1 | <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"> |
---|
2 | <html><head><meta http-equiv="Content-Type" content="text/html;charset=UTF-8"> |
---|
3 | <title>mixpp: Polynomial Functions</title> |
---|
4 | <link href="tabs.css" rel="stylesheet" type="text/css"> |
---|
5 | <link href="doxygen.css" rel="stylesheet" type="text/css"> |
---|
6 | </head><body> |
---|
7 | <!-- Generated by Doxygen 1.5.8 --> |
---|
8 | <script type="text/javascript"> |
---|
9 | <!-- |
---|
10 | function changeDisplayState (e){ |
---|
11 | var num=this.id.replace(/[^[0-9]/g,''); |
---|
12 | var button=this.firstChild; |
---|
13 | var sectionDiv=document.getElementById('dynsection'+num); |
---|
14 | if (sectionDiv.style.display=='none'||sectionDiv.style.display==''){ |
---|
15 | sectionDiv.style.display='block'; |
---|
16 | button.src='open.gif'; |
---|
17 | }else{ |
---|
18 | sectionDiv.style.display='none'; |
---|
19 | button.src='closed.gif'; |
---|
20 | } |
---|
21 | } |
---|
22 | function initDynSections(){ |
---|
23 | var divs=document.getElementsByTagName('div'); |
---|
24 | var sectionCounter=1; |
---|
25 | for(var i=0;i<divs.length-1;i++){ |
---|
26 | if(divs[i].className=='dynheader'&&divs[i+1].className=='dynsection'){ |
---|
27 | var header=divs[i]; |
---|
28 | var section=divs[i+1]; |
---|
29 | var button=header.firstChild; |
---|
30 | if (button!='IMG'){ |
---|
31 | divs[i].insertBefore(document.createTextNode(' '),divs[i].firstChild); |
---|
32 | button=document.createElement('img'); |
---|
33 | divs[i].insertBefore(button,divs[i].firstChild); |
---|
34 | } |
---|
35 | header.style.cursor='pointer'; |
---|
36 | header.onclick=changeDisplayState; |
---|
37 | header.id='dynheader'+sectionCounter; |
---|
38 | button.src='closed.gif'; |
---|
39 | section.id='dynsection'+sectionCounter; |
---|
40 | section.style.display='none'; |
---|
41 | section.style.marginLeft='14px'; |
---|
42 | sectionCounter++; |
---|
43 | } |
---|
44 | } |
---|
45 | } |
---|
46 | window.onload = initDynSections; |
---|
47 | --> |
---|
48 | </script> |
---|
49 | <div class="navigation" id="top"> |
---|
50 | <div class="tabs"> |
---|
51 | <ul> |
---|
52 | <li><a href="main.html"><span>Main Page</span></a></li> |
---|
53 | <li><a href="pages.html"><span>Related Pages</span></a></li> |
---|
54 | <li><a href="modules.html"><span>Modules</span></a></li> |
---|
55 | <li><a href="annotated.html"><span>Classes</span></a></li> |
---|
56 | <li><a href="files.html"><span>Files</span></a></li> |
---|
57 | </ul> |
---|
58 | </div> |
---|
59 | </div> |
---|
60 | <div class="contents"> |
---|
61 | <h1>Polynomial Functions<br> |
---|
62 | <small> |
---|
63 | [<a class="el" href="group__signal.html">Signal Processing (SP) Module</a>]</small> |
---|
64 | </h1><table border="0" cellpadding="0" cellspacing="0"> |
---|
65 | <tr><td></td></tr> |
---|
66 | <tr><td colspan="2"><br><h2>Functions</h2></td></tr> |
---|
67 | <tr><td class="memItemLeft" nowrap align="right" valign="top">double </td><td class="memItemRight" valign="bottom"><a class="el" href="group__poly.html#g8de86444d21f007b0eb2f43730a9d693">itpp::cheb</a> (int n, double x)</td></tr> |
---|
68 | |
---|
69 | <tr><td class="mdescLeft"> </td><td class="mdescRight">Chebyshev polynomial of the first kind<p> |
---|
70 | Chebyshev polynomials of the first kind can be defined as follows: <p class="formulaDsp"> |
---|
71 | <img class="formulaDsp" alt="\[ T(x) = \left\{ \begin{array}{ll} \cos(n\arccos(x)),& |x| \leq 0 \\ \cosh(n\mathrm{arccosh}(x)),& x > 1 \\ (-1)^n \cosh(n\mathrm{arccosh}(-x)),& x < -1 \end{array} \right. \]" src="form_355.png"> |
---|
72 | <p> |
---|
73 | . <a href="#g8de86444d21f007b0eb2f43730a9d693"></a><br></td></tr> |
---|
74 | <tr><td class="memItemLeft" nowrap align="right" valign="top"><a class="el" href="classitpp_1_1Vec.html#02e1bb55f60f3c2eb7a020eb1c2cfcf4">vec</a> </td><td class="memItemRight" valign="bottom"><a class="el" href="group__poly.html#g5a2bb27c029a001ea07977fc0b2ad084">itpp::cheb</a> (int n, const <a class="el" href="classitpp_1_1Vec.html#02e1bb55f60f3c2eb7a020eb1c2cfcf4">vec</a> &x)</td></tr> |
---|
75 | |
---|
76 | <tr><td class="mdescLeft"> </td><td class="mdescRight">Chebyshev polynomial of the first kind<p> |
---|
77 | Chebyshev polynomials of the first kind can be defined as follows: <p class="formulaDsp"> |
---|
78 | <img class="formulaDsp" alt="\[ T(x) = \left\{ \begin{array}{ll} \cos(n\arccos(x)),& |x| \leq 0 \\ \cosh(n\mathrm{arccosh}(x)),& x > 1 \\ (-1)^n \cosh(n\mathrm{arccosh}(-x)),& x < -1 \end{array} \right. \]" src="form_355.png"> |
---|
79 | <p> |
---|
80 | . <a href="#g5a2bb27c029a001ea07977fc0b2ad084"></a><br></td></tr> |
---|
81 | <tr><td class="memItemLeft" nowrap align="right" valign="top"><a class="el" href="classitpp_1_1Mat.html#6bba394f181c76fda12759568986c613">mat</a> </td><td class="memItemRight" valign="bottom"><a class="el" href="group__poly.html#gdc7b40bdfa59f4690108b0af6032a28e">itpp::cheb</a> (int n, const <a class="el" href="classitpp_1_1Mat.html#6bba394f181c76fda12759568986c613">mat</a> &x)</td></tr> |
---|
82 | |
---|
83 | <tr><td class="mdescLeft"> </td><td class="mdescRight">Chebyshev polynomial of the first kind<p> |
---|
84 | Chebyshev polynomials of the first kind can be defined as follows: <p class="formulaDsp"> |
---|
85 | <img class="formulaDsp" alt="\[ T(x) = \left\{ \begin{array}{ll} \cos(n\arccos(x)),& |x| \leq 0 \\ \cosh(n\mathrm{arccosh}(x)),& x > 1 \\ (-1)^n \cosh(n\mathrm{arccosh}(-x)),& x < -1 \end{array} \right. \]" src="form_355.png"> |
---|
86 | <p> |
---|
87 | . <a href="#gdc7b40bdfa59f4690108b0af6032a28e"></a><br></td></tr> |
---|
88 | <tr><td class="memItemLeft" nowrap align="right" valign="top"><a class="anchor" name="gab3633500ff808dd810c8c4ed982b8a3"></a><!-- doxytag: member="poly::poly" ref="gab3633500ff808dd810c8c4ed982b8a3" args="(const vec &r, vec &p)" --> |
---|
89 | void </td><td class="memItemRight" valign="bottom"><a class="el" href="group__poly.html#gab3633500ff808dd810c8c4ed982b8a3">itpp::poly</a> (const <a class="el" href="classitpp_1_1Vec.html#02e1bb55f60f3c2eb7a020eb1c2cfcf4">vec</a> &r, <a class="el" href="classitpp_1_1Vec.html#02e1bb55f60f3c2eb7a020eb1c2cfcf4">vec</a> &p)</td></tr> |
---|
90 | |
---|
91 | <tr><td class="mdescLeft"> </td><td class="mdescRight">Create a polynomial of the given roots<p> |
---|
92 | Create a polynomial <code>p</code> with roots <code>r</code>. <br></td></tr> |
---|
93 | <tr><td class="memItemLeft" nowrap align="right" valign="top"><a class="anchor" name="g976038e6562ce114820cd05478249e68"></a><!-- doxytag: member="poly::poly" ref="g976038e6562ce114820cd05478249e68" args="(const cvec &r, cvec &p)" --> |
---|
94 | void </td><td class="memItemRight" valign="bottom"><b>itpp::poly</b> (const <a class="el" href="classitpp_1_1Vec.html#e83c1408740e41a7e29c383b71d4d544">cvec</a> &r, <a class="el" href="classitpp_1_1Vec.html#e83c1408740e41a7e29c383b71d4d544">cvec</a> &p)</td></tr> |
---|
95 | |
---|
96 | <tr><td class="memItemLeft" nowrap align="right" valign="top"><a class="anchor" name="gb62c0f2cb5cb5151c79a575891693316"></a><!-- doxytag: member="poly::poly" ref="gb62c0f2cb5cb5151c79a575891693316" args="(const vec &r)" --> |
---|
97 | <a class="el" href="classitpp_1_1Vec.html#02e1bb55f60f3c2eb7a020eb1c2cfcf4">vec</a> </td><td class="memItemRight" valign="bottom"><b>itpp::poly</b> (const <a class="el" href="classitpp_1_1Vec.html#02e1bb55f60f3c2eb7a020eb1c2cfcf4">vec</a> &r)</td></tr> |
---|
98 | |
---|
99 | <tr><td class="memItemLeft" nowrap align="right" valign="top"><a class="anchor" name="g21cfb2107f66b8b55bc398a020856377"></a><!-- doxytag: member="poly::poly" ref="g21cfb2107f66b8b55bc398a020856377" args="(const cvec &r)" --> |
---|
100 | <a class="el" href="classitpp_1_1Vec.html#e83c1408740e41a7e29c383b71d4d544">cvec</a> </td><td class="memItemRight" valign="bottom"><b>itpp::poly</b> (const <a class="el" href="classitpp_1_1Vec.html#e83c1408740e41a7e29c383b71d4d544">cvec</a> &r)</td></tr> |
---|
101 | |
---|
102 | <tr><td class="memItemLeft" nowrap align="right" valign="top"><a class="anchor" name="gf849a0862dc9bcd2e429732e577fe006"></a><!-- doxytag: member="poly::roots" ref="gf849a0862dc9bcd2e429732e577fe006" args="(const vec &p, cvec &r)" --> |
---|
103 | void </td><td class="memItemRight" valign="bottom"><a class="el" href="group__poly.html#gf849a0862dc9bcd2e429732e577fe006">itpp::roots</a> (const <a class="el" href="classitpp_1_1Vec.html#02e1bb55f60f3c2eb7a020eb1c2cfcf4">vec</a> &p, <a class="el" href="classitpp_1_1Vec.html#e83c1408740e41a7e29c383b71d4d544">cvec</a> &r)</td></tr> |
---|
104 | |
---|
105 | <tr><td class="mdescLeft"> </td><td class="mdescRight">Calculate the roots of the polynomial<p> |
---|
106 | Calculate the roots <code>r</code> of the polynomial <code>p</code>. <br></td></tr> |
---|
107 | <tr><td class="memItemLeft" nowrap align="right" valign="top"><a class="anchor" name="g7032851d6d528bc2cf86e6efd338185b"></a><!-- doxytag: member="poly::roots" ref="g7032851d6d528bc2cf86e6efd338185b" args="(const cvec &p, cvec &r)" --> |
---|
108 | void </td><td class="memItemRight" valign="bottom"><b>itpp::roots</b> (const <a class="el" href="classitpp_1_1Vec.html#e83c1408740e41a7e29c383b71d4d544">cvec</a> &p, <a class="el" href="classitpp_1_1Vec.html#e83c1408740e41a7e29c383b71d4d544">cvec</a> &r)</td></tr> |
---|
109 | |
---|
110 | <tr><td class="memItemLeft" nowrap align="right" valign="top"><a class="anchor" name="g9f52ae9ce005cea38fc6172ed4322213"></a><!-- doxytag: member="poly::roots" ref="g9f52ae9ce005cea38fc6172ed4322213" args="(const vec &p)" --> |
---|
111 | <a class="el" href="classitpp_1_1Vec.html#e83c1408740e41a7e29c383b71d4d544">cvec</a> </td><td class="memItemRight" valign="bottom"><b>itpp::roots</b> (const <a class="el" href="classitpp_1_1Vec.html#02e1bb55f60f3c2eb7a020eb1c2cfcf4">vec</a> &p)</td></tr> |
---|
112 | |
---|
113 | <tr><td class="memItemLeft" nowrap align="right" valign="top"><a class="anchor" name="g740d31b3bf4bb8604864e4b6ac85b87c"></a><!-- doxytag: member="poly::roots" ref="g740d31b3bf4bb8604864e4b6ac85b87c" args="(const cvec &p)" --> |
---|
114 | <a class="el" href="classitpp_1_1Vec.html#e83c1408740e41a7e29c383b71d4d544">cvec</a> </td><td class="memItemRight" valign="bottom"><b>itpp::roots</b> (const <a class="el" href="classitpp_1_1Vec.html#e83c1408740e41a7e29c383b71d4d544">cvec</a> &p)</td></tr> |
---|
115 | |
---|
116 | <tr><td class="memItemLeft" nowrap align="right" valign="top"><a class="anchor" name="g59f5bb49a251bf31f40538f5fca4b9b2"></a><!-- doxytag: member="poly::polyval" ref="g59f5bb49a251bf31f40538f5fca4b9b2" args="(const vec &p, const vec &x)" --> |
---|
117 | <a class="el" href="classitpp_1_1Vec.html#02e1bb55f60f3c2eb7a020eb1c2cfcf4">vec</a> </td><td class="memItemRight" valign="bottom"><a class="el" href="group__poly.html#g59f5bb49a251bf31f40538f5fca4b9b2">itpp::polyval</a> (const <a class="el" href="classitpp_1_1Vec.html#02e1bb55f60f3c2eb7a020eb1c2cfcf4">vec</a> &p, const <a class="el" href="classitpp_1_1Vec.html#02e1bb55f60f3c2eb7a020eb1c2cfcf4">vec</a> &x)</td></tr> |
---|
118 | |
---|
119 | <tr><td class="mdescLeft"> </td><td class="mdescRight">Evaluate polynomial<p> |
---|
120 | Evaluate the polynomial <code>p</code> (of length <img class="formulaInl" alt="$N+1$" src="form_353.png"> at the points <code>x</code> The output is given by <p class="formulaDsp"> |
---|
121 | <img class="formulaDsp" alt="\[ p_0 x^N + p_1 x^{N-1} + \ldots + p_{N-1} x + p_N \]" src="form_354.png"> |
---|
122 | <p> |
---|
123 | . <br></td></tr> |
---|
124 | <tr><td class="memItemLeft" nowrap align="right" valign="top"><a class="anchor" name="g34523a27f81ea97aa996bbcb898f4858"></a><!-- doxytag: member="poly::polyval" ref="g34523a27f81ea97aa996bbcb898f4858" args="(const vec &p, const cvec &x)" --> |
---|
125 | <a class="el" href="classitpp_1_1Vec.html#e83c1408740e41a7e29c383b71d4d544">cvec</a> </td><td class="memItemRight" valign="bottom"><b>itpp::polyval</b> (const <a class="el" href="classitpp_1_1Vec.html#02e1bb55f60f3c2eb7a020eb1c2cfcf4">vec</a> &p, const <a class="el" href="classitpp_1_1Vec.html#e83c1408740e41a7e29c383b71d4d544">cvec</a> &x)</td></tr> |
---|
126 | |
---|
127 | <tr><td class="memItemLeft" nowrap align="right" valign="top"><a class="anchor" name="g2b96f640c406de26b21d9c17a6500f80"></a><!-- doxytag: member="poly::polyval" ref="g2b96f640c406de26b21d9c17a6500f80" args="(const cvec &p, const vec &x)" --> |
---|
128 | <a class="el" href="classitpp_1_1Vec.html#e83c1408740e41a7e29c383b71d4d544">cvec</a> </td><td class="memItemRight" valign="bottom"><b>itpp::polyval</b> (const <a class="el" href="classitpp_1_1Vec.html#e83c1408740e41a7e29c383b71d4d544">cvec</a> &p, const <a class="el" href="classitpp_1_1Vec.html#02e1bb55f60f3c2eb7a020eb1c2cfcf4">vec</a> &x)</td></tr> |
---|
129 | |
---|
130 | <tr><td class="memItemLeft" nowrap align="right" valign="top"><a class="anchor" name="g9bdf5c1688d8df8155d3ff8d86302838"></a><!-- doxytag: member="poly::polyval" ref="g9bdf5c1688d8df8155d3ff8d86302838" args="(const cvec &p, const cvec &x)" --> |
---|
131 | <a class="el" href="classitpp_1_1Vec.html#e83c1408740e41a7e29c383b71d4d544">cvec</a> </td><td class="memItemRight" valign="bottom"><b>itpp::polyval</b> (const <a class="el" href="classitpp_1_1Vec.html#e83c1408740e41a7e29c383b71d4d544">cvec</a> &p, const <a class="el" href="classitpp_1_1Vec.html#e83c1408740e41a7e29c383b71d4d544">cvec</a> &x)</td></tr> |
---|
132 | |
---|
133 | </table> |
---|
134 | <hr><h2>Function Documentation</h2> |
---|
135 | <a class="anchor" name="gdc7b40bdfa59f4690108b0af6032a28e"></a><!-- doxytag: member="itpp::cheb" ref="gdc7b40bdfa59f4690108b0af6032a28e" args="(int n, const mat &x)" --> |
---|
136 | <div class="memitem"> |
---|
137 | <div class="memproto"> |
---|
138 | <table class="memname"> |
---|
139 | <tr> |
---|
140 | <td class="memname"><a class="el" href="classitpp_1_1Mat.html#6bba394f181c76fda12759568986c613">mat</a> itpp::cheb </td> |
---|
141 | <td>(</td> |
---|
142 | <td class="paramtype">int </td> |
---|
143 | <td class="paramname"> <em>n</em>, </td> |
---|
144 | </tr> |
---|
145 | <tr> |
---|
146 | <td class="paramkey"></td> |
---|
147 | <td></td> |
---|
148 | <td class="paramtype">const <a class="el" href="classitpp_1_1Mat.html#6bba394f181c76fda12759568986c613">mat</a> & </td> |
---|
149 | <td class="paramname"> <em>x</em></td><td> </td> |
---|
150 | </tr> |
---|
151 | <tr> |
---|
152 | <td></td> |
---|
153 | <td>)</td> |
---|
154 | <td></td><td></td><td></td> |
---|
155 | </tr> |
---|
156 | </table> |
---|
157 | </div> |
---|
158 | <div class="memdoc"> |
---|
159 | |
---|
160 | <p> |
---|
161 | Chebyshev polynomial of the first kind<p> |
---|
162 | Chebyshev polynomials of the first kind can be defined as follows: <p class="formulaDsp"> |
---|
163 | <img class="formulaDsp" alt="\[ T(x) = \left\{ \begin{array}{ll} \cos(n\arccos(x)),& |x| \leq 0 \\ \cosh(n\mathrm{arccosh}(x)),& x > 1 \\ (-1)^n \cosh(n\mathrm{arccosh}(-x)),& x < -1 \end{array} \right. \]" src="form_355.png"> |
---|
164 | <p> |
---|
165 | . |
---|
166 | <p> |
---|
167 | <dl compact><dt><b>Parameters:</b></dt><dd> |
---|
168 | <table border="0" cellspacing="2" cellpadding="0"> |
---|
169 | <tr><td valign="top"></td><td valign="top"><em>n</em> </td><td>order of the Chebyshev polynomial </td></tr> |
---|
170 | <tr><td valign="top"></td><td valign="top"><em>x</em> </td><td>matrix of values at which the Chebyshev polynomial is to be evaluated </td></tr> |
---|
171 | </table> |
---|
172 | </dl> |
---|
173 | <dl class="return" compact><dt><b>Returns:</b></dt><dd>values of the Chebyshev polynomial evaluated for each element in <code>x</code>.</dd></dl> |
---|
174 | <dl class="author" compact><dt><b>Author:</b></dt><dd>Kumar Appaiah, Adam Piatyszek (code review) </dd></dl> |
---|
175 | |
---|
176 | <p>References <a class="el" href="itassert_8h-source.html#l00107">it_assert_debug</a>.</p> |
---|
177 | |
---|
178 | <p>Referenced by <a class="el" href="poly_8cpp-source.html#l00209">itpp::cheb()</a>, and <a class="el" href="window_8cpp-source.html#l00119">itpp::chebwin()</a>.</p> |
---|
179 | |
---|
180 | </div> |
---|
181 | </div><p> |
---|
182 | <a class="anchor" name="g5a2bb27c029a001ea07977fc0b2ad084"></a><!-- doxytag: member="itpp::cheb" ref="g5a2bb27c029a001ea07977fc0b2ad084" args="(int n, const vec &x)" --> |
---|
183 | <div class="memitem"> |
---|
184 | <div class="memproto"> |
---|
185 | <table class="memname"> |
---|
186 | <tr> |
---|
187 | <td class="memname"><a class="el" href="classitpp_1_1Vec.html#02e1bb55f60f3c2eb7a020eb1c2cfcf4">vec</a> itpp::cheb </td> |
---|
188 | <td>(</td> |
---|
189 | <td class="paramtype">int </td> |
---|
190 | <td class="paramname"> <em>n</em>, </td> |
---|
191 | </tr> |
---|
192 | <tr> |
---|
193 | <td class="paramkey"></td> |
---|
194 | <td></td> |
---|
195 | <td class="paramtype">const <a class="el" href="classitpp_1_1Vec.html#02e1bb55f60f3c2eb7a020eb1c2cfcf4">vec</a> & </td> |
---|
196 | <td class="paramname"> <em>x</em></td><td> </td> |
---|
197 | </tr> |
---|
198 | <tr> |
---|
199 | <td></td> |
---|
200 | <td>)</td> |
---|
201 | <td></td><td></td><td></td> |
---|
202 | </tr> |
---|
203 | </table> |
---|
204 | </div> |
---|
205 | <div class="memdoc"> |
---|
206 | |
---|
207 | <p> |
---|
208 | Chebyshev polynomial of the first kind<p> |
---|
209 | Chebyshev polynomials of the first kind can be defined as follows: <p class="formulaDsp"> |
---|
210 | <img class="formulaDsp" alt="\[ T(x) = \left\{ \begin{array}{ll} \cos(n\arccos(x)),& |x| \leq 0 \\ \cosh(n\mathrm{arccosh}(x)),& x > 1 \\ (-1)^n \cosh(n\mathrm{arccosh}(-x)),& x < -1 \end{array} \right. \]" src="form_355.png"> |
---|
211 | <p> |
---|
212 | . |
---|
213 | <p> |
---|
214 | <dl compact><dt><b>Parameters:</b></dt><dd> |
---|
215 | <table border="0" cellspacing="2" cellpadding="0"> |
---|
216 | <tr><td valign="top"></td><td valign="top"><em>n</em> </td><td>order of the Chebyshev polynomial </td></tr> |
---|
217 | <tr><td valign="top"></td><td valign="top"><em>x</em> </td><td>vector of values at which the Chebyshev polynomial is to be evaluated </td></tr> |
---|
218 | </table> |
---|
219 | </dl> |
---|
220 | <dl class="return" compact><dt><b>Returns:</b></dt><dd>values of the Chebyshev polynomial evaluated for each element of <code>x</code> </dd></dl> |
---|
221 | <dl class="author" compact><dt><b>Author:</b></dt><dd>Kumar Appaiah, Adam Piatyszek (code review) </dd></dl> |
---|
222 | |
---|
223 | <p>References <a class="el" href="poly_8cpp-source.html#l00220">itpp::cheb()</a>, and <a class="el" href="itassert_8h-source.html#l00107">it_assert_debug</a>.</p> |
---|
224 | |
---|
225 | </div> |
---|
226 | </div><p> |
---|
227 | <a class="anchor" name="g8de86444d21f007b0eb2f43730a9d693"></a><!-- doxytag: member="itpp::cheb" ref="g8de86444d21f007b0eb2f43730a9d693" args="(int n, double x)" --> |
---|
228 | <div class="memitem"> |
---|
229 | <div class="memproto"> |
---|
230 | <table class="memname"> |
---|
231 | <tr> |
---|
232 | <td class="memname">double itpp::cheb </td> |
---|
233 | <td>(</td> |
---|
234 | <td class="paramtype">int </td> |
---|
235 | <td class="paramname"> <em>n</em>, </td> |
---|
236 | </tr> |
---|
237 | <tr> |
---|
238 | <td class="paramkey"></td> |
---|
239 | <td></td> |
---|
240 | <td class="paramtype">double </td> |
---|
241 | <td class="paramname"> <em>x</em></td><td> </td> |
---|
242 | </tr> |
---|
243 | <tr> |
---|
244 | <td></td> |
---|
245 | <td>)</td> |
---|
246 | <td></td><td></td><td></td> |
---|
247 | </tr> |
---|
248 | </table> |
---|
249 | </div> |
---|
250 | <div class="memdoc"> |
---|
251 | |
---|
252 | <p> |
---|
253 | Chebyshev polynomial of the first kind<p> |
---|
254 | Chebyshev polynomials of the first kind can be defined as follows: <p class="formulaDsp"> |
---|
255 | <img class="formulaDsp" alt="\[ T(x) = \left\{ \begin{array}{ll} \cos(n\arccos(x)),& |x| \leq 0 \\ \cosh(n\mathrm{arccosh}(x)),& x > 1 \\ (-1)^n \cosh(n\mathrm{arccosh}(-x)),& x < -1 \end{array} \right. \]" src="form_355.png"> |
---|
256 | <p> |
---|
257 | . |
---|
258 | <p> |
---|
259 | <dl compact><dt><b>Parameters:</b></dt><dd> |
---|
260 | <table border="0" cellspacing="2" cellpadding="0"> |
---|
261 | <tr><td valign="top"></td><td valign="top"><em>n</em> </td><td>order of the Chebyshev polynomial </td></tr> |
---|
262 | <tr><td valign="top"></td><td valign="top"><em>x</em> </td><td>value at which the Chebyshev polynomial is to be evaluated</td></tr> |
---|
263 | </table> |
---|
264 | </dl> |
---|
265 | <dl class="author" compact><dt><b>Author:</b></dt><dd>Kumar Appaiah, Adam Piatyszek (code review) </dd></dl> |
---|
266 | |
---|
267 | <p>References <a class="el" href="trig__hyp_8h-source.html#l00073">itpp::acos()</a>, <a class="el" href="trig__hyp_8h-source.html#l00108">itpp::acosh()</a>, <a class="el" href="trig__hyp_8h-source.html#l00061">itpp::cos()</a>, <a class="el" href="trig__hyp_8h-source.html#l00096">itpp::cosh()</a>, <a class="el" href="misc_8h-source.html#l00122">itpp::is_even()</a>, and <a class="el" href="itassert_8h-source.html#l00094">it_assert</a>.</p> |
---|
268 | |
---|
269 | </div> |
---|
270 | </div><p> |
---|
271 | </div> |
---|
272 | <hr size="1"><address style="text-align: right;"><small>Generated on Tue Jun 2 10:02:14 2009 for mixpp by |
---|
273 | <a href="http://www.doxygen.org/index.html"> |
---|
274 | <img src="doxygen.png" alt="doxygen" align="middle" border="0"></a> 1.5.8 </small></address> |
---|
275 | </body> |
---|
276 | </html> |
---|