cvec</a> &p, const <a class="el" href="classitpp_1_1Vec.html#e83c1408740e41a7e29c383b71d4d544">cvec</a> &x)</td></tr> |
---|
| 132 | |
---|
| 133 | </table> |
---|
| 134 | <hr><h2>Function Documentation</h2> |
---|
| 135 | <a class="anchor" name="gdc7b40bdfa59f4690108b0af6032a28e"></a><!-- doxytag: member="itpp::cheb" ref="gdc7b40bdfa59f4690108b0af6032a28e" args="(int n, const mat &x)" --> |
---|
| 136 | <div class="memitem"> |
---|
| 137 | <div class="memproto"> |
---|
| 138 | <table class="memname"> |
---|
| 139 | <tr> |
---|
| 140 | <td class="memname"><a class="el" href="classitpp_1_1Mat.html#6bba394f181c76fda12759568986c613">mat</a> itpp::cheb </td> |
---|
| 141 | <td>(</td> |
---|
| 142 | <td class="paramtype">int </td> |
---|
| 143 | <td class="paramname"> <em>n</em>, </td> |
---|
| 144 | </tr> |
---|
| 145 | <tr> |
---|
| 146 | <td class="paramkey"></td> |
---|
| 147 | <td></td> |
---|
| 148 | <td class="paramtype">const <a class="el" href="classitpp_1_1Mat.html#6bba394f181c76fda12759568986c613">mat</a> & </td> |
---|
| 149 | <td class="paramname"> <em>x</em></td><td> </td> |
---|
| 150 | </tr> |
---|
| 151 | <tr> |
---|
| 152 | <td></td> |
---|
| 153 | <td>)</td> |
---|
| 154 | <td></td><td></td><td></td> |
---|
| 155 | </tr> |
---|
| 156 | </table> |
---|
| 157 | </div> |
---|
| 158 | <div class="memdoc"> |
---|
| 159 | |
---|
| 160 | <p> |
---|
| 161 | Chebyshev polynomial of the first kind<p> |
---|
| 162 | Chebyshev polynomials of the first kind can be defined as follows: <p class="formulaDsp"> |
---|
| 163 | <img class="formulaDsp" alt="\[ T(x) = \left\{ \begin{array}{ll} \cos(n\arccos(x)),& |x| \leq 0 \\ \cosh(n\mathrm{arccosh}(x)),& x > 1 \\ (-1)^n \cosh(n\mathrm{arccosh}(-x)),& x < -1 \end{array} \right. \]" src="form_355.png"> |
---|
| 164 | <p> |
---|
| 165 | . |
---|
| 166 | <p> |
---|
| 167 | <dl compact><dt><b>Parameters:</b></dt><dd> |
---|
| 168 | <table border="0" cellspacing="2" cellpadding="0"> |
---|
| 169 | <tr><td valign="top"></td><td valign="top"><em>n</em> </td><td>order of the Chebyshev polynomial </td></tr> |
---|
| 170 | <tr><td valign="top"></td><td valign="top"><em>x</em> </td><td>matrix of values at which the Chebyshev polynomial is to be evaluated </td></tr> |
---|
| 171 | </table> |
---|
| 172 | </dl> |
---|
| 173 | <dl class="return" compact><dt><b>Returns:</b></dt><dd>values of the Chebyshev polynomial evaluated for each element in <code>x</code>.</dd></dl> |
---|
| 174 | <dl class="author" compact><dt><b>Author:</b></dt><dd>Kumar Appaiah, Adam Piatyszek (code review) </dd></dl> |
---|
| 175 | |
---|
| 176 | <p>References <a class="el" href="itassert_8h-source.html#l00107">it_assert_debug</a>.</p> |
---|
| 177 | |
---|
| 178 | <p>Referenced by <a class="el" href="poly_8cpp-source.html#l00209">itpp::cheb()</a>, and <a class="el" href="window_8cpp-source.html#l00119">itpp::chebwin()</a>.</p> |
---|
| 179 | |
---|
| 180 | </div> |
---|
| 181 | </div><p> |
---|
| 182 | <a class="anchor" name="g5a2bb27c029a001ea07977fc0b2ad084"></a><!-- doxytag: member="itpp::cheb" ref="g5a2bb27c029a001ea07977fc0b2ad084" args="(int n, const vec &x)" --> |
---|
| 183 | <div class="memitem"> |
---|
| 184 | <div class="memproto"> |
---|
| 185 | <table class="memname"> |
---|
| 186 | <tr> |
---|
| 187 | <td class="memname"><a class="el" href="classitpp_1_1Vec.html#02e1bb55f60f3c2eb7a020eb1c2cfcf4">vec</a> itpp::cheb </td> |
---|
| 188 | <td>(</td> |
---|
| 189 | <td class="paramtype">int </td> |
---|
| 190 | <td class="paramname"> <em>n</em>, </td> |
---|
| 191 | </tr> |
---|
| 192 | <tr> |
---|
| 193 | <td class="paramkey"></td> |
---|
| 194 | <td></td> |
---|
| 195 | <td class="paramtype">const <a class="el" href="classitpp_1_1Vec.html#02e1bb55f60f3c2eb7a020eb1c2cfcf4">vec</a> & </td> |
---|
| 196 | <td class="paramname"> <em>x</em></td><td> </td> |
---|
| 197 | </tr> |
---|
| 198 | <tr> |
---|
| 199 | <td></td> |
---|
| 200 | <td>)</td> |
---|
| 201 | <td></td><td></td><td></td> |
---|
| 202 | </tr> |
---|
| 203 | </table> |
---|
| 204 | </div> |
---|
| 205 | <div class="memdoc"> |
---|
| 206 | |
---|
| 207 | <p> |
---|
| 208 | Chebyshev polynomial of the first kind<p> |
---|
| 209 | Chebyshev polynomials of the first kind can be defined as follows: <p class="formulaDsp"> |
---|
| 210 | <img class="formulaDsp" alt="\[ T(x) = \left\{ \begin{array}{ll} \cos(n\arccos(x)),& |x| \leq 0 \\ \cosh(n\mathrm{arccosh}(x)),& x > 1 \\ (-1)^n \cosh(n\mathrm{arccosh}(-x)),& x < -1 \end{array} \right. \]" src="form_355.png"> |
---|
| 211 | <p> |
---|
| 212 | . |
---|
| 213 | <p> |
---|
| 214 | <dl compact><dt><b>Parameters:</b></dt><dd> |
---|
| 215 | <table border="0" cellspacing="2" cellpadding="0"> |
---|
| 216 | <tr><td valign="top"></td><td valign="top"><em>n</em> </td><td>order of the Chebyshev polynomial </td></tr> |
---|
| 217 | <tr><td valign="top"></td><td valign="top"><em>x</em> </td><td>vector of values at which the Chebyshev polynomial is to be evaluated </td></tr> |
---|
| 218 | </table> |
---|
| 219 | </dl> |
---|
| 220 | <dl class="return" compact><dt><b>Returns:</b></dt><dd>values of the Chebyshev polynomial evaluated for each element of <code>x</code> </dd></dl> |
---|
| 221 | <dl class="author" compact><dt><b>Author:</b></dt><dd>Kumar Appaiah, Adam Piatyszek (code review) </dd></dl> |
---|
| 222 | |
---|
| 223 | <p>References <a class="el" href="poly_8cpp-source.html#l00220">itpp::cheb()</a>, and <a class="el" href="itassert_8h-source.html#l00107">it_assert_debug</a>.</p> |
---|
| 224 | |
---|
| 225 | </div> |
---|
| 226 | </div><p> |
---|
| 227 | <a class="anchor" name="g8de86444d21f007b0eb2f43730a9d693"></a><!-- doxytag: member="itpp::cheb" ref="g8de86444d21f007b0eb2f43730a9d693" args="(int n, double x)" --> |
---|
| 228 | <div class="memitem"> |
---|
| 229 | <div class="memproto"> |
---|
| 230 | <table class="memname"> |
---|
| 231 | <tr> |
---|
| 232 | <td class="memname">double itpp::cheb </td> |
---|
| 233 | <td>(</td> |
---|
| 234 | <td class="paramtype">int </td> |
---|
| 235 | <td class="paramname"> <em>n</em>, </td> |
---|
| 236 | </tr> |
---|
| 237 | <tr> |
---|
| 238 | <td class="paramkey"></td> |
---|
| 239 | <td></td> |
---|
| 240 | <td class="paramtype">double </td> |
---|
| 241 | <td class="paramname"> <em>x</em></td><td> </td> |
---|
| 242 | </tr> |
---|
| 243 | <tr> |
---|
| 244 | <td></td> |
---|
| 245 | <td>)</td> |
---|
| 246 | <td></td><td></td><td></td> |
---|
| 247 | </tr> |
---|
| 248 | </table> |
---|
| 249 | </div> |
---|
| 250 | <div class="memdoc"> |
---|
| 251 | |
---|
| 252 | <p> |
---|
| 253 | Chebyshev polynomial of the first kind<p> |
---|
| 254 | Chebyshev polynomials of the first kind can be defined as follows: <p class="formulaDsp"> |
---|
| 255 | <img class="formulaDsp" alt="\[ T(x) = \left\{ \begin{array}{ll} \cos(n\arccos(x)),& |x| \leq 0 \\ \cosh(n\mathrm{arccosh}(x)),& x > 1 \\ (-1)^n \cosh(n\mathrm{arccosh}(-x)),& x < -1 \end{array} \right. \]" src="form_355.png"> |
---|
| 256 | <p> |
---|
| 257 | . |
---|
| 258 | <p> |
---|
| 259 | <dl compact><dt><b>Parameters:</b></dt><dd> |
---|
| 260 | <table border="0" cellspacing="2" cellpadding="0"> |
---|
| 261 | <tr><td valign="top"></td><td valign="top"><em>n</em> </td><td>order of the Chebyshev polynomial </td></tr> |
---|
| 262 | <tr><td valign="top"></td><td valign="top"><em>x</em> </td><td>value at which the Chebyshev polynomial is to be evaluated</td></tr> |
---|
| 263 | </table> |
---|
| 264 | </dl> |
---|
| 265 | <dl class="author" compact><dt><b>Author:</b></dt><dd>Kumar Appaiah, Adam Piatyszek (code review) </dd></dl> |
---|
| 266 | |
---|
| 267 | <p>References <a class="el" href="trig__hyp_8h-source.html#l00073">itpp::acos()</a>, <a class="el" href="trig__hyp_8h-source.html#l00108">itpp::acosh()</a>, <a class="el" href="trig__hyp_8h-source.html#l00061">itpp::cos()</a>, <a class="el" href="trig__hyp_8h-source.html#l00096">itpp::cosh()</a>, <a class="el" href="misc_8h-source.html#l00122">itpp::is_even()</a>, and <a class="el" href="itassert_8h-source.html#l00094">it_assert</a>.</p> |
---|
| 268 | |
---|
| 269 | </div> |
---|
| 270 | </div><p> |
---|
| 271 | </div> |
---|
| 272 | <hr size="1"><address style="text-align: right;"><small>Generated on Tue Jun 2 10:02:14 2009 for mixpp by |
---|
| 273 | <a href="http://www.doxygen.org/index.html"> |
---|
| 274 | <img src="doxygen.png" alt="doxygen" align="middle" border="0"></a> 1.5.8 </small></address> |
---|
| 275 | </body> |
---|
| 276 | </html> |
---|