root/doc/html/libBM_8h.html @ 49

Revision 37, 5.5 kB (checked in by smidl, 17 years ago)

Matrix in Cholesky decomposition, Square-root Kalman and many bug fixes

Line 
1<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
2<html><head><meta http-equiv="Content-Type" content="text/html;charset=UTF-8">
3<title>mixpp: work/mixpp/bdm/stat/libBM.h File Reference</title>
4<link href="doxygen.css" rel="stylesheet" type="text/css">
5<link href="tabs.css" rel="stylesheet" type="text/css">
6</head><body>
7<!-- Generated by Doxygen 1.5.3 -->
8<div class="tabs">
9  <ul>
10    <li><a href="index.html"><span>Main&nbsp;Page</span></a></li>
11    <li><a href="annotated.html"><span>Classes</span></a></li>
12    <li class="current"><a href="files.html"><span>Files</span></a></li>
13    <li><a href="pages.html"><span>Related&nbsp;Pages</span></a></li>
14  </ul>
15</div>
16<h1>work/mixpp/bdm/stat/libBM.h File Reference</h1>Bayesian Models (bm) that use Bayes rule to learn from observations. <a href="#_details">More...</a>
17<p>
18<code>#include &lt;itpp/itbase.h&gt;</code><br>
19
20<p>
21<div class="dynheader">
22Include dependency graph for libBM.h:</div>
23<div class="dynsection">
24<p><center><img src="libBM_8h__incl.png" border="0" usemap="#work/mixpp/bdm/stat/libBM.h_map" alt=""></center>
25<map name="work/mixpp/bdm/stat/libBM.h_map">
26<area shape="rect" title="Bayesian Models (bm) that use Bayes rule to learn from observations." alt="" coords="60,84,159,111"></map>
27</div>
28
29<p>
30<div class="dynheader">
31This graph shows which files directly or indirectly include this file:</div>
32<div class="dynsection">
33<p><center><img src="libBM_8h__dep__incl.png" border="0" usemap="#work/mixpp/bdm/stat/libBM.hdep_map" alt=""></center>
34<map name="work/mixpp/bdm/stat/libBM.hdep_map">
35<area shape="rect" href="libFN_8h&#45;source.html" title="Bayesian Models (bm) that use Bayes rule to learn from observations." alt="" coords="9,84,215,111"><area shape="rect" href="libEF_8h.html" title="Bayesian Models (bm) that use Bayes rule to learn from observations." alt="" coords="239,84,441,111"><area shape="rect" href="libDS_8h.html" title="Bayesian Models (bm) that use Bayes rule to learn from observations." alt="" coords="465,84,673,111"><area shape="rect" href="libKF_8h.html" title="work/mixpp/bdm/estim/libKF.h" alt="" coords="5,161,219,188"><area shape="rect" href="libPF_8h.html" title="Probability distributions for Exponential Family models." alt="" coords="243,161,456,188"></map>
36</div>
37
38<p>
39<a href="libBM_8h-source.html">Go to the source code of this file.</a><table border="0" cellpadding="0" cellspacing="0">
40<tr><td></td></tr>
41<tr><td colspan="2"><br><h2>Classes</h2></td></tr>
42<tr><td class="memItemLeft" nowrap align="right" valign="top">class &nbsp;</td><td class="memItemRight" valign="bottom"><a class="el" href="classRV.html">RV</a></td></tr>
43
44<tr><td class="mdescLeft">&nbsp;</td><td class="mdescRight">Class representing variables, most often random variables.  <a href="classRV.html#_details">More...</a><br></td></tr>
45<tr><td class="memItemLeft" nowrap align="right" valign="top">class &nbsp;</td><td class="memItemRight" valign="bottom"><a class="el" href="classfnc.html">fnc</a></td></tr>
46
47<tr><td class="mdescLeft">&nbsp;</td><td class="mdescRight">Class representing function $f(x)$ of variable $x$ represented by <code>rv</code><a href="classfnc.html#_details">More...</a><br></td></tr>
48<tr><td class="memItemLeft" nowrap align="right" valign="top">class &nbsp;</td><td class="memItemRight" valign="bottom"><a class="el" href="classepdf.html">epdf</a></td></tr>
49
50<tr><td class="mdescLeft">&nbsp;</td><td class="mdescRight">Probability density function with numerical statistics, e.g. posterior density.  <a href="classepdf.html#_details">More...</a><br></td></tr>
51<tr><td class="memItemLeft" nowrap align="right" valign="top">class &nbsp;</td><td class="memItemRight" valign="bottom"><a class="el" href="classmpdf.html">mpdf</a></td></tr>
52
53<tr><td class="mdescLeft">&nbsp;</td><td class="mdescRight">Conditional probability density, e.g. modeling some dependencies.  <a href="classmpdf.html#_details">More...</a><br></td></tr>
54<tr><td class="memItemLeft" nowrap align="right" valign="top">class &nbsp;</td><td class="memItemRight" valign="bottom"><a class="el" href="classDS.html">DS</a></td></tr>
55
56<tr><td class="mdescLeft">&nbsp;</td><td class="mdescRight">Abstract class for discrete-time sources of data.  <a href="classDS.html#_details">More...</a><br></td></tr>
57<tr><td class="memItemLeft" nowrap align="right" valign="top">class &nbsp;</td><td class="memItemRight" valign="bottom"><a class="el" href="classBM.html">BM</a></td></tr>
58
59<tr><td class="mdescLeft">&nbsp;</td><td class="mdescRight">Bayesian Model of the world, i.e. all uncertainty is modeled by probabilities.  <a href="classBM.html#_details">More...</a><br></td></tr>
60<tr><td class="memItemLeft" nowrap align="right" valign="top">class &nbsp;</td><td class="memItemRight" valign="bottom"><a class="el" href="classBMcond.html">BMcond</a></td></tr>
61
62<tr><td class="mdescLeft">&nbsp;</td><td class="mdescRight">Conditional Bayesian Filter.  <a href="classBMcond.html#_details">More...</a><br></td></tr>
63</table>
64<hr><a name="_details"></a><h2>Detailed Description</h2>
65Bayesian Models (bm) that use Bayes rule to learn from observations.
66<p>
67<dl class="author" compact><dt><b>Author:</b></dt><dd>Vaclav Smidl.</dd></dl>
68----------------------------------- BDM++ - C++ library for Bayesian Decision Making under Uncertainty<p>
69Using IT++ for numerical operations ----------------------------------- <hr size="1"><address style="text-align: right;"><small>Generated on Wed Mar 12 16:15:45 2008 for mixpp by&nbsp;
70<a href="http://www.doxygen.org/index.html">
71<img src="doxygen.png" alt="doxygen" align="middle" border="0"></a> 1.5.3 </small></address>
72</body>
73</html>
Note: See TracBrowser for help on using the browser.