[8] | 1 | <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"> |
---|
| 2 | <html><head><meta http-equiv="Content-Type" content="text/html;charset=UTF-8"> |
---|
[145] | 3 | <title>mixpp: work/git/mixpp/bdm/stat/libEF.h Source File</title> |
---|
[8] | 4 | <link href="doxygen.css" rel="stylesheet" type="text/css"> |
---|
| 5 | <link href="tabs.css" rel="stylesheet" type="text/css"> |
---|
| 6 | </head><body> |
---|
[139] | 7 | <!-- Generated by Doxygen 1.5.6 --> |
---|
[91] | 8 | <div class="navigation" id="top"> |
---|
| 9 | <div class="tabs"> |
---|
| 10 | <ul> |
---|
| 11 | <li><a href="index.html"><span>Main Page</span></a></li> |
---|
| 12 | <li><a href="pages.html"><span>Related Pages</span></a></li> |
---|
[219] | 13 | <li><a href="modules.html"><span>Modules</span></a></li> |
---|
[91] | 14 | <li><a href="annotated.html"><span>Classes</span></a></li> |
---|
| 15 | <li class="current"><a href="files.html"><span>Files</span></a></li> |
---|
| 16 | </ul> |
---|
| 17 | </div> |
---|
[145] | 18 | <h1>work/git/mixpp/bdm/stat/libEF.h</h1><a href="libEF_8h.html">Go to the documentation of this file.</a><div class="fragment"><pre class="fragment"><a name="l00001"></a>00001 |
---|
[8] | 19 | <a name="l00013"></a>00013 <span class="preprocessor">#ifndef EF_H</span> |
---|
| 20 | <a name="l00014"></a>00014 <span class="preprocessor"></span><span class="preprocessor">#define EF_H</span> |
---|
| 21 | <a name="l00015"></a>00015 <span class="preprocessor"></span> |
---|
| 22 | <a name="l00016"></a>00016 <span class="preprocessor">#include <itpp/itbase.h></span> |
---|
[19] | 23 | <a name="l00017"></a>00017 <span class="preprocessor">#include "../math/libDC.h"</span> |
---|
| 24 | <a name="l00018"></a>00018 <span class="preprocessor">#include "<a class="code" href="libBM_8h.html" title="Bayesian Models (bm) that use Bayes rule to learn from observations.">libBM.h</a>"</span> |
---|
[32] | 25 | <a name="l00019"></a>00019 <span class="preprocessor">#include "../itpp_ext.h"</span> |
---|
| 26 | <a name="l00020"></a>00020 <span class="comment">//#include <std></span> |
---|
| 27 | <a name="l00021"></a>00021 |
---|
[255] | 28 | <a name="l00022"></a>00022 <span class="keyword">namespace </span>bdm{ |
---|
[32] | 29 | <a name="l00023"></a>00023 |
---|
| 30 | <a name="l00024"></a>00024 |
---|
| 31 | <a name="l00026"></a>00026 <span class="keyword">extern</span> Uniform_RNG UniRNG; |
---|
[33] | 32 | <a name="l00028"></a>00028 <span class="keyword">extern</span> Normal_RNG NorRNG; |
---|
| 33 | <a name="l00030"></a>00030 <span class="keyword">extern</span> <a class="code" href="classitpp_1_1Gamma__RNG.html" title="Gamma distribution.">Gamma_RNG</a> GamRNG; |
---|
| 34 | <a name="l00031"></a>00031 |
---|
[255] | 35 | <a name="l00038"></a><a class="code" href="classbdm_1_1eEF.html">00038</a> <span class="keyword">class </span><a class="code" href="classbdm_1_1eEF.html" title="General conjugate exponential family posterior density.">eEF</a> : <span class="keyword">public</span> <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a> { |
---|
[99] | 36 | <a name="l00039"></a>00039 <span class="keyword">public</span>: |
---|
| 37 | <a name="l00040"></a>00040 <span class="comment">// eEF() :epdf() {};</span> |
---|
[255] | 38 | <a name="l00042"></a><a class="code" href="classbdm_1_1eEF.html#1e92e3f94e594edb20adfa81ae9e2959">00042</a> <span class="comment"></span> <a class="code" href="classbdm_1_1eEF.html#1e92e3f94e594edb20adfa81ae9e2959" title="default constructor">eEF</a> ( <span class="keyword">const</span> <a class="code" href="classbdm_1_1RV.html" title="Class representing variables, most often random variables.">RV</a> &<a class="code" href="classbdm_1_1epdf.html#62c5b8ff71d9ebe6cd58d3c342eb1dc8" title="Identified of the random variable.">rv</a> ) :<a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a> ( rv ) {}; |
---|
| 39 | <a name="l00044"></a>00044 <span class="keyword">virtual</span> <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1eEF.html#cd678fc9b02007a4b8d6692e746f1bf8" title="logarithm of the normalizing constant, ">lognc</a>() <span class="keyword">const</span> =0; |
---|
| 40 | <a name="l00046"></a><a class="code" href="classbdm_1_1eEF.html#deef7d6273ba4d5a5cf0bbd91ec7277a">00046</a> <span class="keyword">virtual</span> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1eEF.html#deef7d6273ba4d5a5cf0bbd91ec7277a" title="TODO decide if it is really needed.">dupdate</a> ( mat &v ) {it_error ( <span class="stringliteral">"Not implemented"</span> );}; |
---|
| 41 | <a name="l00048"></a><a class="code" href="classbdm_1_1eEF.html#a4135778ecd9ab774762936c82a097c6">00048</a> <span class="keyword">virtual</span> <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1eEF.html#a4135778ecd9ab774762936c82a097c6" title="Evaluate normalized log-probability.">evallog_nn</a> ( <span class="keyword">const</span> vec &val )<span class="keyword"> const</span>{it_error ( <span class="stringliteral">"Not implemented"</span> );<span class="keywordflow">return</span> 0.0;}; |
---|
| 42 | <a name="l00050"></a><a class="code" href="classbdm_1_1eEF.html#a36d06ecdd6f4c79dc122510eaccc692">00050</a> <span class="keyword">virtual</span> <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1eEF.html#a36d06ecdd6f4c79dc122510eaccc692" title="Evaluate normalized log-probability.">evallog</a> ( <span class="keyword">const</span> vec &val )<span class="keyword"> const </span>{<span class="keywordtype">double</span> tmp;tmp= <a class="code" href="classbdm_1_1eEF.html#a4135778ecd9ab774762936c82a097c6" title="Evaluate normalized log-probability.">evallog_nn</a> ( val )-<a class="code" href="classbdm_1_1eEF.html#cd678fc9b02007a4b8d6692e746f1bf8" title="logarithm of the normalizing constant, ">lognc</a>();it_assert_debug(std::isfinite(tmp),<span class="stringliteral">"Infinite value"</span>); <span class="keywordflow">return</span> tmp;} |
---|
| 43 | <a name="l00052"></a><a class="code" href="classbdm_1_1eEF.html#79a7c8ea8c02e45d410bd1d7ffd72b41">00052</a> <span class="keyword">virtual</span> vec <a class="code" href="classbdm_1_1eEF.html#a36d06ecdd6f4c79dc122510eaccc692" title="Evaluate normalized log-probability.">evallog</a> ( <span class="keyword">const</span> mat &Val )<span class="keyword"> const </span>{ |
---|
[171] | 44 | <a name="l00053"></a>00053 vec x ( Val.cols() ); |
---|
[255] | 45 | <a name="l00054"></a>00054 <span class="keywordflow">for</span> ( <span class="keywordtype">int</span> i=0;i<Val.cols();i++ ) {x ( i ) =<a class="code" href="classbdm_1_1eEF.html#a4135778ecd9ab774762936c82a097c6" title="Evaluate normalized log-probability.">evallog_nn</a> ( Val.get_col ( i ) ) ;} |
---|
| 46 | <a name="l00055"></a>00055 <span class="keywordflow">return</span> x-<a class="code" href="classbdm_1_1eEF.html#cd678fc9b02007a4b8d6692e746f1bf8" title="logarithm of the normalizing constant, ">lognc</a>(); |
---|
[171] | 47 | <a name="l00056"></a>00056 } |
---|
[255] | 48 | <a name="l00058"></a><a class="code" href="classbdm_1_1eEF.html#cf38af29e8e3d650c640509a52396053">00058</a> <span class="keyword">virtual</span> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1eEF.html#cf38af29e8e3d650c640509a52396053" title="Power of the density, used e.g. to flatten the density.">pow</a> ( <span class="keywordtype">double</span> p ) {it_error ( <span class="stringliteral">"Not implemented"</span> );}; |
---|
[171] | 49 | <a name="l00059"></a>00059 }; |
---|
| 50 | <a name="l00060"></a>00060 |
---|
[255] | 51 | <a name="l00067"></a><a class="code" href="classbdm_1_1mEF.html">00067</a> <span class="keyword">class </span><a class="code" href="classbdm_1_1mEF.html" title="Exponential family model.">mEF</a> : <span class="keyword">public</span> <a class="code" href="classbdm_1_1mpdf.html" title="Conditional probability density, e.g. modeling some dependencies.">mpdf</a> { |
---|
[171] | 52 | <a name="l00068"></a>00068 |
---|
| 53 | <a name="l00069"></a>00069 <span class="keyword">public</span>: |
---|
[255] | 54 | <a name="l00071"></a><a class="code" href="classbdm_1_1mEF.html#f6647b16e9c99b8a7d7df93374ef90f3">00071</a> <a class="code" href="classbdm_1_1mEF.html#f6647b16e9c99b8a7d7df93374ef90f3" title="Default constructor.">mEF</a> ( <span class="keyword">const</span> <a class="code" href="classbdm_1_1RV.html" title="Class representing variables, most often random variables.">RV</a> &rv0, <span class="keyword">const</span> <a class="code" href="classbdm_1_1RV.html" title="Class representing variables, most often random variables.">RV</a> &rvc0 ) :<a class="code" href="classbdm_1_1mpdf.html" title="Conditional probability density, e.g. modeling some dependencies.">mpdf</a> ( rv0,rvc0 ) {}; |
---|
[171] | 55 | <a name="l00072"></a>00072 }; |
---|
| 56 | <a name="l00073"></a>00073 |
---|
[255] | 57 | <a name="l00075"></a><a class="code" href="classbdm_1_1BMEF.html">00075</a> <span class="keyword">class </span><a class="code" href="classbdm_1_1BMEF.html" title="Estimator for Exponential family.">BMEF</a> : <span class="keyword">public</span> <a class="code" href="classbdm_1_1BM.html" title="Bayesian Model of the world, i.e. all uncertainty is modeled by probabilities.">BM</a> { |
---|
[171] | 58 | <a name="l00076"></a>00076 <span class="keyword">protected</span>: |
---|
[255] | 59 | <a name="l00078"></a><a class="code" href="classbdm_1_1BMEF.html#1331865e10fb1ccef65bb4c47fa3be64">00078</a> <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1BMEF.html#1331865e10fb1ccef65bb4c47fa3be64" title="forgetting factor">frg</a>; |
---|
| 60 | <a name="l00080"></a><a class="code" href="classbdm_1_1BMEF.html#06e7b3ac03e10017d4288c76888e2865">00080</a> <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1BMEF.html#06e7b3ac03e10017d4288c76888e2865" title="cached value of lognc() in the previous step (used in evaluation of ll )">last_lognc</a>; |
---|
[171] | 61 | <a name="l00081"></a>00081 <span class="keyword">public</span>: |
---|
[255] | 62 | <a name="l00083"></a><a class="code" href="classbdm_1_1BMEF.html#73bccd1d8142d4d330e35637ca30decc">00083</a> <a class="code" href="classbdm_1_1BMEF.html#73bccd1d8142d4d330e35637ca30decc" title="Default constructor.">BMEF</a> ( <span class="keyword">const</span> <a class="code" href="classbdm_1_1RV.html" title="Class representing variables, most often random variables.">RV</a> &<a class="code" href="classbdm_1_1BM.html#18d6db4af8ee42077741d9e3618153ca" title="Random variable of the posterior.">rv</a>, <span class="keywordtype">double</span> frg0=1.0 ) :<a class="code" href="classbdm_1_1BM.html" title="Bayesian Model of the world, i.e. all uncertainty is modeled by probabilities.">BM</a> ( rv ), <a class="code" href="classbdm_1_1BMEF.html#1331865e10fb1ccef65bb4c47fa3be64" title="forgetting factor">frg</a> ( frg0 ) {} |
---|
| 63 | <a name="l00085"></a><a class="code" href="classbdm_1_1BMEF.html#9662379513101405e159e76717104e62">00085</a> <a class="code" href="classbdm_1_1BMEF.html#73bccd1d8142d4d330e35637ca30decc" title="Default constructor.">BMEF</a> ( <span class="keyword">const</span> <a class="code" href="classbdm_1_1BMEF.html" title="Estimator for Exponential family.">BMEF</a> &B ) :<a class="code" href="classbdm_1_1BM.html" title="Bayesian Model of the world, i.e. all uncertainty is modeled by probabilities.">BM</a> ( B ), <a class="code" href="classbdm_1_1BMEF.html#1331865e10fb1ccef65bb4c47fa3be64" title="forgetting factor">frg</a> ( B.<a class="code" href="classbdm_1_1BMEF.html#1331865e10fb1ccef65bb4c47fa3be64" title="forgetting factor">frg</a> ), <a class="code" href="classbdm_1_1BMEF.html#06e7b3ac03e10017d4288c76888e2865" title="cached value of lognc() in the previous step (used in evaluation of ll )">last_lognc</a> ( B.<a class="code" href="classbdm_1_1BMEF.html#06e7b3ac03e10017d4288c76888e2865" title="cached value of lognc() in the previous step (used in evaluation of ll )">last_lognc</a> ) {} |
---|
| 64 | <a name="l00087"></a><a class="code" href="classbdm_1_1BMEF.html#d2b528b7a41ca67163152142f5404051">00087</a> <span class="keyword">virtual</span> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1BMEF.html#d2b528b7a41ca67163152142f5404051" title="get statistics from another model">set_statistics</a> ( <span class="keyword">const</span> <a class="code" href="classbdm_1_1BMEF.html" title="Estimator for Exponential family.">BMEF</a>* BM0 ) {it_error ( <span class="stringliteral">"Not implemented"</span> );}; |
---|
| 65 | <a name="l00089"></a><a class="code" href="classbdm_1_1BMEF.html#bf58deb99af2a6cc674f13ff90300de6">00089</a> <span class="keyword">virtual</span> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1BMEF.html#bf58deb99af2a6cc674f13ff90300de6" title="Weighted update of sufficient statistics (Bayes rule).">bayes</a> ( <span class="keyword">const</span> vec &data, <span class="keyword">const</span> <span class="keywordtype">double</span> w ) {}; |
---|
[171] | 66 | <a name="l00090"></a>00090 <span class="comment">//original Bayes</span> |
---|
[255] | 67 | <a name="l00091"></a>00091 <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1BMEF.html#bf58deb99af2a6cc674f13ff90300de6" title="Weighted update of sufficient statistics (Bayes rule).">bayes</a> ( <span class="keyword">const</span> vec &dt ); |
---|
| 68 | <a name="l00093"></a><a class="code" href="classbdm_1_1BMEF.html#b2916a2e71a958665054473124d5e749">00093</a> <span class="keyword">virtual</span> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1BMEF.html#b2916a2e71a958665054473124d5e749" title="Flatten the posterior according to the given BMEF (of the same type!).">flatten</a> ( <span class="keyword">const</span> <a class="code" href="classbdm_1_1BMEF.html" title="Estimator for Exponential family.">BMEF</a> * B ) {it_error ( <span class="stringliteral">"Not implemented"</span> );} |
---|
[210] | 69 | <a name="l00095"></a>00095 <span class="comment">// virtual void flatten ( double nu0 ) {it_error ( "Not implemented" );}</span> |
---|
| 70 | <a name="l00096"></a>00096 |
---|
[255] | 71 | <a name="l00097"></a><a class="code" href="classbdm_1_1BMEF.html#5912dbcf28ae711e30b08c2fa766a3e6">00097</a> <a class="code" href="classbdm_1_1BMEF.html" title="Estimator for Exponential family.">BMEF</a>* <a class="code" href="classbdm_1_1BMEF.html#5912dbcf28ae711e30b08c2fa766a3e6" title="Flatten the posterior as if to keep nu0 data.">_copy_</a> ( <span class="keywordtype">bool</span> changerv=<span class="keyword">false</span> ) {it_error ( <span class="stringliteral">"function _copy_ not implemented for this BM"</span> ); <span class="keywordflow">return</span> NULL;}; |
---|
[210] | 72 | <a name="l00098"></a>00098 }; |
---|
| 73 | <a name="l00099"></a>00099 |
---|
| 74 | <a name="l00100"></a>00100 <span class="keyword">template</span><<span class="keyword">class</span> sq_T> |
---|
[255] | 75 | <a name="l00101"></a>00101 <span class="keyword">class </span>mlnorm; |
---|
[210] | 76 | <a name="l00102"></a>00102 |
---|
| 77 | <a name="l00108"></a>00108 <span class="keyword">template</span><<span class="keyword">class</span> sq_T> |
---|
[255] | 78 | <a name="l00109"></a><a class="code" href="classbdm_1_1enorm.html">00109</a> <span class="keyword">class </span><a class="code" href="classbdm_1_1enorm.html" title="Gaussian density with positive definite (decomposed) covariance matrix.">enorm</a> : <span class="keyword">public</span> <a class="code" href="classbdm_1_1eEF.html" title="General conjugate exponential family posterior density.">eEF</a> { |
---|
[210] | 79 | <a name="l00110"></a>00110 <span class="keyword">protected</span>: |
---|
[255] | 80 | <a name="l00112"></a><a class="code" href="classbdm_1_1enorm.html#c702a194720853570d08b65482f842c7">00112</a> vec <a class="code" href="classbdm_1_1enorm.html#c702a194720853570d08b65482f842c7" title="mean value">mu</a>; |
---|
| 81 | <a name="l00114"></a><a class="code" href="classbdm_1_1enorm.html#2d92dde696b2a7a5b10ddef5d22ba2c2">00114</a> sq_T <a class="code" href="classbdm_1_1enorm.html#2d92dde696b2a7a5b10ddef5d22ba2c2" title="Covariance matrix in decomposed form.">R</a>; |
---|
| 82 | <a name="l00116"></a><a class="code" href="classbdm_1_1enorm.html#91a2d4a91364b0144e1523cad4d1135b">00116</a> <span class="keywordtype">int</span> <a class="code" href="classbdm_1_1enorm.html#91a2d4a91364b0144e1523cad4d1135b" title="dimension (redundant from rv.count() for easier coding )">dim</a>; |
---|
[210] | 83 | <a name="l00117"></a>00117 <span class="keyword">public</span>: |
---|
[255] | 84 | <a name="l00119"></a>00119 <a class="code" href="classbdm_1_1enorm.html#7d433390d6bbad337986945b63d7fbe9" title="Default constructor.">enorm</a> ( <span class="keyword">const</span> <a class="code" href="classbdm_1_1RV.html" title="Class representing variables, most often random variables.">RV</a> &<a class="code" href="classbdm_1_1epdf.html#62c5b8ff71d9ebe6cd58d3c342eb1dc8" title="Identified of the random variable.">rv</a> ); |
---|
| 85 | <a name="l00121"></a>00121 <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1enorm.html#b8322f2c11560871dd922c660f4771bb" title="Set mean value mu and covariance R.">set_parameters</a> ( <span class="keyword">const</span> vec &<a class="code" href="classbdm_1_1enorm.html#c702a194720853570d08b65482f842c7" title="mean value">mu</a>,<span class="keyword">const</span> sq_T &<a class="code" href="classbdm_1_1enorm.html#2d92dde696b2a7a5b10ddef5d22ba2c2" title="Covariance matrix in decomposed form.">R</a> ); |
---|
[210] | 86 | <a name="l00123"></a>00123 <span class="comment">//void tupdate ( double phi, mat &vbar, double nubar );</span> |
---|
[255] | 87 | <a name="l00125"></a>00125 <span class="comment"></span> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1enorm.html#d2e0d3a1e30ab3ab04df2d0c43ae74a2" title="dupdate in exponential form (not really handy)">dupdate</a> ( mat &v,<span class="keywordtype">double</span> nu=1.0 ); |
---|
[210] | 88 | <a name="l00126"></a>00126 |
---|
[255] | 89 | <a name="l00127"></a>00127 vec <a class="code" href="classbdm_1_1enorm.html#e1a48f52351ec3a349bd443b713b1766" title="Returns a sample, from density .">sample</a>() <span class="keyword">const</span>; |
---|
| 90 | <a name="l00129"></a>00129 mat <a class="code" href="classbdm_1_1enorm.html#e1a48f52351ec3a349bd443b713b1766" title="Returns a sample, from density .">sample</a> ( <span class="keywordtype">int</span> N ) <span class="keyword">const</span>; |
---|
[219] | 91 | <a name="l00130"></a>00130 <span class="comment">// double eval ( const vec &val ) const ;</span> |
---|
[255] | 92 | <a name="l00131"></a>00131 <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1enorm.html#e13aeed5b543b2179bacdc4fa2ae47a3" title="Evaluate normalized log-probability.">evallog_nn</a> ( <span class="keyword">const</span> vec &val ) <span class="keyword">const</span>; |
---|
| 93 | <a name="l00132"></a>00132 <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1enorm.html#25785343aff102cc5df1cab08ba16d32" title="logarithm of the normalizing constant, ">lognc</a> () <span class="keyword">const</span>; |
---|
| 94 | <a name="l00133"></a><a class="code" href="classbdm_1_1enorm.html#b2fa2915c35366392fe9bb022ca1a600">00133</a> vec <a class="code" href="classbdm_1_1enorm.html#b2fa2915c35366392fe9bb022ca1a600" title="return expected value">mean</a>()<span class="keyword"> const </span>{<span class="keywordflow">return</span> <a class="code" href="classbdm_1_1enorm.html#c702a194720853570d08b65482f842c7" title="mean value">mu</a>;} |
---|
| 95 | <a name="l00134"></a><a class="code" href="classbdm_1_1enorm.html#729c75ef0fa8abae03d58ad1f81e6773">00134</a> vec <a class="code" href="classbdm_1_1enorm.html#729c75ef0fa8abae03d58ad1f81e6773" title="return expected variance (not covariance!)">variance</a>()<span class="keyword"> const </span>{<span class="keywordflow">return</span> diag(<a class="code" href="classbdm_1_1enorm.html#2d92dde696b2a7a5b10ddef5d22ba2c2" title="Covariance matrix in decomposed form.">R</a>.to_mat());} |
---|
[234] | 96 | <a name="l00135"></a>00135 <span class="comment">// mlnorm<sq_T>* condition ( const RV &rvn ) const ;</span> |
---|
[255] | 97 | <a name="l00136"></a>00136 <a class="code" href="classbdm_1_1mpdf.html" title="Conditional probability density, e.g. modeling some dependencies.">mpdf</a>* <a class="code" href="classbdm_1_1enorm.html#baea4d49c657342b58297d68cda16d26" title="Return conditional density on the given RV, the remaining rvs will be in conditioning...">condition</a> ( <span class="keyword">const</span> <a class="code" href="classbdm_1_1RV.html" title="Class representing variables, most often random variables.">RV</a> &rvn ) <span class="keyword">const</span> ; |
---|
[234] | 98 | <a name="l00137"></a>00137 <span class="comment">// enorm<sq_T>* marginal ( const RV &rv ) const;</span> |
---|
[255] | 99 | <a name="l00138"></a>00138 <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>* <a class="code" href="classbdm_1_1enorm.html#cd02d76e9d4f96bdd3fa6b604e273039" title="Return marginal density on the given RV, the remainig rvs are intergrated out.">marginal</a> ( <span class="keyword">const</span> <a class="code" href="classbdm_1_1RV.html" title="Class representing variables, most often random variables.">RV</a> &<a class="code" href="classbdm_1_1epdf.html#62c5b8ff71d9ebe6cd58d3c342eb1dc8" title="Identified of the random variable.">rv</a> ) <span class="keyword">const</span>; |
---|
[234] | 100 | <a name="l00139"></a>00139 <span class="comment">//Access methods</span> |
---|
[255] | 101 | <a name="l00141"></a><a class="code" href="classbdm_1_1enorm.html#766127847e9482aea9226ea157295ea2">00141</a> <span class="comment"></span> vec& <a class="code" href="classbdm_1_1enorm.html#766127847e9482aea9226ea157295ea2" title="returns a pointer to the internal mean value. Use with Care!">_mu</a>() {<span class="keywordflow">return</span> <a class="code" href="classbdm_1_1enorm.html#c702a194720853570d08b65482f842c7" title="mean value">mu</a>;} |
---|
[234] | 102 | <a name="l00142"></a>00142 |
---|
[255] | 103 | <a name="l00144"></a><a class="code" href="classbdm_1_1enorm.html#8915d68ae76ad185c8c314f960a63f0c">00144</a> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1enorm.html#8915d68ae76ad185c8c314f960a63f0c" title="access function">set_mu</a> ( <span class="keyword">const</span> vec mu0 ) { <a class="code" href="classbdm_1_1enorm.html#c702a194720853570d08b65482f842c7" title="mean value">mu</a>=mu0;} |
---|
[234] | 104 | <a name="l00145"></a>00145 |
---|
[255] | 105 | <a name="l00147"></a><a class="code" href="classbdm_1_1enorm.html#81d81e35e57c9f194bde248e3affcf1f">00147</a> sq_T& <a class="code" href="classbdm_1_1enorm.html#81d81e35e57c9f194bde248e3affcf1f" title="returns pointers to the internal variance and its inverse. Use with Care!">_R</a>() {<span class="keywordflow">return</span> <a class="code" href="classbdm_1_1enorm.html#2d92dde696b2a7a5b10ddef5d22ba2c2" title="Covariance matrix in decomposed form.">R</a>;} |
---|
| 106 | <a name="l00148"></a>00148 <span class="keyword">const</span> sq_T& <a class="code" href="classbdm_1_1enorm.html#81d81e35e57c9f194bde248e3affcf1f" title="returns pointers to the internal variance and its inverse. Use with Care!">_R</a>()<span class="keyword"> const </span>{<span class="keywordflow">return</span> <a class="code" href="classbdm_1_1enorm.html#2d92dde696b2a7a5b10ddef5d22ba2c2" title="Covariance matrix in decomposed form.">R</a>;} |
---|
[234] | 107 | <a name="l00149"></a>00149 |
---|
| 108 | <a name="l00151"></a>00151 <span class="comment">// mat getR () {return R.to_mat();}</span> |
---|
| 109 | <a name="l00152"></a>00152 }; |
---|
| 110 | <a name="l00153"></a>00153 |
---|
[255] | 111 | <a name="l00160"></a><a class="code" href="classbdm_1_1egiw.html">00160</a> <span class="keyword">class </span><a class="code" href="classbdm_1_1egiw.html" title="Gauss-inverse-Wishart density stored in LD form.">egiw</a> : <span class="keyword">public</span> <a class="code" href="classbdm_1_1eEF.html" title="General conjugate exponential family posterior density.">eEF</a> { |
---|
[234] | 112 | <a name="l00161"></a>00161 <span class="keyword">protected</span>: |
---|
[255] | 113 | <a name="l00163"></a><a class="code" href="classbdm_1_1egiw.html#ae56852845c6af176fd9017dbebbbd52">00163</a> <a class="code" href="classldmat.html" title="Matrix stored in LD form, (commonly known as UD).">ldmat</a> <a class="code" href="classbdm_1_1egiw.html#ae56852845c6af176fd9017dbebbbd52" title="Extended information matrix of sufficient statistics.">V</a>; |
---|
| 114 | <a name="l00165"></a><a class="code" href="classbdm_1_1egiw.html#447eacf19d4f4083872686f044814dc4">00165</a> <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1egiw.html#447eacf19d4f4083872686f044814dc4" title="Number of data records (degrees of freedom) of sufficient statistics.">nu</a>; |
---|
| 115 | <a name="l00167"></a><a class="code" href="classbdm_1_1egiw.html#40b68a9c3b2120fba94cc4d2fcd291e1">00167</a> <span class="keywordtype">int</span> <a class="code" href="classbdm_1_1egiw.html#40b68a9c3b2120fba94cc4d2fcd291e1" title="Dimension of the output.">xdim</a>; |
---|
| 116 | <a name="l00169"></a><a class="code" href="classbdm_1_1egiw.html#322414c32d9a21a006a5aab0311f64fd">00169</a> <span class="keywordtype">int</span> <a class="code" href="classbdm_1_1egiw.html#322414c32d9a21a006a5aab0311f64fd" title="Dimension of the regressor.">nPsi</a>; |
---|
[234] | 117 | <a name="l00170"></a>00170 <span class="keyword">public</span>: |
---|
[255] | 118 | <a name="l00172"></a><a class="code" href="classbdm_1_1egiw.html#a60e072c191acf65ab480deeb11c5b88">00172</a> <a class="code" href="classbdm_1_1egiw.html#a60e072c191acf65ab480deeb11c5b88" title="Default constructor, if nu0&lt;0 a minimal nu0 will be computed.">egiw</a> ( <a class="code" href="classbdm_1_1RV.html" title="Class representing variables, most often random variables.">RV</a> <a class="code" href="classbdm_1_1epdf.html#62c5b8ff71d9ebe6cd58d3c342eb1dc8" title="Identified of the random variable.">rv</a>, mat V0, <span class="keywordtype">double</span> nu0=-1.0 ) : <a class="code" href="classbdm_1_1eEF.html" title="General conjugate exponential family posterior density.">eEF</a> ( rv ), <a class="code" href="classbdm_1_1egiw.html#ae56852845c6af176fd9017dbebbbd52" title="Extended information matrix of sufficient statistics.">V</a> ( V0 ), <a class="code" href="classbdm_1_1egiw.html#447eacf19d4f4083872686f044814dc4" title="Number of data records (degrees of freedom) of sufficient statistics.">nu</a> ( nu0 ) { |
---|
| 119 | <a name="l00173"></a>00173 <a class="code" href="classbdm_1_1egiw.html#40b68a9c3b2120fba94cc4d2fcd291e1" title="Dimension of the output.">xdim</a> = rv.<a class="code" href="classbdm_1_1RV.html#2174751a00ce19f941edd2c1a861be67" title="Return number of scalars in the RV.">count</a>() /<a class="code" href="classbdm_1_1egiw.html#ae56852845c6af176fd9017dbebbbd52" title="Extended information matrix of sufficient statistics.">V</a>.<a class="code" href="group__math.html#g96dfb21865db4f5bd36fa70f9b0b1163" title="access function">rows</a>(); |
---|
| 120 | <a name="l00174"></a>00174 it_assert_debug ( rv.<a class="code" href="classbdm_1_1RV.html#2174751a00ce19f941edd2c1a861be67" title="Return number of scalars in the RV.">count</a>() ==<a class="code" href="classbdm_1_1egiw.html#40b68a9c3b2120fba94cc4d2fcd291e1" title="Dimension of the output.">xdim</a>*<a class="code" href="classbdm_1_1egiw.html#ae56852845c6af176fd9017dbebbbd52" title="Extended information matrix of sufficient statistics.">V</a>.<a class="code" href="group__math.html#g96dfb21865db4f5bd36fa70f9b0b1163" title="access function">rows</a>(),<span class="stringliteral">"Incompatible V0."</span> ); |
---|
| 121 | <a name="l00175"></a>00175 <a class="code" href="classbdm_1_1egiw.html#322414c32d9a21a006a5aab0311f64fd" title="Dimension of the regressor.">nPsi</a> = <a class="code" href="classbdm_1_1egiw.html#ae56852845c6af176fd9017dbebbbd52" title="Extended information matrix of sufficient statistics.">V</a>.<a class="code" href="group__math.html#g96dfb21865db4f5bd36fa70f9b0b1163" title="access function">rows</a>()-<a class="code" href="classbdm_1_1egiw.html#40b68a9c3b2120fba94cc4d2fcd291e1" title="Dimension of the output.">xdim</a>; |
---|
[234] | 122 | <a name="l00176"></a>00176 <span class="comment">//set mu to have proper normalization and </span> |
---|
| 123 | <a name="l00177"></a>00177 <span class="keywordflow">if</span> (nu0<0){ |
---|
[255] | 124 | <a name="l00178"></a>00178 <a class="code" href="classbdm_1_1egiw.html#447eacf19d4f4083872686f044814dc4" title="Number of data records (degrees of freedom) of sufficient statistics.">nu</a> = 0.1 +nPsi +2*<a class="code" href="classbdm_1_1egiw.html#40b68a9c3b2120fba94cc4d2fcd291e1" title="Dimension of the output.">xdim</a> +2; <span class="comment">// +2 assures finite expected value of R</span> |
---|
[234] | 125 | <a name="l00179"></a>00179 <span class="comment">// terms before that are sufficient for finite normalization</span> |
---|
| 126 | <a name="l00180"></a>00180 } |
---|
| 127 | <a name="l00181"></a>00181 } |
---|
[255] | 128 | <a name="l00183"></a><a class="code" href="classbdm_1_1egiw.html#bc3db93cb60dd29187eb3c6cfd557f97">00183</a> <a class="code" href="classbdm_1_1egiw.html#a60e072c191acf65ab480deeb11c5b88" title="Default constructor, if nu0&lt;0 a minimal nu0 will be computed.">egiw</a> ( <a class="code" href="classbdm_1_1RV.html" title="Class representing variables, most often random variables.">RV</a> <a class="code" href="classbdm_1_1epdf.html#62c5b8ff71d9ebe6cd58d3c342eb1dc8" title="Identified of the random variable.">rv</a>, <a class="code" href="classldmat.html" title="Matrix stored in LD form, (commonly known as UD).">ldmat</a> V0, <span class="keywordtype">double</span> nu0=-1.0 ) : <a class="code" href="classbdm_1_1eEF.html" title="General conjugate exponential family posterior density.">eEF</a> ( rv ), <a class="code" href="classbdm_1_1egiw.html#ae56852845c6af176fd9017dbebbbd52" title="Extended information matrix of sufficient statistics.">V</a> ( V0 ), <a class="code" href="classbdm_1_1egiw.html#447eacf19d4f4083872686f044814dc4" title="Number of data records (degrees of freedom) of sufficient statistics.">nu</a> ( nu0 ) { |
---|
| 129 | <a name="l00184"></a>00184 <a class="code" href="classbdm_1_1egiw.html#40b68a9c3b2120fba94cc4d2fcd291e1" title="Dimension of the output.">xdim</a> = rv.<a class="code" href="classbdm_1_1RV.html#2174751a00ce19f941edd2c1a861be67" title="Return number of scalars in the RV.">count</a>() /<a class="code" href="classbdm_1_1egiw.html#ae56852845c6af176fd9017dbebbbd52" title="Extended information matrix of sufficient statistics.">V</a>.<a class="code" href="group__math.html#g96dfb21865db4f5bd36fa70f9b0b1163" title="access function">rows</a>(); |
---|
| 130 | <a name="l00185"></a>00185 it_assert_debug ( rv.<a class="code" href="classbdm_1_1RV.html#2174751a00ce19f941edd2c1a861be67" title="Return number of scalars in the RV.">count</a>() ==<a class="code" href="classbdm_1_1egiw.html#40b68a9c3b2120fba94cc4d2fcd291e1" title="Dimension of the output.">xdim</a>*<a class="code" href="classbdm_1_1egiw.html#ae56852845c6af176fd9017dbebbbd52" title="Extended information matrix of sufficient statistics.">V</a>.<a class="code" href="group__math.html#g96dfb21865db4f5bd36fa70f9b0b1163" title="access function">rows</a>(),<span class="stringliteral">"Incompatible V0."</span> ); |
---|
| 131 | <a name="l00186"></a>00186 <a class="code" href="classbdm_1_1egiw.html#322414c32d9a21a006a5aab0311f64fd" title="Dimension of the regressor.">nPsi</a> = <a class="code" href="classbdm_1_1egiw.html#ae56852845c6af176fd9017dbebbbd52" title="Extended information matrix of sufficient statistics.">V</a>.<a class="code" href="group__math.html#g96dfb21865db4f5bd36fa70f9b0b1163" title="access function">rows</a>()-<a class="code" href="classbdm_1_1egiw.html#40b68a9c3b2120fba94cc4d2fcd291e1" title="Dimension of the output.">xdim</a>; |
---|
[234] | 132 | <a name="l00187"></a>00187 <span class="keywordflow">if</span> (nu0<0){ |
---|
[255] | 133 | <a name="l00188"></a>00188 <a class="code" href="classbdm_1_1egiw.html#447eacf19d4f4083872686f044814dc4" title="Number of data records (degrees of freedom) of sufficient statistics.">nu</a> = 0.1 +nPsi +2*<a class="code" href="classbdm_1_1egiw.html#40b68a9c3b2120fba94cc4d2fcd291e1" title="Dimension of the output.">xdim</a> +2; <span class="comment">// +2 assures finite expected value of R</span> |
---|
[234] | 134 | <a name="l00189"></a>00189 <span class="comment">// terms before that are sufficient for finite normalization</span> |
---|
| 135 | <a name="l00190"></a>00190 } |
---|
| 136 | <a name="l00191"></a>00191 } |
---|
| 137 | <a name="l00192"></a>00192 |
---|
[255] | 138 | <a name="l00193"></a>00193 vec <a class="code" href="classbdm_1_1egiw.html#920f21548b7a3723923dd108fe514c61" title="Returns a sample, from density .">sample</a>() <span class="keyword">const</span>; |
---|
| 139 | <a name="l00194"></a>00194 vec <a class="code" href="classbdm_1_1egiw.html#df70c05f918c3a6f86d60f10c1fd6ba2" title="return expected value">mean</a>() <span class="keyword">const</span>; |
---|
| 140 | <a name="l00195"></a><a class="code" href="classbdm_1_1egiw.html#c1ecc406613cc2341225dc10c3d3b46a">00195</a> vec <a class="code" href="classbdm_1_1egiw.html#c1ecc406613cc2341225dc10c3d3b46a" title="return expected variance (not covariance!)">variance</a>()<span class="keyword"> const</span>{it_error(<span class="stringliteral">"Not implemented"</span>); <span class="keywordflow">return</span> vec(0);}; |
---|
[234] | 141 | <a name="l00196"></a>00196 <span class="keywordtype">void</span> mean_mat ( mat &M, mat&R ) <span class="keyword">const</span>; |
---|
[255] | 142 | <a name="l00198"></a>00198 <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1egiw.html#bfb8e7c619b34ad804a73bff71742b5e" title="In this instance, val= [theta, r]. For multivariate instances, it is stored columnwise...">evallog_nn</a> ( <span class="keyword">const</span> vec &val ) <span class="keyword">const</span>; |
---|
| 143 | <a name="l00199"></a>00199 <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1egiw.html#41d72ba7b2abc8a9a4209ffa98ed5633" title="logarithm of the normalizing constant, ">lognc</a> () <span class="keyword">const</span>; |
---|
[234] | 144 | <a name="l00200"></a>00200 |
---|
| 145 | <a name="l00201"></a>00201 <span class="comment">//Access</span> |
---|
[255] | 146 | <a name="l00203"></a><a class="code" href="classbdm_1_1egiw.html#15792f3112e5cf67d572f491b09324c8">00203</a> <span class="comment"></span> <a class="code" href="classldmat.html" title="Matrix stored in LD form, (commonly known as UD).">ldmat</a>& <a class="code" href="classbdm_1_1egiw.html#15792f3112e5cf67d572f491b09324c8" title="returns a pointer to the internal statistics. Use with Care!">_V</a>() {<span class="keywordflow">return</span> <a class="code" href="classbdm_1_1egiw.html#ae56852845c6af176fd9017dbebbbd52" title="Extended information matrix of sufficient statistics.">V</a>;} |
---|
| 147 | <a name="l00205"></a><a class="code" href="classbdm_1_1egiw.html#ad9c539a80a552e837245ddcebcbbba4">00205</a> <span class="keyword">const</span> <a class="code" href="classldmat.html" title="Matrix stored in LD form, (commonly known as UD).">ldmat</a>& <a class="code" href="classbdm_1_1egiw.html#15792f3112e5cf67d572f491b09324c8" title="returns a pointer to the internal statistics. Use with Care!">_V</a>()<span class="keyword"> const </span>{<span class="keywordflow">return</span> <a class="code" href="classbdm_1_1egiw.html#ae56852845c6af176fd9017dbebbbd52" title="Extended information matrix of sufficient statistics.">V</a>;} |
---|
| 148 | <a name="l00207"></a><a class="code" href="classbdm_1_1egiw.html#a025ee710274ca142dd0ae978735ad4a">00207</a> <span class="keywordtype">double</span>& <a class="code" href="classbdm_1_1egiw.html#a025ee710274ca142dd0ae978735ad4a" title="returns a pointer to the internal statistics. Use with Care!">_nu</a>() {<span class="keywordflow">return</span> <a class="code" href="classbdm_1_1egiw.html#447eacf19d4f4083872686f044814dc4" title="Number of data records (degrees of freedom) of sufficient statistics.">nu</a>;} |
---|
| 149 | <a name="l00208"></a>00208 <span class="keyword">const</span> <span class="keywordtype">double</span>& <a class="code" href="classbdm_1_1egiw.html#a025ee710274ca142dd0ae978735ad4a" title="returns a pointer to the internal statistics. Use with Care!">_nu</a>()<span class="keyword"> const </span>{<span class="keywordflow">return</span> <a class="code" href="classbdm_1_1egiw.html#447eacf19d4f4083872686f044814dc4" title="Number of data records (degrees of freedom) of sufficient statistics.">nu</a>;} |
---|
| 150 | <a name="l00209"></a><a class="code" href="classbdm_1_1egiw.html#8e610e95401a11baf34f65e16ecd87be">00209</a> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1egiw.html#8e610e95401a11baf34f65e16ecd87be" title="Power of the density, used e.g. to flatten the density.">pow</a> ( <span class="keywordtype">double</span> p ) {<a class="code" href="classbdm_1_1egiw.html#ae56852845c6af176fd9017dbebbbd52" title="Extended information matrix of sufficient statistics.">V</a>*=p;<a class="code" href="classbdm_1_1egiw.html#447eacf19d4f4083872686f044814dc4" title="Number of data records (degrees of freedom) of sufficient statistics.">nu</a>*=p;}; |
---|
[234] | 151 | <a name="l00210"></a>00210 }; |
---|
| 152 | <a name="l00211"></a>00211 |
---|
[255] | 153 | <a name="l00220"></a><a class="code" href="classbdm_1_1eDirich.html">00220</a> <span class="keyword">class </span><a class="code" href="classbdm_1_1eDirich.html" title="Dirichlet posterior density.">eDirich</a>: <span class="keyword">public</span> <a class="code" href="classbdm_1_1eEF.html" title="General conjugate exponential family posterior density.">eEF</a> { |
---|
[234] | 154 | <a name="l00221"></a>00221 <span class="keyword">protected</span>: |
---|
[255] | 155 | <a name="l00223"></a><a class="code" href="classbdm_1_1eDirich.html#f25886a49b4667af61245de81c83b5d2">00223</a> vec <a class="code" href="classbdm_1_1eDirich.html#f25886a49b4667af61245de81c83b5d2" title="sufficient statistics">beta</a>; |
---|
| 156 | <a name="l00225"></a><a class="code" href="classbdm_1_1eDirich.html#ee9db192a6f0ab7b29c33b2a18a5e1b4">00225</a> <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1eDirich.html#ee9db192a6f0ab7b29c33b2a18a5e1b4" title="speedup variable">gamma</a>; |
---|
[234] | 157 | <a name="l00226"></a>00226 <span class="keyword">public</span>: |
---|
[255] | 158 | <a name="l00228"></a><a class="code" href="classbdm_1_1eDirich.html#2ae893fe9167f67bca09bc159acbf957">00228</a> <a class="code" href="classbdm_1_1eDirich.html#2ae893fe9167f67bca09bc159acbf957" title="Default constructor.">eDirich</a> ( <span class="keyword">const</span> <a class="code" href="classbdm_1_1RV.html" title="Class representing variables, most often random variables.">RV</a> &<a class="code" href="classbdm_1_1epdf.html#62c5b8ff71d9ebe6cd58d3c342eb1dc8" title="Identified of the random variable.">rv</a>, <span class="keyword">const</span> vec &beta0 ) : <a class="code" href="classbdm_1_1eEF.html" title="General conjugate exponential family posterior density.">eEF</a> ( rv ),<a class="code" href="classbdm_1_1eDirich.html#f25886a49b4667af61245de81c83b5d2" title="sufficient statistics">beta</a> ( beta0 ) {it_assert_debug ( rv.<a class="code" href="classbdm_1_1RV.html#2174751a00ce19f941edd2c1a861be67" title="Return number of scalars in the RV.">count</a>() ==<a class="code" href="classbdm_1_1eDirich.html#f25886a49b4667af61245de81c83b5d2" title="sufficient statistics">beta</a>.length(),<span class="stringliteral">"Incompatible statistics"</span> ); }; |
---|
| 159 | <a name="l00230"></a><a class="code" href="classbdm_1_1eDirich.html#31cc8bf709552c9e7286ac16b27c8e2c">00230</a> <a class="code" href="classbdm_1_1eDirich.html#2ae893fe9167f67bca09bc159acbf957" title="Default constructor.">eDirich</a> ( <span class="keyword">const</span> <a class="code" href="classbdm_1_1eDirich.html" title="Dirichlet posterior density.">eDirich</a> &D0 ) : <a class="code" href="classbdm_1_1eEF.html" title="General conjugate exponential family posterior density.">eEF</a> ( D0.<a class="code" href="classbdm_1_1epdf.html#62c5b8ff71d9ebe6cd58d3c342eb1dc8" title="Identified of the random variable.">rv</a> ),<a class="code" href="classbdm_1_1eDirich.html#f25886a49b4667af61245de81c83b5d2" title="sufficient statistics">beta</a> ( D0.<a class="code" href="classbdm_1_1eDirich.html#f25886a49b4667af61245de81c83b5d2" title="sufficient statistics">beta</a> ) {}; |
---|
| 160 | <a name="l00231"></a><a class="code" href="classbdm_1_1eDirich.html#3290613d31d58daa8a45a54b003871fc">00231</a> vec <a class="code" href="classbdm_1_1eDirich.html#3290613d31d58daa8a45a54b003871fc" title="Returns a sample, from density .">sample</a>()<span class="keyword"> const </span>{it_error ( <span class="stringliteral">"Not implemented"</span> );<span class="keywordflow">return</span> vec_1 ( 0.0 );}; |
---|
| 161 | <a name="l00232"></a><a class="code" href="classbdm_1_1eDirich.html#cb343355ec791298bb5a3404cd482fb6">00232</a> vec <a class="code" href="classbdm_1_1eDirich.html#cb343355ec791298bb5a3404cd482fb6" title="return expected value">mean</a>()<span class="keyword"> const </span>{<span class="keywordflow">return</span> <a class="code" href="classbdm_1_1eDirich.html#f25886a49b4667af61245de81c83b5d2" title="sufficient statistics">beta</a>/<a class="code" href="classbdm_1_1eDirich.html#ee9db192a6f0ab7b29c33b2a18a5e1b4" title="speedup variable">gamma</a>;}; |
---|
| 162 | <a name="l00233"></a><a class="code" href="classbdm_1_1eDirich.html#43c547a2507e233706f92712d8c2aacc">00233</a> vec <a class="code" href="classbdm_1_1eDirich.html#43c547a2507e233706f92712d8c2aacc" title="return expected variance (not covariance!)">variance</a>()<span class="keyword"> const </span>{<span class="keywordflow">return</span> elem_mult(<a class="code" href="classbdm_1_1eDirich.html#f25886a49b4667af61245de81c83b5d2" title="sufficient statistics">beta</a>,(<a class="code" href="classbdm_1_1eDirich.html#f25886a49b4667af61245de81c83b5d2" title="sufficient statistics">beta</a>+1))/ (<a class="code" href="classbdm_1_1eDirich.html#ee9db192a6f0ab7b29c33b2a18a5e1b4" title="speedup variable">gamma</a>*(<a class="code" href="classbdm_1_1eDirich.html#ee9db192a6f0ab7b29c33b2a18a5e1b4" title="speedup variable">gamma</a>+1));} |
---|
| 163 | <a name="l00235"></a><a class="code" href="classbdm_1_1eDirich.html#e09a24938e80c3d94b0ee842d1552318">00235</a> <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1eDirich.html#e09a24938e80c3d94b0ee842d1552318" title="In this instance, val is ...">evallog_nn</a> ( <span class="keyword">const</span> vec &val )<span class="keyword"> const </span>{<span class="keywordtype">double</span> tmp; tmp=( <a class="code" href="classbdm_1_1eDirich.html#f25886a49b4667af61245de81c83b5d2" title="sufficient statistics">beta</a>-1 ) *log ( val ); it_assert_debug(std::isfinite(tmp),<span class="stringliteral">"Infinite value"</span>); |
---|
[234] | 164 | <a name="l00236"></a>00236 <span class="keywordflow">return</span> tmp;}; |
---|
[255] | 165 | <a name="l00237"></a><a class="code" href="classbdm_1_1eDirich.html#279a99f6266c82fe2273e83841f19eb2">00237</a> <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1eDirich.html#279a99f6266c82fe2273e83841f19eb2" title="logarithm of the normalizing constant, ">lognc</a> ()<span class="keyword"> const </span>{ |
---|
[234] | 166 | <a name="l00238"></a>00238 <span class="keywordtype">double</span> tmp; |
---|
[255] | 167 | <a name="l00239"></a>00239 <span class="keywordtype">double</span> gam=sum ( <a class="code" href="classbdm_1_1eDirich.html#f25886a49b4667af61245de81c83b5d2" title="sufficient statistics">beta</a> ); |
---|
[234] | 168 | <a name="l00240"></a>00240 <span class="keywordtype">double</span> lgb=0.0; |
---|
[255] | 169 | <a name="l00241"></a>00241 <span class="keywordflow">for</span> ( <span class="keywordtype">int</span> i=0;i<<a class="code" href="classbdm_1_1eDirich.html#f25886a49b4667af61245de81c83b5d2" title="sufficient statistics">beta</a>.length();i++ ) {lgb+=lgamma ( <a class="code" href="classbdm_1_1eDirich.html#f25886a49b4667af61245de81c83b5d2" title="sufficient statistics">beta</a> ( i ) );} |
---|
[234] | 170 | <a name="l00242"></a>00242 tmp= lgb-lgamma ( gam ); |
---|
| 171 | <a name="l00243"></a>00243 it_assert_debug(std::isfinite(tmp),<span class="stringliteral">"Infinite value"</span>); |
---|
| 172 | <a name="l00244"></a>00244 <span class="keywordflow">return</span> tmp; |
---|
| 173 | <a name="l00245"></a>00245 }; |
---|
[255] | 174 | <a name="l00247"></a><a class="code" href="classbdm_1_1eDirich.html#175e0add26d2105c28d8121eefb9e324">00247</a> vec& <a class="code" href="classbdm_1_1eDirich.html#175e0add26d2105c28d8121eefb9e324" title="access function">_beta</a>() {<span class="keywordflow">return</span> <a class="code" href="classbdm_1_1eDirich.html#f25886a49b4667af61245de81c83b5d2" title="sufficient statistics">beta</a>;} |
---|
| 175 | <a name="l00249"></a><a class="code" href="classbdm_1_1eDirich.html#a06af2376976a33e1eceaed7e8da75a5">00249</a> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1eDirich.html#a06af2376976a33e1eceaed7e8da75a5" title="Set internal parameters.">set_parameters</a> ( <span class="keyword">const</span> vec &beta0 ) { |
---|
| 176 | <a name="l00250"></a>00250 <span class="keywordflow">if</span> ( beta0.length() !=<a class="code" href="classbdm_1_1eDirich.html#f25886a49b4667af61245de81c83b5d2" title="sufficient statistics">beta</a>.length() ) { |
---|
| 177 | <a name="l00251"></a>00251 it_assert_debug ( <a class="code" href="classbdm_1_1epdf.html#62c5b8ff71d9ebe6cd58d3c342eb1dc8" title="Identified of the random variable.">rv</a>.<a class="code" href="classbdm_1_1RV.html#e9ec8c3e756651ff352ab5e3d3acda4b" title="Return length (number of entries) of the RV.">length</a>() ==1,<span class="stringliteral">"Undefined"</span> ); |
---|
| 178 | <a name="l00252"></a>00252 <a class="code" href="classbdm_1_1epdf.html#62c5b8ff71d9ebe6cd58d3c342eb1dc8" title="Identified of the random variable.">rv</a>.<a class="code" href="classbdm_1_1RV.html#0b2c9e73ff66847c3644ebc3eb559a03" title="access function">set_size</a> ( 0,beta0.length() ); |
---|
[234] | 179 | <a name="l00253"></a>00253 } |
---|
[255] | 180 | <a name="l00254"></a>00254 <a class="code" href="classbdm_1_1eDirich.html#f25886a49b4667af61245de81c83b5d2" title="sufficient statistics">beta</a>= beta0; |
---|
| 181 | <a name="l00255"></a>00255 <a class="code" href="classbdm_1_1eDirich.html#ee9db192a6f0ab7b29c33b2a18a5e1b4" title="speedup variable">gamma</a> = sum(<a class="code" href="classbdm_1_1eDirich.html#f25886a49b4667af61245de81c83b5d2" title="sufficient statistics">beta</a>); |
---|
[234] | 182 | <a name="l00256"></a>00256 } |
---|
| 183 | <a name="l00257"></a>00257 }; |
---|
| 184 | <a name="l00258"></a>00258 |
---|
[255] | 185 | <a name="l00260"></a><a class="code" href="classbdm_1_1multiBM.html">00260</a> <span class="keyword">class </span><a class="code" href="classbdm_1_1multiBM.html" title="Estimator for Multinomial density.">multiBM</a> : <span class="keyword">public</span> <a class="code" href="classbdm_1_1BMEF.html" title="Estimator for Exponential family.">BMEF</a> { |
---|
[234] | 186 | <a name="l00261"></a>00261 <span class="keyword">protected</span>: |
---|
[255] | 187 | <a name="l00263"></a><a class="code" href="classbdm_1_1multiBM.html#9ecc6878abbd20eb8d8e43b6ab3f941a">00263</a> <a class="code" href="classbdm_1_1eDirich.html" title="Dirichlet posterior density.">eDirich</a> <a class="code" href="classbdm_1_1multiBM.html#9ecc6878abbd20eb8d8e43b6ab3f941a" title="Conjugate prior and posterior.">est</a>; |
---|
| 188 | <a name="l00265"></a><a class="code" href="classbdm_1_1multiBM.html#044263356944c92209eecd39a5187d25">00265</a> vec &<a class="code" href="classbdm_1_1multiBM.html#044263356944c92209eecd39a5187d25" title="Pointer inside est to sufficient statistics.">beta</a>; |
---|
[234] | 189 | <a name="l00266"></a>00266 <span class="keyword">public</span>: |
---|
[255] | 190 | <a name="l00268"></a><a class="code" href="classbdm_1_1multiBM.html#65dc7567b67ce86a8f339dd496ed8e88">00268</a> <a class="code" href="classbdm_1_1multiBM.html#65dc7567b67ce86a8f339dd496ed8e88" title="Default constructor.">multiBM</a> ( <span class="keyword">const</span> <a class="code" href="classbdm_1_1RV.html" title="Class representing variables, most often random variables.">RV</a> &<a class="code" href="classbdm_1_1BM.html#18d6db4af8ee42077741d9e3618153ca" title="Random variable of the posterior.">rv</a>, <span class="keyword">const</span> vec beta0 ) : <a class="code" href="classbdm_1_1BMEF.html" title="Estimator for Exponential family.">BMEF</a> ( rv ),<a class="code" href="classbdm_1_1multiBM.html#9ecc6878abbd20eb8d8e43b6ab3f941a" title="Conjugate prior and posterior.">est</a> ( rv,beta0 ),<a class="code" href="classbdm_1_1multiBM.html#044263356944c92209eecd39a5187d25" title="Pointer inside est to sufficient statistics.">beta</a> ( <a class="code" href="classbdm_1_1multiBM.html#9ecc6878abbd20eb8d8e43b6ab3f941a" title="Conjugate prior and posterior.">est</a>._beta() ) {<span class="keywordflow">if</span>(<a class="code" href="classbdm_1_1multiBM.html#044263356944c92209eecd39a5187d25" title="Pointer inside est to sufficient statistics.">beta</a>.length()>0){<a class="code" href="classbdm_1_1BMEF.html#06e7b3ac03e10017d4288c76888e2865" title="cached value of lognc() in the previous step (used in evaluation of ll )">last_lognc</a>=<a class="code" href="classbdm_1_1multiBM.html#9ecc6878abbd20eb8d8e43b6ab3f941a" title="Conjugate prior and posterior.">est</a>.<a class="code" href="classbdm_1_1eDirich.html#279a99f6266c82fe2273e83841f19eb2" title="logarithm of the normalizing constant, ">lognc</a>();}<span class="keywordflow">else</span>{<a class="code" href="classbdm_1_1BMEF.html#06e7b3ac03e10017d4288c76888e2865" title="cached value of lognc() in the previous step (used in evaluation of ll )">last_lognc</a>=0.0;}} |
---|
| 191 | <a name="l00270"></a><a class="code" href="classbdm_1_1multiBM.html#c4378cf8037f6bed29c74eea63344b31">00270</a> <a class="code" href="classbdm_1_1multiBM.html#65dc7567b67ce86a8f339dd496ed8e88" title="Default constructor.">multiBM</a> ( <span class="keyword">const</span> <a class="code" href="classbdm_1_1multiBM.html" title="Estimator for Multinomial density.">multiBM</a> &B ) : <a class="code" href="classbdm_1_1BMEF.html" title="Estimator for Exponential family.">BMEF</a> ( B ),<a class="code" href="classbdm_1_1multiBM.html#9ecc6878abbd20eb8d8e43b6ab3f941a" title="Conjugate prior and posterior.">est</a> ( <a class="code" href="classbdm_1_1BM.html#18d6db4af8ee42077741d9e3618153ca" title="Random variable of the posterior.">rv</a>,B.<a class="code" href="classbdm_1_1multiBM.html#044263356944c92209eecd39a5187d25" title="Pointer inside est to sufficient statistics.">beta</a> ),<a class="code" href="classbdm_1_1multiBM.html#044263356944c92209eecd39a5187d25" title="Pointer inside est to sufficient statistics.">beta</a> ( <a class="code" href="classbdm_1_1multiBM.html#9ecc6878abbd20eb8d8e43b6ab3f941a" title="Conjugate prior and posterior.">est</a>._beta() ) {} |
---|
| 192 | <a name="l00272"></a><a class="code" href="classbdm_1_1multiBM.html#dbe6b90d410dc062a233d1dc09eeba52">00272</a> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1multiBM.html#dbe6b90d410dc062a233d1dc09eeba52" title="Sets sufficient statistics to match that of givefrom mB0.">set_statistics</a> ( <span class="keyword">const</span> <a class="code" href="classbdm_1_1BM.html" title="Bayesian Model of the world, i.e. all uncertainty is modeled by probabilities.">BM</a>* mB0 ) {<span class="keyword">const</span> <a class="code" href="classbdm_1_1multiBM.html" title="Estimator for Multinomial density.">multiBM</a>* mB=<span class="keyword">dynamic_cast<</span><span class="keyword">const </span><a class="code" href="classbdm_1_1multiBM.html" title="Estimator for Multinomial density.">multiBM</a>*<span class="keyword">></span> ( mB0 ); <a class="code" href="classbdm_1_1multiBM.html#044263356944c92209eecd39a5187d25" title="Pointer inside est to sufficient statistics.">beta</a>=mB-><a class="code" href="classbdm_1_1multiBM.html#044263356944c92209eecd39a5187d25" title="Pointer inside est to sufficient statistics.">beta</a>;} |
---|
| 193 | <a name="l00273"></a><a class="code" href="classbdm_1_1multiBM.html#1e4bf41b61937fd80f34049742e23f95">00273</a> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1multiBM.html#1e4bf41b61937fd80f34049742e23f95" title="Incremental Bayes rule.">bayes</a> ( <span class="keyword">const</span> vec &dt ) { |
---|
| 194 | <a name="l00274"></a>00274 <span class="keywordflow">if</span> ( <a class="code" href="classbdm_1_1BMEF.html#1331865e10fb1ccef65bb4c47fa3be64" title="forgetting factor">frg</a><1.0 ) {<a class="code" href="classbdm_1_1multiBM.html#044263356944c92209eecd39a5187d25" title="Pointer inside est to sufficient statistics.">beta</a>*=<a class="code" href="classbdm_1_1BMEF.html#1331865e10fb1ccef65bb4c47fa3be64" title="forgetting factor">frg</a>;<a class="code" href="classbdm_1_1BMEF.html#06e7b3ac03e10017d4288c76888e2865" title="cached value of lognc() in the previous step (used in evaluation of ll )">last_lognc</a>=<a class="code" href="classbdm_1_1multiBM.html#9ecc6878abbd20eb8d8e43b6ab3f941a" title="Conjugate prior and posterior.">est</a>.<a class="code" href="classbdm_1_1eDirich.html#279a99f6266c82fe2273e83841f19eb2" title="logarithm of the normalizing constant, ">lognc</a>();} |
---|
| 195 | <a name="l00275"></a>00275 <a class="code" href="classbdm_1_1multiBM.html#044263356944c92209eecd39a5187d25" title="Pointer inside est to sufficient statistics.">beta</a>+=dt; |
---|
| 196 | <a name="l00276"></a>00276 <span class="keywordflow">if</span> ( <a class="code" href="classbdm_1_1BM.html#faff0ad12556fe7dc0e2807d4fd938ee" title="If true, the filter will compute likelihood of the data record and store it in ll...">evalll</a> ) {<a class="code" href="classbdm_1_1BM.html#4064b6559d962633e4372b12f4cd204a" title="Logarithm of marginalized data likelihood.">ll</a>=<a class="code" href="classbdm_1_1multiBM.html#9ecc6878abbd20eb8d8e43b6ab3f941a" title="Conjugate prior and posterior.">est</a>.<a class="code" href="classbdm_1_1eDirich.html#279a99f6266c82fe2273e83841f19eb2" title="logarithm of the normalizing constant, ">lognc</a>()-<a class="code" href="classbdm_1_1BMEF.html#06e7b3ac03e10017d4288c76888e2865" title="cached value of lognc() in the previous step (used in evaluation of ll )">last_lognc</a>;} |
---|
[234] | 197 | <a name="l00277"></a>00277 } |
---|
[255] | 198 | <a name="l00278"></a><a class="code" href="classbdm_1_1multiBM.html#e157b607c1e3fa91d42aeea44458e2bf">00278</a> <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1multiBM.html#e157b607c1e3fa91d42aeea44458e2bf">logpred</a> ( <span class="keyword">const</span> vec &dt )<span class="keyword"> const </span>{ |
---|
| 199 | <a name="l00279"></a>00279 <a class="code" href="classbdm_1_1eDirich.html" title="Dirichlet posterior density.">eDirich</a> pred ( <a class="code" href="classbdm_1_1multiBM.html#9ecc6878abbd20eb8d8e43b6ab3f941a" title="Conjugate prior and posterior.">est</a> ); |
---|
| 200 | <a name="l00280"></a>00280 vec &<a class="code" href="classbdm_1_1multiBM.html#044263356944c92209eecd39a5187d25" title="Pointer inside est to sufficient statistics.">beta</a> = pred.<a class="code" href="classbdm_1_1eDirich.html#175e0add26d2105c28d8121eefb9e324" title="access function">_beta</a>(); |
---|
[234] | 201 | <a name="l00281"></a>00281 |
---|
| 202 | <a name="l00282"></a>00282 <span class="keywordtype">double</span> lll; |
---|
[255] | 203 | <a name="l00283"></a>00283 <span class="keywordflow">if</span> ( <a class="code" href="classbdm_1_1BMEF.html#1331865e10fb1ccef65bb4c47fa3be64" title="forgetting factor">frg</a><1.0 ) |
---|
| 204 | <a name="l00284"></a>00284 {beta*=<a class="code" href="classbdm_1_1BMEF.html#1331865e10fb1ccef65bb4c47fa3be64" title="forgetting factor">frg</a>;lll=pred.<a class="code" href="classbdm_1_1eDirich.html#279a99f6266c82fe2273e83841f19eb2" title="logarithm of the normalizing constant, ">lognc</a>();} |
---|
[234] | 205 | <a name="l00285"></a>00285 <span class="keywordflow">else</span> |
---|
[255] | 206 | <a name="l00286"></a>00286 <span class="keywordflow">if</span> ( <a class="code" href="classbdm_1_1BM.html#faff0ad12556fe7dc0e2807d4fd938ee" title="If true, the filter will compute likelihood of the data record and store it in ll...">evalll</a> ) {lll=<a class="code" href="classbdm_1_1BMEF.html#06e7b3ac03e10017d4288c76888e2865" title="cached value of lognc() in the previous step (used in evaluation of ll )">last_lognc</a>;} |
---|
| 207 | <a name="l00287"></a>00287 <span class="keywordflow">else</span>{lll=pred.<a class="code" href="classbdm_1_1eDirich.html#279a99f6266c82fe2273e83841f19eb2" title="logarithm of the normalizing constant, ">lognc</a>();} |
---|
[234] | 208 | <a name="l00288"></a>00288 |
---|
| 209 | <a name="l00289"></a>00289 beta+=dt; |
---|
[255] | 210 | <a name="l00290"></a>00290 <span class="keywordflow">return</span> pred.<a class="code" href="classbdm_1_1eDirich.html#279a99f6266c82fe2273e83841f19eb2" title="logarithm of the normalizing constant, ">lognc</a>()-lll; |
---|
[234] | 211 | <a name="l00291"></a>00291 } |
---|
[255] | 212 | <a name="l00292"></a><a class="code" href="classbdm_1_1multiBM.html#aaeb18c989088feb8d26d300e4971732">00292</a> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1multiBM.html#aaeb18c989088feb8d26d300e4971732" title="Flatten the posterior according to the given BMEF (of the same type!).">flatten</a> ( <span class="keyword">const</span> <a class="code" href="classbdm_1_1BMEF.html" title="Estimator for Exponential family.">BMEF</a>* B ) { |
---|
| 213 | <a name="l00293"></a>00293 <span class="keyword">const</span> <a class="code" href="classbdm_1_1multiBM.html" title="Estimator for Multinomial density.">multiBM</a>* E=<span class="keyword">dynamic_cast<</span><span class="keyword">const </span><a class="code" href="classbdm_1_1multiBM.html" title="Estimator for Multinomial density.">multiBM</a>*<span class="keyword">></span> ( B ); |
---|
[234] | 214 | <a name="l00294"></a>00294 <span class="comment">// sum(beta) should be equal to sum(B.beta)</span> |
---|
[255] | 215 | <a name="l00295"></a>00295 <span class="keyword">const</span> vec &Eb=E-><a class="code" href="classbdm_1_1multiBM.html#044263356944c92209eecd39a5187d25" title="Pointer inside est to sufficient statistics.">beta</a>;<span class="comment">//const_cast<multiBM*> ( E )->_beta();</span> |
---|
| 216 | <a name="l00296"></a>00296 <a class="code" href="classbdm_1_1multiBM.html#044263356944c92209eecd39a5187d25" title="Pointer inside est to sufficient statistics.">beta</a>*= ( sum ( Eb ) /sum ( <a class="code" href="classbdm_1_1multiBM.html#044263356944c92209eecd39a5187d25" title="Pointer inside est to sufficient statistics.">beta</a> ) ); |
---|
| 217 | <a name="l00297"></a>00297 <span class="keywordflow">if</span> ( <a class="code" href="classbdm_1_1BM.html#faff0ad12556fe7dc0e2807d4fd938ee" title="If true, the filter will compute likelihood of the data record and store it in ll...">evalll</a> ) {<a class="code" href="classbdm_1_1BMEF.html#06e7b3ac03e10017d4288c76888e2865" title="cached value of lognc() in the previous step (used in evaluation of ll )">last_lognc</a>=<a class="code" href="classbdm_1_1multiBM.html#9ecc6878abbd20eb8d8e43b6ab3f941a" title="Conjugate prior and posterior.">est</a>.<a class="code" href="classbdm_1_1eDirich.html#279a99f6266c82fe2273e83841f19eb2" title="logarithm of the normalizing constant, ">lognc</a>();} |
---|
[234] | 218 | <a name="l00298"></a>00298 } |
---|
[255] | 219 | <a name="l00299"></a><a class="code" href="classbdm_1_1multiBM.html#98c22316ecfef589989baca261713c8d">00299</a> <span class="keyword">const</span> <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>& <a class="code" href="classbdm_1_1multiBM.html#98c22316ecfef589989baca261713c8d" title="Returns a reference to the epdf representing posterior density on parameters.">_epdf</a>()<span class="keyword"> const </span>{<span class="keywordflow">return</span> <a class="code" href="classbdm_1_1multiBM.html#9ecc6878abbd20eb8d8e43b6ab3f941a" title="Conjugate prior and posterior.">est</a>;}; |
---|
| 220 | <a name="l00300"></a><a class="code" href="classbdm_1_1multiBM.html#c996f6b9ca930182030e1027318f1ca6">00300</a> <span class="keyword">const</span> <a class="code" href="classbdm_1_1eDirich.html" title="Dirichlet posterior density.">eDirich</a>* <a class="code" href="classbdm_1_1multiBM.html#c996f6b9ca930182030e1027318f1ca6" title="Returns a pointer to the epdf representing posterior density on parameters. Use with...">_e</a>()<span class="keyword"> const </span>{<span class="keywordflow">return</span> &<a class="code" href="classbdm_1_1multiBM.html#9ecc6878abbd20eb8d8e43b6ab3f941a" title="Conjugate prior and posterior.">est</a>;}; |
---|
[234] | 221 | <a name="l00301"></a>00301 <span class="keywordtype">void</span> set_parameters ( <span class="keyword">const</span> vec &beta0 ) { |
---|
[255] | 222 | <a name="l00302"></a>00302 <a class="code" href="classbdm_1_1multiBM.html#9ecc6878abbd20eb8d8e43b6ab3f941a" title="Conjugate prior and posterior.">est</a>.<a class="code" href="classbdm_1_1eDirich.html#a06af2376976a33e1eceaed7e8da75a5" title="Set internal parameters.">set_parameters</a> ( beta0 ); |
---|
| 223 | <a name="l00303"></a>00303 <a class="code" href="classbdm_1_1BM.html#18d6db4af8ee42077741d9e3618153ca" title="Random variable of the posterior.">rv</a> = <a class="code" href="classbdm_1_1multiBM.html#9ecc6878abbd20eb8d8e43b6ab3f941a" title="Conjugate prior and posterior.">est</a>.<a class="code" href="classbdm_1_1epdf.html#a4ab378d5e004c3ff3e2d4e64f7bba21" title="access function, possibly dangerous!">_rv</a>(); |
---|
| 224 | <a name="l00304"></a>00304 <span class="keywordflow">if</span> ( <a class="code" href="classbdm_1_1BM.html#faff0ad12556fe7dc0e2807d4fd938ee" title="If true, the filter will compute likelihood of the data record and store it in ll...">evalll</a> ) {<a class="code" href="classbdm_1_1BMEF.html#06e7b3ac03e10017d4288c76888e2865" title="cached value of lognc() in the previous step (used in evaluation of ll )">last_lognc</a>=<a class="code" href="classbdm_1_1multiBM.html#9ecc6878abbd20eb8d8e43b6ab3f941a" title="Conjugate prior and posterior.">est</a>.<a class="code" href="classbdm_1_1eDirich.html#279a99f6266c82fe2273e83841f19eb2" title="logarithm of the normalizing constant, ">lognc</a>();} |
---|
[234] | 225 | <a name="l00305"></a>00305 } |
---|
| 226 | <a name="l00306"></a>00306 }; |
---|
| 227 | <a name="l00307"></a>00307 |
---|
[255] | 228 | <a name="l00317"></a><a class="code" href="classbdm_1_1egamma.html">00317</a> <span class="keyword">class </span><a class="code" href="classbdm_1_1egamma.html" title="Gamma posterior density.">egamma</a> : <span class="keyword">public</span> <a class="code" href="classbdm_1_1eEF.html" title="General conjugate exponential family posterior density.">eEF</a> { |
---|
[234] | 229 | <a name="l00318"></a>00318 <span class="keyword">protected</span>: |
---|
[255] | 230 | <a name="l00320"></a><a class="code" href="classbdm_1_1egamma.html#0901ec983e66b8337aaa506e13b122fa">00320</a> vec <a class="code" href="classbdm_1_1egamma.html#0901ec983e66b8337aaa506e13b122fa" title="Vector .">alpha</a>; |
---|
| 231 | <a name="l00322"></a><a class="code" href="classbdm_1_1egamma.html#457bfb1ccb2057df85073e519a15ccc1">00322</a> vec <a class="code" href="classbdm_1_1egamma.html#457bfb1ccb2057df85073e519a15ccc1" title="Vector .">beta</a>; |
---|
[234] | 232 | <a name="l00323"></a>00323 <span class="keyword">public</span> : |
---|
[255] | 233 | <a name="l00325"></a><a class="code" href="classbdm_1_1egamma.html#4dafabaa0881300b18f791bc614ef487">00325</a> <a class="code" href="classbdm_1_1egamma.html#4dafabaa0881300b18f791bc614ef487" title="Default constructor.">egamma</a> ( <span class="keyword">const</span> <a class="code" href="classbdm_1_1RV.html" title="Class representing variables, most often random variables.">RV</a> &<a class="code" href="classbdm_1_1epdf.html#62c5b8ff71d9ebe6cd58d3c342eb1dc8" title="Identified of the random variable.">rv</a> ) :<a class="code" href="classbdm_1_1eEF.html" title="General conjugate exponential family posterior density.">eEF</a> ( rv ), <a class="code" href="classbdm_1_1egamma.html#0901ec983e66b8337aaa506e13b122fa" title="Vector .">alpha</a>(rv.count()), <a class="code" href="classbdm_1_1egamma.html#457bfb1ccb2057df85073e519a15ccc1" title="Vector .">beta</a>(rv.count()) {}; |
---|
| 234 | <a name="l00327"></a><a class="code" href="classbdm_1_1egamma.html#749f82293ff23a8319c1bf52489d2ed2">00327</a> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1egamma.html#749f82293ff23a8319c1bf52489d2ed2" title="Sets parameters.">set_parameters</a> ( <span class="keyword">const</span> vec &a, <span class="keyword">const</span> vec &b ) {<a class="code" href="classbdm_1_1egamma.html#0901ec983e66b8337aaa506e13b122fa" title="Vector .">alpha</a>=a,<a class="code" href="classbdm_1_1egamma.html#457bfb1ccb2057df85073e519a15ccc1" title="Vector .">beta</a>=b;}; |
---|
| 235 | <a name="l00328"></a>00328 vec <a class="code" href="classbdm_1_1egamma.html#6ed82f0fd05f6002487256d8e75a0bbd" title="Returns a sample, from density .">sample</a>() <span class="keyword">const</span>; |
---|
[234] | 236 | <a name="l00330"></a>00330 <span class="comment">// mat sample ( int N ) const;</span> |
---|
[255] | 237 | <a name="l00331"></a>00331 <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1egamma.html#a8e11e5a580ff42a1b205974c60768c6" title="TODO: is it used anywhere?">evallog</a> ( <span class="keyword">const</span> vec &val ) <span class="keyword">const</span>; |
---|
| 238 | <a name="l00332"></a>00332 <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1egamma.html#9a66cbd100e8520c769ccb3c451f86f8" title="logarithm of the normalizing constant, ">lognc</a> () <span class="keyword">const</span>; |
---|
| 239 | <a name="l00334"></a><a class="code" href="classbdm_1_1egamma.html#498c1fe5e8382ab2f97d629849741855">00334</a> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1egamma.html#498c1fe5e8382ab2f97d629849741855" title="Returns poiter to alpha and beta. Potentially dengerous: use with care!">_param</a> ( vec* &a, vec* &b ) {a=&<a class="code" href="classbdm_1_1egamma.html#0901ec983e66b8337aaa506e13b122fa" title="Vector .">alpha</a>;b=&<a class="code" href="classbdm_1_1egamma.html#457bfb1ccb2057df85073e519a15ccc1" title="Vector .">beta</a>;}; |
---|
| 240 | <a name="l00335"></a><a class="code" href="classbdm_1_1egamma.html#49d256c42cce14c6faa56ec242b57e85">00335</a> vec <a class="code" href="classbdm_1_1egamma.html#49d256c42cce14c6faa56ec242b57e85" title="return expected value">mean</a>()<span class="keyword"> const </span>{<span class="keywordflow">return</span> elem_div(<a class="code" href="classbdm_1_1egamma.html#0901ec983e66b8337aaa506e13b122fa" title="Vector .">alpha</a>,<a class="code" href="classbdm_1_1egamma.html#457bfb1ccb2057df85073e519a15ccc1" title="Vector .">beta</a>);} |
---|
| 241 | <a name="l00336"></a><a class="code" href="classbdm_1_1egamma.html#36986cc01917cd0796fadc17125bdec1">00336</a> vec <a class="code" href="classbdm_1_1egamma.html#36986cc01917cd0796fadc17125bdec1" title="return expected variance (not covariance!)">variance</a>()<span class="keyword"> const </span>{<span class="keywordflow">return</span> elem_div(<a class="code" href="classbdm_1_1egamma.html#0901ec983e66b8337aaa506e13b122fa" title="Vector .">alpha</a>,elem_mult(<a class="code" href="classbdm_1_1egamma.html#457bfb1ccb2057df85073e519a15ccc1" title="Vector .">beta</a>,<a class="code" href="classbdm_1_1egamma.html#457bfb1ccb2057df85073e519a15ccc1" title="Vector .">beta</a>)); } |
---|
[234] | 242 | <a name="l00337"></a>00337 }; |
---|
| 243 | <a name="l00338"></a>00338 |
---|
[255] | 244 | <a name="l00353"></a><a class="code" href="classbdm_1_1eigamma.html">00353</a> <span class="keyword">class </span><a class="code" href="classbdm_1_1eigamma.html" title="Inverse-Gamma posterior density.">eigamma</a> : <span class="keyword">public</span> <a class="code" href="classbdm_1_1eEF.html" title="General conjugate exponential family posterior density.">eEF</a> { |
---|
[234] | 245 | <a name="l00354"></a>00354 <span class="keyword">protected</span>: |
---|
[255] | 246 | <a name="l00356"></a><a class="code" href="classbdm_1_1eigamma.html#e2c49c77e04a96a9e6a4a628318ceb73">00356</a> vec* <a class="code" href="classbdm_1_1eigamma.html#e2c49c77e04a96a9e6a4a628318ceb73" title="Vector .">alpha</a>; |
---|
| 247 | <a name="l00358"></a><a class="code" href="classbdm_1_1eigamma.html#b2c62f2e869d1304a4055f6a7ac59cde">00358</a> vec* <a class="code" href="classbdm_1_1eigamma.html#b2c62f2e869d1304a4055f6a7ac59cde" title="Vector (in fact it is 1/beta as used in definition of iG).">beta</a>; |
---|
| 248 | <a name="l00360"></a><a class="code" href="classbdm_1_1eigamma.html#3e5c03201f073033a7db894fa15ddb96">00360</a> <a class="code" href="classbdm_1_1egamma.html" title="Gamma posterior density.">egamma</a> <a class="code" href="classbdm_1_1eigamma.html#3e5c03201f073033a7db894fa15ddb96" title="internal egamma">eg</a>; |
---|
[234] | 249 | <a name="l00361"></a>00361 <span class="keyword">public</span> : |
---|
[255] | 250 | <a name="l00363"></a><a class="code" href="classbdm_1_1eigamma.html#34a8d2cd08399c3449e2efcda6ea2f89">00363</a> <a class="code" href="classbdm_1_1eigamma.html#34a8d2cd08399c3449e2efcda6ea2f89" title="Default constructor.">eigamma</a> ( <span class="keyword">const</span> <a class="code" href="classbdm_1_1RV.html" title="Class representing variables, most often random variables.">RV</a> &<a class="code" href="classbdm_1_1epdf.html#62c5b8ff71d9ebe6cd58d3c342eb1dc8" title="Identified of the random variable.">rv</a> ) :<a class="code" href="classbdm_1_1eEF.html" title="General conjugate exponential family posterior density.">eEF</a> ( rv ), <a class="code" href="classbdm_1_1eigamma.html#3e5c03201f073033a7db894fa15ddb96" title="internal egamma">eg</a>(rv) {<a class="code" href="classbdm_1_1eigamma.html#3e5c03201f073033a7db894fa15ddb96" title="internal egamma">eg</a>.<a class="code" href="classbdm_1_1egamma.html#498c1fe5e8382ab2f97d629849741855" title="Returns poiter to alpha and beta. Potentially dengerous: use with care!">_param</a>(<a class="code" href="classbdm_1_1eigamma.html#e2c49c77e04a96a9e6a4a628318ceb73" title="Vector .">alpha</a>,<a class="code" href="classbdm_1_1eigamma.html#b2c62f2e869d1304a4055f6a7ac59cde" title="Vector (in fact it is 1/beta as used in definition of iG).">beta</a>);}; |
---|
| 251 | <a name="l00365"></a><a class="code" href="classbdm_1_1eigamma.html#09e616c95f31acddf7dfef96d1c5d645">00365</a> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1eigamma.html#09e616c95f31acddf7dfef96d1c5d645" title="Sets parameters.">set_parameters</a> ( <span class="keyword">const</span> vec &a, <span class="keyword">const</span> vec &b ) {*<a class="code" href="classbdm_1_1eigamma.html#e2c49c77e04a96a9e6a4a628318ceb73" title="Vector .">alpha</a>=a,*<a class="code" href="classbdm_1_1eigamma.html#b2c62f2e869d1304a4055f6a7ac59cde" title="Vector (in fact it is 1/beta as used in definition of iG).">beta</a>=b;}; |
---|
| 252 | <a name="l00366"></a><a class="code" href="classbdm_1_1eigamma.html#3aff7bf25ddac27731c60826fcfd878f">00366</a> vec <a class="code" href="classbdm_1_1eigamma.html#3aff7bf25ddac27731c60826fcfd878f" title="Returns a sample, from density .">sample</a>()<span class="keyword"> const </span>{<span class="keywordflow">return</span> 1.0/<a class="code" href="classbdm_1_1eigamma.html#3e5c03201f073033a7db894fa15ddb96" title="internal egamma">eg</a>.<a class="code" href="classbdm_1_1egamma.html#6ed82f0fd05f6002487256d8e75a0bbd" title="Returns a sample, from density .">sample</a>();}; |
---|
[234] | 253 | <a name="l00368"></a>00368 <span class="comment">// mat sample ( int N ) const;</span> |
---|
[255] | 254 | <a name="l00369"></a><a class="code" href="classbdm_1_1eigamma.html#9e26c80c8e6708bfcf2e684958af6f91">00369</a> <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1eigamma.html#9e26c80c8e6708bfcf2e684958af6f91" title="TODO: is it used anywhere?">evallog</a> ( <span class="keyword">const</span> vec &val )<span class="keyword"> const </span>{<span class="keywordflow">return</span> <a class="code" href="classbdm_1_1eigamma.html#3e5c03201f073033a7db894fa15ddb96" title="internal egamma">eg</a>.<a class="code" href="classbdm_1_1egamma.html#a8e11e5a580ff42a1b205974c60768c6" title="TODO: is it used anywhere?">evallog</a>(val);}; |
---|
| 255 | <a name="l00370"></a><a class="code" href="classbdm_1_1eigamma.html#a52ac6d523e2fe05642d1f50fe66aec2">00370</a> <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1eigamma.html#a52ac6d523e2fe05642d1f50fe66aec2" title="logarithm of the normalizing constant, ">lognc</a> ()<span class="keyword"> const </span>{<span class="keywordflow">return</span> <a class="code" href="classbdm_1_1eigamma.html#3e5c03201f073033a7db894fa15ddb96" title="internal egamma">eg</a>.<a class="code" href="classbdm_1_1egamma.html#9a66cbd100e8520c769ccb3c451f86f8" title="logarithm of the normalizing constant, ">lognc</a>();}; |
---|
| 256 | <a name="l00372"></a><a class="code" href="classbdm_1_1eigamma.html#57b9ee79ef5d2cea243bbe6b274a2abe">00372</a> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1eigamma.html#57b9ee79ef5d2cea243bbe6b274a2abe" title="Returns poiter to alpha and beta. Potentially dangerous: use with care!">_param</a> ( vec* &a, vec* &b ) {a=<a class="code" href="classbdm_1_1eigamma.html#e2c49c77e04a96a9e6a4a628318ceb73" title="Vector .">alpha</a>;b=<a class="code" href="classbdm_1_1eigamma.html#b2c62f2e869d1304a4055f6a7ac59cde" title="Vector (in fact it is 1/beta as used in definition of iG).">beta</a>;}; |
---|
| 257 | <a name="l00373"></a><a class="code" href="classbdm_1_1eigamma.html#46cecb295edbabd28120cb0f6f572bcb">00373</a> vec <a class="code" href="classbdm_1_1eigamma.html#46cecb295edbabd28120cb0f6f572bcb" title="return expected value">mean</a>()<span class="keyword"> const </span>{<span class="keywordflow">return</span> elem_div(*<a class="code" href="classbdm_1_1eigamma.html#b2c62f2e869d1304a4055f6a7ac59cde" title="Vector (in fact it is 1/beta as used in definition of iG).">beta</a>,*<a class="code" href="classbdm_1_1eigamma.html#e2c49c77e04a96a9e6a4a628318ceb73" title="Vector .">alpha</a>-1);} |
---|
| 258 | <a name="l00374"></a><a class="code" href="classbdm_1_1eigamma.html#c2c696f8c668e9f65392c9449f6a5133">00374</a> vec <a class="code" href="classbdm_1_1eigamma.html#c2c696f8c668e9f65392c9449f6a5133" title="return expected variance (not covariance!)">variance</a>()<span class="keyword"> const </span>{vec mea=<a class="code" href="classbdm_1_1eigamma.html#46cecb295edbabd28120cb0f6f572bcb" title="return expected value">mean</a>(); <span class="keywordflow">return</span> elem_div(elem_mult(mea,mea),*<a class="code" href="classbdm_1_1eigamma.html#e2c49c77e04a96a9e6a4a628318ceb73" title="Vector .">alpha</a>-2);} |
---|
[234] | 259 | <a name="l00375"></a>00375 }; |
---|
| 260 | <a name="l00376"></a>00376 <span class="comment">/*</span> |
---|
| 261 | <a name="l00378"></a>00378 <span class="comment">class emix : public epdf {</span> |
---|
| 262 | <a name="l00379"></a>00379 <span class="comment">protected:</span> |
---|
| 263 | <a name="l00380"></a>00380 <span class="comment"> int n;</span> |
---|
| 264 | <a name="l00381"></a>00381 <span class="comment"> vec &w;</span> |
---|
| 265 | <a name="l00382"></a>00382 <span class="comment"> Array<epdf*> Coms;</span> |
---|
| 266 | <a name="l00383"></a>00383 <span class="comment">public:</span> |
---|
| 267 | <a name="l00385"></a>00385 <span class="comment"> emix ( const RV &rv, vec &w0): epdf(rv), n(w0.length()), w(w0), Coms(n) {};</span> |
---|
| 268 | <a name="l00386"></a>00386 <span class="comment"> void set_parameters( int &i, double wi, epdf* ep){w(i)=wi;Coms(i)=ep;}</span> |
---|
| 269 | <a name="l00387"></a>00387 <span class="comment"> vec mean(){vec pom; for(int i=0;i<n;i++){pom+=Coms(i)->mean()*w(i);} return pom;};</span> |
---|
| 270 | <a name="l00388"></a>00388 <span class="comment"> vec sample() {it_error ( "Not implemented" );return 0;}</span> |
---|
| 271 | <a name="l00389"></a>00389 <span class="comment">};</span> |
---|
| 272 | <a name="l00390"></a>00390 <span class="comment">*/</span> |
---|
| 273 | <a name="l00391"></a>00391 |
---|
| 274 | <a name="l00393"></a>00393 |
---|
[255] | 275 | <a name="l00394"></a><a class="code" href="classbdm_1_1euni.html">00394</a> <span class="keyword">class </span><a class="code" href="classbdm_1_1euni.html" title="Uniform distributed density on a rectangular support.">euni</a>: <span class="keyword">public</span> <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a> { |
---|
[234] | 276 | <a name="l00395"></a>00395 <span class="keyword">protected</span>: |
---|
[255] | 277 | <a name="l00397"></a><a class="code" href="classbdm_1_1euni.html#ff7ce6a2ef5ef0015bbd1398bed12f32">00397</a> vec <a class="code" href="classbdm_1_1euni.html#ff7ce6a2ef5ef0015bbd1398bed12f32" title="lower bound on support">low</a>; |
---|
| 278 | <a name="l00399"></a><a class="code" href="classbdm_1_1euni.html#cfad2dea4a62db6872bda8abd75f0de1">00399</a> vec <a class="code" href="classbdm_1_1euni.html#cfad2dea4a62db6872bda8abd75f0de1" title="upper bound on support">high</a>; |
---|
| 279 | <a name="l00401"></a><a class="code" href="classbdm_1_1euni.html#d3c27e331f90c754d80228108de8ed4c">00401</a> vec <a class="code" href="classbdm_1_1euni.html#d3c27e331f90c754d80228108de8ed4c" title="internal">distance</a>; |
---|
| 280 | <a name="l00403"></a><a class="code" href="classbdm_1_1euni.html#31bb13e8449a8eff35246d46dae35c20">00403</a> <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1euni.html#31bb13e8449a8eff35246d46dae35c20" title="normalizing coefficients">nk</a>; |
---|
| 281 | <a name="l00405"></a><a class="code" href="classbdm_1_1euni.html#3e63be48dd58659663ca60cd18700476">00405</a> <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1euni.html#3e63be48dd58659663ca60cd18700476" title="cache of log( nk )">lnk</a>; |
---|
[234] | 282 | <a name="l00406"></a>00406 <span class="keyword">public</span>: |
---|
[255] | 283 | <a name="l00408"></a><a class="code" href="classbdm_1_1euni.html#dca02eda833d6295e0c19f6e120b64e0">00408</a> <a class="code" href="classbdm_1_1euni.html#dca02eda833d6295e0c19f6e120b64e0" title="Defualt constructor.">euni</a> ( <span class="keyword">const</span> <a class="code" href="classbdm_1_1RV.html" title="Class representing variables, most often random variables.">RV</a> <a class="code" href="classbdm_1_1epdf.html#62c5b8ff71d9ebe6cd58d3c342eb1dc8" title="Identified of the random variable.">rv</a> ) :<a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a> ( rv ) {} |
---|
| 284 | <a name="l00409"></a>00409 <span class="keywordtype">double</span> eval ( <span class="keyword">const</span> vec &val )<span class="keyword"> const </span>{<span class="keywordflow">return</span> <a class="code" href="classbdm_1_1euni.html#31bb13e8449a8eff35246d46dae35c20" title="normalizing coefficients">nk</a>;} |
---|
| 285 | <a name="l00410"></a><a class="code" href="classbdm_1_1euni.html#caa07b8307bd793d5339d6583e0aba81">00410</a> <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1euni.html#caa07b8307bd793d5339d6583e0aba81" title="Compute log-probability of argument val.">evallog</a> ( <span class="keyword">const</span> vec &val )<span class="keyword"> const </span>{<span class="keywordflow">return</span> <a class="code" href="classbdm_1_1euni.html#3e63be48dd58659663ca60cd18700476" title="cache of log( nk )">lnk</a>;} |
---|
| 286 | <a name="l00411"></a><a class="code" href="classbdm_1_1euni.html#fc5df80359ead2918384b2004ce67194">00411</a> vec <a class="code" href="classbdm_1_1euni.html#fc5df80359ead2918384b2004ce67194" title="Returns a sample, from density .">sample</a>()<span class="keyword"> const </span>{ |
---|
| 287 | <a name="l00412"></a>00412 vec smp ( <a class="code" href="classbdm_1_1epdf.html#62c5b8ff71d9ebe6cd58d3c342eb1dc8" title="Identified of the random variable.">rv</a>.<a class="code" href="classbdm_1_1RV.html#2174751a00ce19f941edd2c1a861be67" title="Return number of scalars in the RV.">count</a>() ); |
---|
[234] | 288 | <a name="l00413"></a>00413 <span class="preprocessor">#pragma omp critical</span> |
---|
[255] | 289 | <a name="l00414"></a>00414 <span class="preprocessor"></span> UniRNG.sample_vector ( <a class="code" href="classbdm_1_1epdf.html#62c5b8ff71d9ebe6cd58d3c342eb1dc8" title="Identified of the random variable.">rv</a>.<a class="code" href="classbdm_1_1RV.html#2174751a00ce19f941edd2c1a861be67" title="Return number of scalars in the RV.">count</a>(),smp ); |
---|
| 290 | <a name="l00415"></a>00415 <span class="keywordflow">return</span> <a class="code" href="classbdm_1_1euni.html#ff7ce6a2ef5ef0015bbd1398bed12f32" title="lower bound on support">low</a>+elem_mult ( <a class="code" href="classbdm_1_1euni.html#d3c27e331f90c754d80228108de8ed4c" title="internal">distance</a>,smp ); |
---|
[234] | 291 | <a name="l00416"></a>00416 } |
---|
[255] | 292 | <a name="l00418"></a><a class="code" href="classbdm_1_1euni.html#8e130b323c62b42f1699537f99af6f09">00418</a> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1euni.html#8e130b323c62b42f1699537f99af6f09" title="set values of low and high ">set_parameters</a> ( <span class="keyword">const</span> vec &low0, <span class="keyword">const</span> vec &high0 ) { |
---|
| 293 | <a name="l00419"></a>00419 <a class="code" href="classbdm_1_1euni.html#d3c27e331f90c754d80228108de8ed4c" title="internal">distance</a> = high0-low0; |
---|
| 294 | <a name="l00420"></a>00420 it_assert_debug ( min ( <a class="code" href="classbdm_1_1euni.html#d3c27e331f90c754d80228108de8ed4c" title="internal">distance</a> ) >0.0,<span class="stringliteral">"bad support"</span> ); |
---|
| 295 | <a name="l00421"></a>00421 <a class="code" href="classbdm_1_1euni.html#ff7ce6a2ef5ef0015bbd1398bed12f32" title="lower bound on support">low</a> = low0; |
---|
| 296 | <a name="l00422"></a>00422 <a class="code" href="classbdm_1_1euni.html#cfad2dea4a62db6872bda8abd75f0de1" title="upper bound on support">high</a> = high0; |
---|
| 297 | <a name="l00423"></a>00423 <a class="code" href="classbdm_1_1euni.html#31bb13e8449a8eff35246d46dae35c20" title="normalizing coefficients">nk</a> = prod ( 1.0/<a class="code" href="classbdm_1_1euni.html#d3c27e331f90c754d80228108de8ed4c" title="internal">distance</a> ); |
---|
| 298 | <a name="l00424"></a>00424 <a class="code" href="classbdm_1_1euni.html#3e63be48dd58659663ca60cd18700476" title="cache of log( nk )">lnk</a> = log ( <a class="code" href="classbdm_1_1euni.html#31bb13e8449a8eff35246d46dae35c20" title="normalizing coefficients">nk</a> ); |
---|
[234] | 299 | <a name="l00425"></a>00425 } |
---|
[255] | 300 | <a name="l00426"></a><a class="code" href="classbdm_1_1euni.html#46caa8c13aba2e6228f964208918b226">00426</a> vec <a class="code" href="classbdm_1_1euni.html#46caa8c13aba2e6228f964208918b226" title="return expected value">mean</a>()<span class="keyword"> const </span>{<span class="keywordflow">return</span> (<a class="code" href="classbdm_1_1euni.html#cfad2dea4a62db6872bda8abd75f0de1" title="upper bound on support">high</a>-<a class="code" href="classbdm_1_1euni.html#ff7ce6a2ef5ef0015bbd1398bed12f32" title="lower bound on support">low</a>)/2.0;} |
---|
| 301 | <a name="l00427"></a><a class="code" href="classbdm_1_1euni.html#951f932155111f6053c980f672b4c22c">00427</a> vec <a class="code" href="classbdm_1_1euni.html#951f932155111f6053c980f672b4c22c" title="return expected variance (not covariance!)">variance</a>()<span class="keyword"> const </span>{<span class="keywordflow">return</span> (pow(<a class="code" href="classbdm_1_1euni.html#cfad2dea4a62db6872bda8abd75f0de1" title="upper bound on support">high</a>,2)+pow(<a class="code" href="classbdm_1_1euni.html#ff7ce6a2ef5ef0015bbd1398bed12f32" title="lower bound on support">low</a>,2)+elem_mult(<a class="code" href="classbdm_1_1euni.html#cfad2dea4a62db6872bda8abd75f0de1" title="upper bound on support">high</a>,<a class="code" href="classbdm_1_1euni.html#ff7ce6a2ef5ef0015bbd1398bed12f32" title="lower bound on support">low</a>))/3.0;} |
---|
[234] | 302 | <a name="l00428"></a>00428 }; |
---|
| 303 | <a name="l00429"></a>00429 |
---|
| 304 | <a name="l00430"></a>00430 |
---|
| 305 | <a name="l00436"></a>00436 <span class="keyword">template</span><<span class="keyword">class</span> sq_T> |
---|
[255] | 306 | <a name="l00437"></a><a class="code" href="classbdm_1_1mlnorm.html">00437</a> <span class="keyword">class </span><a class="code" href="classbdm_1_1mlnorm.html" title="Normal distributed linear function with linear function of mean value;.">mlnorm</a> : <span class="keyword">public</span> <a class="code" href="classbdm_1_1mEF.html" title="Exponential family model.">mEF</a> { |
---|
[234] | 307 | <a name="l00438"></a>00438 <span class="keyword">protected</span>: |
---|
[255] | 308 | <a name="l00440"></a><a class="code" href="classbdm_1_1mlnorm.html#150ad6acb223b0a0abeaf92346686dcd">00440</a> <a class="code" href="classbdm_1_1enorm.html" title="Gaussian density with positive definite (decomposed) covariance matrix.">enorm<sq_T></a> <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>; |
---|
[234] | 309 | <a name="l00441"></a>00441 mat A; |
---|
| 310 | <a name="l00442"></a>00442 vec mu_const; |
---|
| 311 | <a name="l00443"></a>00443 vec& _mu; <span class="comment">//cached epdf.mu;</span> |
---|
| 312 | <a name="l00444"></a>00444 <span class="keyword">public</span>: |
---|
[255] | 313 | <a name="l00446"></a>00446 <a class="code" href="classbdm_1_1mlnorm.html#64d965df6811ff65b94718c427048f4a" title="Constructor.">mlnorm</a> ( <span class="keyword">const</span> <a class="code" href="classbdm_1_1RV.html" title="Class representing variables, most often random variables.">RV</a> &<a class="code" href="classbdm_1_1mpdf.html#9bcfb45435d30983f436d41c298cbb51" title="modeled random variable">rv</a>, <span class="keyword">const</span> <a class="code" href="classbdm_1_1RV.html" title="Class representing variables, most often random variables.">RV</a> &<a class="code" href="classbdm_1_1mpdf.html#5a5f08950daa08b85b01ddf4e1c36288" title="random variable in condition">rvc</a> ); |
---|
| 314 | <a name="l00448"></a>00448 <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1mlnorm.html#5d18dec3167584338a4775c1d165d96f" title="Set A and R.">set_parameters</a> ( <span class="keyword">const</span> mat &A, <span class="keyword">const</span> vec &mu0, <span class="keyword">const</span> sq_T &R ); |
---|
[234] | 315 | <a name="l00449"></a>00449 <span class="comment">// //!Generate one sample of the posterior</span> |
---|
| 316 | <a name="l00450"></a>00450 <span class="comment">// vec samplecond (const vec &cond, double &lik );</span> |
---|
| 317 | <a name="l00451"></a>00451 <span class="comment">// //!Generate matrix of samples of the posterior</span> |
---|
| 318 | <a name="l00452"></a>00452 <span class="comment">// mat samplecond (const vec &cond, vec &lik, int n );</span> |
---|
[255] | 319 | <a name="l00454"></a>00454 <span class="comment"></span> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1mlnorm.html#0dafc0196e7e07fd06dc6716e0e18bc2" title="Set value of rvc . Result of this operation is stored in epdf use function _ep to...">condition</a> ( <span class="keyword">const</span> vec &cond ); |
---|
[234] | 320 | <a name="l00455"></a>00455 |
---|
[255] | 321 | <a name="l00457"></a><a class="code" href="classbdm_1_1mlnorm.html#56e587952f94fcac6cfc999eae6dbced">00457</a> vec& <a class="code" href="classbdm_1_1mlnorm.html#56e587952f94fcac6cfc999eae6dbced" title="access function">_mu_const</a>() {<span class="keywordflow">return</span> mu_const;} |
---|
| 322 | <a name="l00459"></a><a class="code" href="classbdm_1_1mlnorm.html#262a2a486bff585f34bb6a5005b02614">00459</a> mat& <a class="code" href="classbdm_1_1mlnorm.html#262a2a486bff585f34bb6a5005b02614" title="access function">_A</a>() {<span class="keywordflow">return</span> A;} |
---|
| 323 | <a name="l00461"></a><a class="code" href="classbdm_1_1mlnorm.html#78120ecd1c2b1d7e80124b4603504604">00461</a> mat <a class="code" href="classbdm_1_1mlnorm.html#78120ecd1c2b1d7e80124b4603504604" title="access function">_R</a>() {<span class="keywordflow">return</span> <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>._R().to_mat();} |
---|
[234] | 324 | <a name="l00462"></a>00462 |
---|
| 325 | <a name="l00463"></a>00463 <span class="keyword">template</span><<span class="keyword">class</span> sq_M> |
---|
| 326 | <a name="l00464"></a>00464 <span class="keyword">friend</span> std::ostream &operator<< ( std::ostream &os, mlnorm<sq_M> &ml ); |
---|
| 327 | <a name="l00465"></a>00465 }; |
---|
| 328 | <a name="l00466"></a>00466 |
---|
[255] | 329 | <a name="l00469"></a><a class="code" href="classbdm_1_1mlstudent.html">00469</a> <span class="keyword">class </span><a class="code" href="classbdm_1_1mlstudent.html">mlstudent</a> : <span class="keyword">public</span> <a class="code" href="classbdm_1_1mlnorm.html" title="Normal distributed linear function with linear function of mean value;.">mlnorm</a><ldmat> { |
---|
[234] | 330 | <a name="l00470"></a>00470 <span class="keyword">protected</span>: |
---|
| 331 | <a name="l00471"></a>00471 <a class="code" href="classldmat.html" title="Matrix stored in LD form, (commonly known as UD).">ldmat</a> Lambda; |
---|
[255] | 332 | <a name="l00472"></a>00472 <a class="code" href="classldmat.html" title="Matrix stored in LD form, (commonly known as UD).">ldmat</a> &<a class="code" href="classbdm_1_1mlnorm.html#78120ecd1c2b1d7e80124b4603504604" title="access function">_R</a>; |
---|
[234] | 333 | <a name="l00473"></a>00473 <a class="code" href="classldmat.html" title="Matrix stored in LD form, (commonly known as UD).">ldmat</a> Re; |
---|
| 334 | <a name="l00474"></a>00474 <span class="keyword">public</span>: |
---|
[255] | 335 | <a name="l00475"></a>00475 <a class="code" href="classbdm_1_1mlstudent.html">mlstudent</a> ( <span class="keyword">const</span> <a class="code" href="classbdm_1_1RV.html" title="Class representing variables, most often random variables.">RV</a> &rv0, <span class="keyword">const</span> <a class="code" href="classbdm_1_1RV.html" title="Class representing variables, most often random variables.">RV</a> &rvc0 ) :<a class="code" href="classbdm_1_1mlnorm.html" title="Normal distributed linear function with linear function of mean value;.">mlnorm<ldmat></a> ( rv0,rvc0 ), |
---|
| 336 | <a name="l00476"></a>00476 Lambda ( rv0.<a class="code" href="classbdm_1_1RV.html#2174751a00ce19f941edd2c1a861be67" title="Return number of scalars in the RV.">count</a>() ), |
---|
| 337 | <a name="l00477"></a>00477 <a class="code" href="classbdm_1_1mlnorm.html#78120ecd1c2b1d7e80124b4603504604" title="access function">_R</a> ( <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>._R() ) {} |
---|
[234] | 338 | <a name="l00478"></a>00478 <span class="keywordtype">void</span> set_parameters ( <span class="keyword">const</span> mat &A0, <span class="keyword">const</span> vec &mu0, <span class="keyword">const</span> <a class="code" href="classldmat.html" title="Matrix stored in LD form, (commonly known as UD).">ldmat</a> &R0, <span class="keyword">const</span> <a class="code" href="classldmat.html" title="Matrix stored in LD form, (commonly known as UD).">ldmat</a>& Lambda0) { |
---|
[255] | 339 | <a name="l00479"></a>00479 <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>.set_parameters ( zeros ( <a class="code" href="classbdm_1_1mpdf.html#9bcfb45435d30983f436d41c298cbb51" title="modeled random variable">rv</a>.<a class="code" href="classbdm_1_1RV.html#2174751a00ce19f941edd2c1a861be67" title="Return number of scalars in the RV.">count</a>() ),Lambda ); |
---|
[234] | 340 | <a name="l00480"></a>00480 A = A0; |
---|
| 341 | <a name="l00481"></a>00481 mu_const = mu0; |
---|
| 342 | <a name="l00482"></a>00482 Re=R0; |
---|
| 343 | <a name="l00483"></a>00483 Lambda = Lambda0; |
---|
| 344 | <a name="l00484"></a>00484 } |
---|
[255] | 345 | <a name="l00485"></a><a class="code" href="classbdm_1_1mlstudent.html#efd37560585c8613897f30d3c2f58d0d">00485</a> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1mlstudent.html#efd37560585c8613897f30d3c2f58d0d" title="Set value of rvc . Result of this operation is stored in epdf use function _ep to...">condition</a> ( <span class="keyword">const</span> vec &cond ) { |
---|
[234] | 346 | <a name="l00486"></a>00486 _mu = A*cond + mu_const; |
---|
| 347 | <a name="l00487"></a>00487 <span class="keywordtype">double</span> zeta; |
---|
| 348 | <a name="l00488"></a>00488 <span class="comment">//ugly hack!</span> |
---|
| 349 | <a name="l00489"></a>00489 <span class="keywordflow">if</span> ((cond.length()+1)==Lambda.<a class="code" href="group__math.html#g96dfb21865db4f5bd36fa70f9b0b1163" title="access function">rows</a>()){ |
---|
[255] | 350 | <a name="l00490"></a>00490 zeta = Lambda.<a class="code" href="classldmat.html#d876c5f83e02b3e809b35c9de5068f14" title="Evaluates quadratic form ;.">invqform</a> ( concat(cond, vec_1(1.0)) ); |
---|
[234] | 351 | <a name="l00491"></a>00491 } <span class="keywordflow">else</span> { |
---|
| 352 | <a name="l00492"></a>00492 zeta = Lambda.<a class="code" href="classldmat.html#d876c5f83e02b3e809b35c9de5068f14" title="Evaluates quadratic form ;.">invqform</a> ( cond ); |
---|
| 353 | <a name="l00493"></a>00493 } |
---|
[255] | 354 | <a name="l00494"></a>00494 <a class="code" href="classbdm_1_1mlnorm.html#78120ecd1c2b1d7e80124b4603504604" title="access function">_R</a> = Re; |
---|
| 355 | <a name="l00495"></a>00495 <a class="code" href="classbdm_1_1mlnorm.html#78120ecd1c2b1d7e80124b4603504604" title="access function">_R</a>*=( 1+zeta );<span class="comment">// / ( nu ); << nu is in Re!!!!!!</span> |
---|
[234] | 356 | <a name="l00496"></a>00496 }; |
---|
| 357 | <a name="l00497"></a>00497 |
---|
| 358 | <a name="l00498"></a>00498 }; |
---|
[255] | 359 | <a name="l00508"></a><a class="code" href="classbdm_1_1mgamma.html">00508</a> <span class="keyword">class </span><a class="code" href="classbdm_1_1mgamma.html" title="Gamma random walk.">mgamma</a> : <span class="keyword">public</span> <a class="code" href="classbdm_1_1mEF.html" title="Exponential family model.">mEF</a> { |
---|
[234] | 360 | <a name="l00509"></a>00509 <span class="keyword">protected</span>: |
---|
[255] | 361 | <a name="l00511"></a><a class="code" href="classbdm_1_1mgamma.html#bdc9f1e9e03c09e91103fee269864438">00511</a> <a class="code" href="classbdm_1_1egamma.html" title="Gamma posterior density.">egamma</a> <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>; |
---|
| 362 | <a name="l00513"></a><a class="code" href="classbdm_1_1mgamma.html#b20cf88cca1fe9b0b8f2a412608bfd09">00513</a> <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1mgamma.html#b20cf88cca1fe9b0b8f2a412608bfd09" title="Constant .">k</a>; |
---|
| 363 | <a name="l00515"></a><a class="code" href="classbdm_1_1mgamma.html#f6a652ce70fa2eb4d2c7ba6d5a6ae343">00515</a> vec* <a class="code" href="classbdm_1_1mgamma.html#f6a652ce70fa2eb4d2c7ba6d5a6ae343" title="cache of epdf.beta">_beta</a>; |
---|
[234] | 364 | <a name="l00516"></a>00516 |
---|
| 365 | <a name="l00517"></a>00517 <span class="keyword">public</span>: |
---|
[255] | 366 | <a name="l00519"></a><a class="code" href="classbdm_1_1mgamma.html#2f6425cd966191b0be4c6ea91a40b6d9">00519</a> <a class="code" href="classbdm_1_1mgamma.html#2f6425cd966191b0be4c6ea91a40b6d9" title="Constructor.">mgamma</a> ( <span class="keyword">const</span> <a class="code" href="classbdm_1_1RV.html" title="Class representing variables, most often random variables.">RV</a> &<a class="code" href="classbdm_1_1mpdf.html#9bcfb45435d30983f436d41c298cbb51" title="modeled random variable">rv</a>,<span class="keyword">const</span> <a class="code" href="classbdm_1_1RV.html" title="Class representing variables, most often random variables.">RV</a> &<a class="code" href="classbdm_1_1mpdf.html#5a5f08950daa08b85b01ddf4e1c36288" title="random variable in condition">rvc</a> ): <a class="code" href="classbdm_1_1mEF.html" title="Exponential family model.">mEF</a> ( rv,rvc ), <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a> ( rv ) {vec* tmp; <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>._param ( tmp,<a class="code" href="classbdm_1_1mgamma.html#f6a652ce70fa2eb4d2c7ba6d5a6ae343" title="cache of epdf.beta">_beta</a> );<a class="code" href="classbdm_1_1mpdf.html#5eea43c56d38e4441bfb30270db949c0" title="pointer to internal epdf">ep</a>=&<a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>;}; |
---|
| 367 | <a name="l00521"></a>00521 <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1mgamma.html#0b486f7e52a3d8a39adbcbd325461c0d" title="Set value of k.">set_parameters</a> ( <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1mgamma.html#b20cf88cca1fe9b0b8f2a412608bfd09" title="Constant .">k</a> ); |
---|
| 368 | <a name="l00522"></a><a class="code" href="classbdm_1_1mgamma.html#8996500f1885e39cde30221b20900bff">00522</a> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1mgamma.html#8996500f1885e39cde30221b20900bff" title="Update ep so that it represents this mpdf conditioned on rvc = cond.">condition</a> ( <span class="keyword">const</span> vec &val ) {*<a class="code" href="classbdm_1_1mgamma.html#f6a652ce70fa2eb4d2c7ba6d5a6ae343" title="cache of epdf.beta">_beta</a>=<a class="code" href="classbdm_1_1mgamma.html#b20cf88cca1fe9b0b8f2a412608bfd09" title="Constant .">k</a>/val;}; |
---|
[234] | 369 | <a name="l00523"></a>00523 }; |
---|
| 370 | <a name="l00524"></a>00524 |
---|
[255] | 371 | <a name="l00534"></a><a class="code" href="classbdm_1_1migamma.html">00534</a> <span class="keyword">class </span><a class="code" href="classbdm_1_1migamma.html" title="Inverse-Gamma random walk.">migamma</a> : <span class="keyword">public</span> <a class="code" href="classbdm_1_1mEF.html" title="Exponential family model.">mEF</a> { |
---|
[234] | 372 | <a name="l00535"></a>00535 <span class="keyword">protected</span>: |
---|
[255] | 373 | <a name="l00537"></a><a class="code" href="classbdm_1_1migamma.html#a31b39d4179551b593c9e0d7d756783a">00537</a> <a class="code" href="classbdm_1_1eigamma.html" title="Inverse-Gamma posterior density.">eigamma</a> <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>; |
---|
| 374 | <a name="l00539"></a><a class="code" href="classbdm_1_1migamma.html#dc56bc9da542e0103ec16b9be8e5e38c">00539</a> <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1migamma.html#dc56bc9da542e0103ec16b9be8e5e38c" title="Constant .">k</a>; |
---|
| 375 | <a name="l00541"></a><a class="code" href="classbdm_1_1migamma.html#4825c0ef11a148bad9b802a496f56f96">00541</a> vec* <a class="code" href="classbdm_1_1migamma.html#4825c0ef11a148bad9b802a496f56f96" title="cache of epdf.beta">_beta</a>; |
---|
| 376 | <a name="l00543"></a><a class="code" href="classbdm_1_1migamma.html#b6c265b132ff79963bf51dff4c3ef252">00543</a> vec* <a class="code" href="classbdm_1_1migamma.html#b6c265b132ff79963bf51dff4c3ef252" title="chaceh of epdf.alpha">_alpha</a>; |
---|
[234] | 377 | <a name="l00544"></a>00544 |
---|
| 378 | <a name="l00545"></a>00545 <span class="keyword">public</span>: |
---|
[255] | 379 | <a name="l00547"></a><a class="code" href="classbdm_1_1migamma.html#07c5970da0e578ce8a428f1ebf46a459">00547</a> <a class="code" href="classbdm_1_1migamma.html#07c5970da0e578ce8a428f1ebf46a459" title="Constructor.">migamma</a> ( <span class="keyword">const</span> <a class="code" href="classbdm_1_1RV.html" title="Class representing variables, most often random variables.">RV</a> &<a class="code" href="classbdm_1_1mpdf.html#9bcfb45435d30983f436d41c298cbb51" title="modeled random variable">rv</a>,<span class="keyword">const</span> <a class="code" href="classbdm_1_1RV.html" title="Class representing variables, most often random variables.">RV</a> &<a class="code" href="classbdm_1_1mpdf.html#5a5f08950daa08b85b01ddf4e1c36288" title="random variable in condition">rvc</a> ): <a class="code" href="classbdm_1_1mEF.html" title="Exponential family model.">mEF</a> ( rv,rvc ), <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a> ( rv ) {<a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>._param ( <a class="code" href="classbdm_1_1migamma.html#b6c265b132ff79963bf51dff4c3ef252" title="chaceh of epdf.alpha">_alpha</a>,<a class="code" href="classbdm_1_1migamma.html#4825c0ef11a148bad9b802a496f56f96" title="cache of epdf.beta">_beta</a> );<a class="code" href="classbdm_1_1mpdf.html#5eea43c56d38e4441bfb30270db949c0" title="pointer to internal epdf">ep</a>=&<a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>;}; |
---|
| 380 | <a name="l00549"></a><a class="code" href="classbdm_1_1migamma.html#1d7023b1565551d0260eb1ba832bebaf">00549</a> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1migamma.html#1d7023b1565551d0260eb1ba832bebaf" title="Set value of k.">set_parameters</a> ( <span class="keywordtype">double</span> k0 ){<a class="code" href="classbdm_1_1migamma.html#dc56bc9da542e0103ec16b9be8e5e38c" title="Constant .">k</a>=k0;*<a class="code" href="classbdm_1_1migamma.html#b6c265b132ff79963bf51dff4c3ef252" title="chaceh of epdf.alpha">_alpha</a>=1.0/(<a class="code" href="classbdm_1_1migamma.html#dc56bc9da542e0103ec16b9be8e5e38c" title="Constant .">k</a>*<a class="code" href="classbdm_1_1migamma.html#dc56bc9da542e0103ec16b9be8e5e38c" title="Constant .">k</a>)+2;}; |
---|
| 381 | <a name="l00550"></a><a class="code" href="classbdm_1_1migamma.html#7a34b1e2e3aa2250d7c0ed7df1665b8c">00550</a> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1migamma.html#7a34b1e2e3aa2250d7c0ed7df1665b8c" title="Update ep so that it represents this mpdf conditioned on rvc = cond.">condition</a> ( <span class="keyword">const</span> vec &val ) { |
---|
| 382 | <a name="l00551"></a>00551 *<a class="code" href="classbdm_1_1migamma.html#4825c0ef11a148bad9b802a496f56f96" title="cache of epdf.beta">_beta</a>=elem_mult(val,(*<a class="code" href="classbdm_1_1migamma.html#b6c265b132ff79963bf51dff4c3ef252" title="chaceh of epdf.alpha">_alpha</a>-1)); |
---|
[234] | 383 | <a name="l00552"></a>00552 }; |
---|
| 384 | <a name="l00553"></a>00553 }; |
---|
| 385 | <a name="l00554"></a>00554 |
---|
[255] | 386 | <a name="l00566"></a><a class="code" href="classbdm_1_1mgamma__fix.html">00566</a> <span class="keyword">class </span><a class="code" href="classbdm_1_1mgamma__fix.html" title="Gamma random walk around a fixed point.">mgamma_fix</a> : <span class="keyword">public</span> <a class="code" href="classbdm_1_1mgamma.html" title="Gamma random walk.">mgamma</a> { |
---|
[234] | 387 | <a name="l00567"></a>00567 <span class="keyword">protected</span>: |
---|
[255] | 388 | <a name="l00569"></a><a class="code" href="classbdm_1_1mgamma__fix.html#1eb701506aabb2e6af007e487212d6fa">00569</a> <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1mgamma__fix.html#1eb701506aabb2e6af007e487212d6fa" title="parameter l">l</a>; |
---|
| 389 | <a name="l00571"></a><a class="code" href="classbdm_1_1mgamma__fix.html#018c6f901a04e419455308a07eb3b0b2">00571</a> vec <a class="code" href="classbdm_1_1mgamma__fix.html#018c6f901a04e419455308a07eb3b0b2" title="reference vector">refl</a>; |
---|
[234] | 390 | <a name="l00572"></a>00572 <span class="keyword">public</span>: |
---|
[255] | 391 | <a name="l00574"></a><a class="code" href="classbdm_1_1mgamma__fix.html#c73571f45ab2926e5a7fb9c3791b5614">00574</a> <a class="code" href="classbdm_1_1mgamma__fix.html#c73571f45ab2926e5a7fb9c3791b5614" title="Constructor.">mgamma_fix</a> ( <span class="keyword">const</span> <a class="code" href="classbdm_1_1RV.html" title="Class representing variables, most often random variables.">RV</a> &<a class="code" href="classbdm_1_1mpdf.html#9bcfb45435d30983f436d41c298cbb51" title="modeled random variable">rv</a>,<span class="keyword">const</span> <a class="code" href="classbdm_1_1RV.html" title="Class representing variables, most often random variables.">RV</a> &<a class="code" href="classbdm_1_1mpdf.html#5a5f08950daa08b85b01ddf4e1c36288" title="random variable in condition">rvc</a> ) : <a class="code" href="classbdm_1_1mgamma.html" title="Gamma random walk.">mgamma</a> ( rv,rvc ),<a class="code" href="classbdm_1_1mgamma__fix.html#018c6f901a04e419455308a07eb3b0b2" title="reference vector">refl</a> ( rv.count() ) {}; |
---|
| 392 | <a name="l00576"></a><a class="code" href="classbdm_1_1mgamma__fix.html#1bfd30e90db9dc1fbda4a9fbb0b716b2">00576</a> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1mgamma__fix.html#1bfd30e90db9dc1fbda4a9fbb0b716b2" title="Set value of k.">set_parameters</a> ( <span class="keywordtype">double</span> k0 , vec ref0, <span class="keywordtype">double</span> l0 ) { |
---|
| 393 | <a name="l00577"></a>00577 <a class="code" href="classbdm_1_1mgamma.html#0b486f7e52a3d8a39adbcbd325461c0d" title="Set value of k.">mgamma::set_parameters</a> ( k0 ); |
---|
| 394 | <a name="l00578"></a>00578 <a class="code" href="classbdm_1_1mgamma__fix.html#018c6f901a04e419455308a07eb3b0b2" title="reference vector">refl</a>=pow ( ref0,1.0-l0 );<a class="code" href="classbdm_1_1mgamma__fix.html#1eb701506aabb2e6af007e487212d6fa" title="parameter l">l</a>=l0; |
---|
[234] | 395 | <a name="l00579"></a>00579 }; |
---|
| 396 | <a name="l00580"></a>00580 |
---|
[255] | 397 | <a name="l00581"></a><a class="code" href="classbdm_1_1mgamma__fix.html#1d539591deb7a38bb3403c2b396c8ff7">00581</a> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1mgamma__fix.html#1d539591deb7a38bb3403c2b396c8ff7" title="Update ep so that it represents this mpdf conditioned on rvc = cond.">condition</a> ( <span class="keyword">const</span> vec &val ) {vec mean=elem_mult ( <a class="code" href="classbdm_1_1mgamma__fix.html#018c6f901a04e419455308a07eb3b0b2" title="reference vector">refl</a>,pow ( val,<a class="code" href="classbdm_1_1mgamma__fix.html#1eb701506aabb2e6af007e487212d6fa" title="parameter l">l</a> ) ); *<a class="code" href="classbdm_1_1mgamma.html#f6a652ce70fa2eb4d2c7ba6d5a6ae343" title="cache of epdf.beta">_beta</a>=<a class="code" href="classbdm_1_1mgamma.html#b20cf88cca1fe9b0b8f2a412608bfd09" title="Constant .">k</a>/mean;}; |
---|
[234] | 398 | <a name="l00582"></a>00582 }; |
---|
| 399 | <a name="l00583"></a>00583 |
---|
| 400 | <a name="l00584"></a>00584 |
---|
[255] | 401 | <a name="l00597"></a><a class="code" href="classbdm_1_1migamma__fix.html">00597</a> <span class="keyword">class </span><a class="code" href="classbdm_1_1migamma__fix.html" title="Inverse-Gamma random walk around a fixed point.">migamma_fix</a> : <span class="keyword">public</span> <a class="code" href="classbdm_1_1migamma.html" title="Inverse-Gamma random walk.">migamma</a> { |
---|
[234] | 402 | <a name="l00598"></a>00598 <span class="keyword">protected</span>: |
---|
[255] | 403 | <a name="l00600"></a><a class="code" href="classbdm_1_1migamma__fix.html#e1c344accac36d7ccc3ffa502e8d2f4e">00600</a> <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1migamma__fix.html#e1c344accac36d7ccc3ffa502e8d2f4e" title="parameter l">l</a>; |
---|
| 404 | <a name="l00602"></a><a class="code" href="classbdm_1_1migamma__fix.html#5d453e5a2bdfc9a16c8acb8842dc9780">00602</a> vec <a class="code" href="classbdm_1_1migamma__fix.html#5d453e5a2bdfc9a16c8acb8842dc9780" title="reference vector">refl</a>; |
---|
[234] | 405 | <a name="l00603"></a>00603 <span class="keyword">public</span>: |
---|
[255] | 406 | <a name="l00605"></a><a class="code" href="classbdm_1_1migamma__fix.html#3c6aacebccbe6d73f8d442e82d3cb53a">00605</a> <a class="code" href="classbdm_1_1migamma__fix.html#3c6aacebccbe6d73f8d442e82d3cb53a" title="Constructor.">migamma_fix</a> ( <span class="keyword">const</span> <a class="code" href="classbdm_1_1RV.html" title="Class representing variables, most often random variables.">RV</a> &<a class="code" href="classbdm_1_1mpdf.html#9bcfb45435d30983f436d41c298cbb51" title="modeled random variable">rv</a>,<span class="keyword">const</span> <a class="code" href="classbdm_1_1RV.html" title="Class representing variables, most often random variables.">RV</a> &<a class="code" href="classbdm_1_1mpdf.html#5a5f08950daa08b85b01ddf4e1c36288" title="random variable in condition">rvc</a> ) : <a class="code" href="classbdm_1_1migamma.html" title="Inverse-Gamma random walk.">migamma</a> ( rv,rvc ),<a class="code" href="classbdm_1_1migamma__fix.html#5d453e5a2bdfc9a16c8acb8842dc9780" title="reference vector">refl</a> ( rv.count() ) {}; |
---|
| 407 | <a name="l00607"></a><a class="code" href="classbdm_1_1migamma__fix.html#17f9ce1068660a4e8c05173bef7d7440">00607</a> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1migamma__fix.html#17f9ce1068660a4e8c05173bef7d7440" title="Set value of k.">set_parameters</a> ( <span class="keywordtype">double</span> k0 , vec ref0, <span class="keywordtype">double</span> l0 ) { |
---|
| 408 | <a name="l00608"></a>00608 <a class="code" href="classbdm_1_1migamma.html#1d7023b1565551d0260eb1ba832bebaf" title="Set value of k.">migamma::set_parameters</a> ( k0 ); |
---|
| 409 | <a name="l00609"></a>00609 <a class="code" href="classbdm_1_1migamma__fix.html#5d453e5a2bdfc9a16c8acb8842dc9780" title="reference vector">refl</a>=pow ( ref0,1.0-l0 );<a class="code" href="classbdm_1_1migamma__fix.html#e1c344accac36d7ccc3ffa502e8d2f4e" title="parameter l">l</a>=l0; |
---|
[234] | 410 | <a name="l00610"></a>00610 }; |
---|
| 411 | <a name="l00611"></a>00611 |
---|
[255] | 412 | <a name="l00612"></a><a class="code" href="classbdm_1_1migamma__fix.html#cfbabd293795d44aae1b7c874e57c4b8">00612</a> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1migamma__fix.html#cfbabd293795d44aae1b7c874e57c4b8" title="Update ep so that it represents this mpdf conditioned on rvc = cond.">condition</a> ( <span class="keyword">const</span> vec &val ) {vec mean=elem_mult ( <a class="code" href="classbdm_1_1migamma__fix.html#5d453e5a2bdfc9a16c8acb8842dc9780" title="reference vector">refl</a>,pow ( val,<a class="code" href="classbdm_1_1migamma__fix.html#e1c344accac36d7ccc3ffa502e8d2f4e" title="parameter l">l</a> ) ); <a class="code" href="classbdm_1_1migamma.html#7a34b1e2e3aa2250d7c0ed7df1665b8c" title="Update ep so that it represents this mpdf conditioned on rvc = cond.">migamma::condition</a>(mean);}; |
---|
[234] | 413 | <a name="l00613"></a>00613 }; |
---|
[255] | 414 | <a name="l00615"></a>00615 <span class="keyword">enum</span> RESAMPLING_METHOD { MULTINOMIAL = 0, STRATIFIED = 1, SYSTEMATIC = 3 }; |
---|
| 415 | <a name="l00621"></a><a class="code" href="classbdm_1_1eEmp.html">00621</a> <span class="keyword">class </span><a class="code" href="classbdm_1_1eEmp.html" title="Weighted empirical density.">eEmp</a>: <span class="keyword">public</span> <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a> { |
---|
[234] | 416 | <a name="l00622"></a>00622 <span class="keyword">protected</span> : |
---|
[255] | 417 | <a name="l00624"></a><a class="code" href="classbdm_1_1eEmp.html#9798006271ca77629855113f1283a031">00624</a> <span class="keywordtype">int</span> <a class="code" href="classbdm_1_1eEmp.html#9798006271ca77629855113f1283a031" title="Number of particles.">n</a>; |
---|
| 418 | <a name="l00626"></a><a class="code" href="classbdm_1_1eEmp.html#9d39241aab7c4bbeb07c6d516421c67d">00626</a> vec <a class="code" href="classbdm_1_1eEmp.html#9d39241aab7c4bbeb07c6d516421c67d" title="Sample weights .">w</a>; |
---|
| 419 | <a name="l00628"></a><a class="code" href="classbdm_1_1eEmp.html#73d819553a0f268b055a087d2d4486f3">00628</a> Array<vec> <a class="code" href="classbdm_1_1eEmp.html#73d819553a0f268b055a087d2d4486f3" title="Samples .">samples</a>; |
---|
[234] | 420 | <a name="l00629"></a>00629 <span class="keyword">public</span>: |
---|
[255] | 421 | <a name="l00631"></a><a class="code" href="classbdm_1_1eEmp.html#47ee4feee19b3f3e2d371f8fc9f9a863">00631</a> <a class="code" href="classbdm_1_1eEmp.html#47ee4feee19b3f3e2d371f8fc9f9a863" title="Default constructor.">eEmp</a> ( <span class="keyword">const</span> <a class="code" href="classbdm_1_1RV.html" title="Class representing variables, most often random variables.">RV</a> &rv0 ,<span class="keywordtype">int</span> n0 ) :<a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a> ( rv0 ),<a class="code" href="classbdm_1_1eEmp.html#9798006271ca77629855113f1283a031" title="Number of particles.">n</a> ( n0 ),<a class="code" href="classbdm_1_1eEmp.html#9d39241aab7c4bbeb07c6d516421c67d" title="Sample weights .">w</a> ( <a class="code" href="classbdm_1_1eEmp.html#9798006271ca77629855113f1283a031" title="Number of particles.">n</a> ),<a class="code" href="classbdm_1_1eEmp.html#73d819553a0f268b055a087d2d4486f3" title="Samples .">samples</a> ( <a class="code" href="classbdm_1_1eEmp.html#9798006271ca77629855113f1283a031" title="Number of particles.">n</a> ) {}; |
---|
| 422 | <a name="l00633"></a>00633 <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1eEmp.html#82320074a9b0ad7e1bb33a6e885b65d7" title="Set samples and weights.">set_parameters</a> ( <span class="keyword">const</span> vec &w0, <span class="keyword">const</span> <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>* pdf0 ); |
---|
| 423 | <a name="l00635"></a>00635 <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1eEmp.html#b62d802b8ef39f7c4dcbeb366c90951a" title="Set sample.">set_samples</a> ( <span class="keyword">const</span> <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>* pdf0 ); |
---|
| 424 | <a name="l00637"></a><a class="code" href="classbdm_1_1eEmp.html#dccd02eaa4c45e858a6351723686ac85">00637</a> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1eEmp.html#dccd02eaa4c45e858a6351723686ac85" title="Set sample.">set_n</a> ( <span class="keywordtype">int</span> n0, <span class="keywordtype">bool</span> copy=<span class="keyword">true</span> ){<a class="code" href="classbdm_1_1eEmp.html#9d39241aab7c4bbeb07c6d516421c67d" title="Sample weights .">w</a>.set_size(n0,copy);<a class="code" href="classbdm_1_1eEmp.html#73d819553a0f268b055a087d2d4486f3" title="Samples .">samples</a>.set_size(n0,copy);}; |
---|
| 425 | <a name="l00639"></a><a class="code" href="classbdm_1_1eEmp.html#d7f83cc0415cd44ae7cc8b4bdad93aef">00639</a> vec& <a class="code" href="classbdm_1_1eEmp.html#d7f83cc0415cd44ae7cc8b4bdad93aef" title="Potentially dangerous, use with care.">_w</a>() {<span class="keywordflow">return</span> <a class="code" href="classbdm_1_1eEmp.html#9d39241aab7c4bbeb07c6d516421c67d" title="Sample weights .">w</a>;}; |
---|
| 426 | <a name="l00641"></a><a class="code" href="classbdm_1_1eEmp.html#b7d7106f486e3fad38590914a693d714">00641</a> <span class="keyword">const</span> vec& <a class="code" href="classbdm_1_1eEmp.html#d7f83cc0415cd44ae7cc8b4bdad93aef" title="Potentially dangerous, use with care.">_w</a>()<span class="keyword"> const </span>{<span class="keywordflow">return</span> <a class="code" href="classbdm_1_1eEmp.html#9d39241aab7c4bbeb07c6d516421c67d" title="Sample weights .">w</a>;}; |
---|
| 427 | <a name="l00643"></a><a class="code" href="classbdm_1_1eEmp.html#c24966b0aaeb767bc8a6b4fd60931be2">00643</a> Array<vec>& <a class="code" href="classbdm_1_1eEmp.html#c24966b0aaeb767bc8a6b4fd60931be2" title="access function">_samples</a>() {<span class="keywordflow">return</span> <a class="code" href="classbdm_1_1eEmp.html#73d819553a0f268b055a087d2d4486f3" title="Samples .">samples</a>;}; |
---|
| 428 | <a name="l00645"></a><a class="code" href="classbdm_1_1eEmp.html#b59af0efdb009d98ea8ebfa965e74ae2">00645</a> <span class="keyword">const</span> Array<vec>& <a class="code" href="classbdm_1_1eEmp.html#c24966b0aaeb767bc8a6b4fd60931be2" title="access function">_samples</a>()<span class="keyword"> const </span>{<span class="keywordflow">return</span> <a class="code" href="classbdm_1_1eEmp.html#73d819553a0f268b055a087d2d4486f3" title="Samples .">samples</a>;}; |
---|
| 429 | <a name="l00647"></a>00647 ivec <a class="code" href="classbdm_1_1eEmp.html#f06ce255de5dbb2313f52ee51f82ba3d" title="Function performs resampling, i.e. removal of low-weight samples and duplication...">resample</a> ( RESAMPLING_METHOD method = SYSTEMATIC ); |
---|
| 430 | <a name="l00649"></a><a class="code" href="classbdm_1_1eEmp.html#97f1e07b5ae6eebc91c7365f0f88d270">00649</a> vec <a class="code" href="classbdm_1_1eEmp.html#97f1e07b5ae6eebc91c7365f0f88d270" title="inherited operation : NOT implemneted">sample</a>()<span class="keyword"> const </span>{it_error ( <span class="stringliteral">"Not implemented"</span> );<span class="keywordflow">return</span> 0;} |
---|
| 431 | <a name="l00651"></a><a class="code" href="classbdm_1_1eEmp.html#01654c014d3aa068f8d4ecba4be86d09">00651</a> <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1eEmp.html#01654c014d3aa068f8d4ecba4be86d09" title="inherited operation : NOT implemneted">evallog</a> ( <span class="keyword">const</span> vec &val )<span class="keyword"> const </span>{it_error ( <span class="stringliteral">"Not implemented"</span> );<span class="keywordflow">return</span> 0.0;} |
---|
| 432 | <a name="l00652"></a><a class="code" href="classbdm_1_1eEmp.html#bbfcb4f868c7381298c281a256d8c4b9">00652</a> vec <a class="code" href="classbdm_1_1eEmp.html#bbfcb4f868c7381298c281a256d8c4b9" title="return expected value">mean</a>()<span class="keyword"> const </span>{ |
---|
| 433 | <a name="l00653"></a>00653 vec pom=zeros ( <a class="code" href="classbdm_1_1epdf.html#62c5b8ff71d9ebe6cd58d3c342eb1dc8" title="Identified of the random variable.">rv</a>.<a class="code" href="classbdm_1_1RV.html#2174751a00ce19f941edd2c1a861be67" title="Return number of scalars in the RV.">count</a>() ); |
---|
| 434 | <a name="l00654"></a>00654 <span class="keywordflow">for</span> ( <span class="keywordtype">int</span> i=0;i<<a class="code" href="classbdm_1_1eEmp.html#9798006271ca77629855113f1283a031" title="Number of particles.">n</a>;i++ ) {pom+=<a class="code" href="classbdm_1_1eEmp.html#73d819553a0f268b055a087d2d4486f3" title="Samples .">samples</a> ( i ) *<a class="code" href="classbdm_1_1eEmp.html#9d39241aab7c4bbeb07c6d516421c67d" title="Sample weights .">w</a> ( i );} |
---|
[234] | 435 | <a name="l00655"></a>00655 <span class="keywordflow">return</span> pom; |
---|
| 436 | <a name="l00656"></a>00656 } |
---|
[255] | 437 | <a name="l00657"></a><a class="code" href="classbdm_1_1eEmp.html#05e9ebf467ede737cb6a3621d7fd3c87">00657</a> vec <a class="code" href="classbdm_1_1eEmp.html#05e9ebf467ede737cb6a3621d7fd3c87" title="return expected variance (not covariance!)">variance</a>()<span class="keyword"> const </span>{ |
---|
| 438 | <a name="l00658"></a>00658 vec pom=zeros ( <a class="code" href="classbdm_1_1epdf.html#62c5b8ff71d9ebe6cd58d3c342eb1dc8" title="Identified of the random variable.">rv</a>.<a class="code" href="classbdm_1_1RV.html#2174751a00ce19f941edd2c1a861be67" title="Return number of scalars in the RV.">count</a>() ); |
---|
| 439 | <a name="l00659"></a>00659 <span class="keywordflow">for</span> ( <span class="keywordtype">int</span> i=0;i<<a class="code" href="classbdm_1_1eEmp.html#9798006271ca77629855113f1283a031" title="Number of particles.">n</a>;i++ ) {pom+=pow(<a class="code" href="classbdm_1_1eEmp.html#73d819553a0f268b055a087d2d4486f3" title="Samples .">samples</a> ( i ),2) *<a class="code" href="classbdm_1_1eEmp.html#9d39241aab7c4bbeb07c6d516421c67d" title="Sample weights .">w</a> ( i );} |
---|
| 440 | <a name="l00660"></a>00660 <span class="keywordflow">return</span> pom-pow(<a class="code" href="classbdm_1_1eEmp.html#bbfcb4f868c7381298c281a256d8c4b9" title="return expected value">mean</a>(),2); |
---|
[234] | 441 | <a name="l00661"></a>00661 } |
---|
| 442 | <a name="l00662"></a>00662 }; |
---|
| 443 | <a name="l00663"></a>00663 |
---|
| 444 | <a name="l00664"></a>00664 |
---|
| 445 | <a name="l00666"></a>00666 |
---|
| 446 | <a name="l00667"></a>00667 <span class="keyword">template</span><<span class="keyword">class</span> sq_T> |
---|
[255] | 447 | <a name="l00668"></a><a class="code" href="classbdm_1_1enorm.html#7d433390d6bbad337986945b63d7fbe9">00668</a> <a class="code" href="classbdm_1_1enorm.html" title="Gaussian density with positive definite (decomposed) covariance matrix.">enorm<sq_T>::enorm</a> ( <span class="keyword">const</span> <a class="code" href="classbdm_1_1RV.html" title="Class representing variables, most often random variables.">RV</a> &rv ) :<a class="code" href="classbdm_1_1eEF.html" title="General conjugate exponential family posterior density.">eEF</a> ( rv ), mu ( rv.count() ),R ( rv.count() ),dim ( rv.count() ) {}; |
---|
[234] | 448 | <a name="l00669"></a>00669 |
---|
| 449 | <a name="l00670"></a>00670 <span class="keyword">template</span><<span class="keyword">class</span> sq_T> |
---|
[255] | 450 | <a name="l00671"></a><a class="code" href="classbdm_1_1enorm.html#b8322f2c11560871dd922c660f4771bb">00671</a> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1enorm.html" title="Gaussian density with positive definite (decomposed) covariance matrix.">enorm<sq_T>::set_parameters</a> ( <span class="keyword">const</span> vec &mu0, <span class="keyword">const</span> sq_T &R0 ) { |
---|
[234] | 451 | <a name="l00672"></a>00672 <span class="comment">//Fixme test dimensions of mu0 and R0;</span> |
---|
[255] | 452 | <a name="l00673"></a>00673 <a class="code" href="classbdm_1_1enorm.html#c702a194720853570d08b65482f842c7" title="mean value">mu</a> = mu0; |
---|
| 453 | <a name="l00674"></a>00674 <a class="code" href="classbdm_1_1enorm.html#2d92dde696b2a7a5b10ddef5d22ba2c2" title="Covariance matrix in decomposed form.">R</a> = R0; |
---|
[234] | 454 | <a name="l00675"></a>00675 }; |
---|
| 455 | <a name="l00676"></a>00676 |
---|
| 456 | <a name="l00677"></a>00677 <span class="keyword">template</span><<span class="keyword">class</span> sq_T> |
---|
[255] | 457 | <a name="l00678"></a><a class="code" href="classbdm_1_1enorm.html#d2e0d3a1e30ab3ab04df2d0c43ae74a2">00678</a> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1enorm.html" title="Gaussian density with positive definite (decomposed) covariance matrix.">enorm<sq_T>::dupdate</a> ( mat &v, <span class="keywordtype">double</span> nu ) { |
---|
[234] | 458 | <a name="l00679"></a>00679 <span class="comment">//</span> |
---|
| 459 | <a name="l00680"></a>00680 }; |
---|
| 460 | <a name="l00681"></a>00681 |
---|
| 461 | <a name="l00682"></a>00682 <span class="comment">// template<class sq_T></span> |
---|
| 462 | <a name="l00683"></a>00683 <span class="comment">// void enorm<sq_T>::tupdate ( double phi, mat &vbar, double nubar ) {</span> |
---|
| 463 | <a name="l00684"></a>00684 <span class="comment">// //</span> |
---|
| 464 | <a name="l00685"></a>00685 <span class="comment">// };</span> |
---|
| 465 | <a name="l00686"></a>00686 |
---|
| 466 | <a name="l00687"></a>00687 <span class="keyword">template</span><<span class="keyword">class</span> sq_T> |
---|
[255] | 467 | <a name="l00688"></a><a class="code" href="classbdm_1_1enorm.html#e1a48f52351ec3a349bd443b713b1766">00688</a> vec <a class="code" href="classbdm_1_1enorm.html" title="Gaussian density with positive definite (decomposed) covariance matrix.">enorm<sq_T>::sample</a>()<span class="keyword"> const </span>{ |
---|
| 468 | <a name="l00689"></a>00689 vec x ( <a class="code" href="classbdm_1_1enorm.html#91a2d4a91364b0144e1523cad4d1135b" title="dimension (redundant from rv.count() for easier coding )">dim</a> ); |
---|
| 469 | <a name="l00690"></a>00690 <span class="preprocessor"> #pragma omp critical </span> |
---|
| 470 | <a name="l00691"></a>00691 <span class="preprocessor"></span> NorRNG.sample_vector ( <a class="code" href="classbdm_1_1enorm.html#91a2d4a91364b0144e1523cad4d1135b" title="dimension (redundant from rv.count() for easier coding )">dim</a>,x ); |
---|
| 471 | <a name="l00692"></a>00692 vec smp = <a class="code" href="classbdm_1_1enorm.html#2d92dde696b2a7a5b10ddef5d22ba2c2" title="Covariance matrix in decomposed form.">R</a>.sqrt_mult ( x ); |
---|
| 472 | <a name="l00693"></a>00693 |
---|
| 473 | <a name="l00694"></a>00694 smp += <a class="code" href="classbdm_1_1enorm.html#c702a194720853570d08b65482f842c7" title="mean value">mu</a>; |
---|
| 474 | <a name="l00695"></a>00695 <span class="keywordflow">return</span> smp; |
---|
| 475 | <a name="l00696"></a>00696 }; |
---|
| 476 | <a name="l00697"></a>00697 |
---|
| 477 | <a name="l00698"></a>00698 <span class="keyword">template</span><<span class="keyword">class</span> sq_T> |
---|
| 478 | <a name="l00699"></a><a class="code" href="classbdm_1_1enorm.html#ebd96125aed74f9504033bb3605849db">00699</a> mat <a class="code" href="classbdm_1_1enorm.html" title="Gaussian density with positive definite (decomposed) covariance matrix.">enorm<sq_T>::sample</a> ( <span class="keywordtype">int</span> N )<span class="keyword"> const </span>{ |
---|
| 479 | <a name="l00700"></a>00700 mat X ( <a class="code" href="classbdm_1_1enorm.html#91a2d4a91364b0144e1523cad4d1135b" title="dimension (redundant from rv.count() for easier coding )">dim</a>,N ); |
---|
| 480 | <a name="l00701"></a>00701 vec x ( <a class="code" href="classbdm_1_1enorm.html#91a2d4a91364b0144e1523cad4d1135b" title="dimension (redundant from rv.count() for easier coding )">dim</a> ); |
---|
| 481 | <a name="l00702"></a>00702 vec pom; |
---|
| 482 | <a name="l00703"></a>00703 <span class="keywordtype">int</span> i; |
---|
| 483 | <a name="l00704"></a>00704 |
---|
| 484 | <a name="l00705"></a>00705 <span class="keywordflow">for</span> ( i=0;i<N;i++ ) { |
---|
| 485 | <a name="l00706"></a>00706 <span class="preprocessor"> #pragma omp critical </span> |
---|
| 486 | <a name="l00707"></a>00707 <span class="preprocessor"></span> NorRNG.sample_vector ( <a class="code" href="classbdm_1_1enorm.html#91a2d4a91364b0144e1523cad4d1135b" title="dimension (redundant from rv.count() for easier coding )">dim</a>,x ); |
---|
| 487 | <a name="l00708"></a>00708 pom = <a class="code" href="classbdm_1_1enorm.html#2d92dde696b2a7a5b10ddef5d22ba2c2" title="Covariance matrix in decomposed form.">R</a>.sqrt_mult ( x ); |
---|
| 488 | <a name="l00709"></a>00709 pom +=<a class="code" href="classbdm_1_1enorm.html#c702a194720853570d08b65482f842c7" title="mean value">mu</a>; |
---|
| 489 | <a name="l00710"></a>00710 X.set_col ( i, pom ); |
---|
| 490 | <a name="l00711"></a>00711 } |
---|
| 491 | <a name="l00712"></a>00712 |
---|
| 492 | <a name="l00713"></a>00713 <span class="keywordflow">return</span> X; |
---|
| 493 | <a name="l00714"></a>00714 }; |
---|
| 494 | <a name="l00715"></a>00715 |
---|
| 495 | <a name="l00716"></a>00716 <span class="comment">// template<class sq_T></span> |
---|
| 496 | <a name="l00717"></a>00717 <span class="comment">// double enorm<sq_T>::eval ( const vec &val ) const {</span> |
---|
| 497 | <a name="l00718"></a>00718 <span class="comment">// double pdfl,e;</span> |
---|
| 498 | <a name="l00719"></a>00719 <span class="comment">// pdfl = evallog ( val );</span> |
---|
| 499 | <a name="l00720"></a>00720 <span class="comment">// e = exp ( pdfl );</span> |
---|
| 500 | <a name="l00721"></a>00721 <span class="comment">// return e;</span> |
---|
| 501 | <a name="l00722"></a>00722 <span class="comment">// };</span> |
---|
| 502 | <a name="l00723"></a>00723 |
---|
| 503 | <a name="l00724"></a>00724 <span class="keyword">template</span><<span class="keyword">class</span> sq_T> |
---|
| 504 | <a name="l00725"></a><a class="code" href="classbdm_1_1enorm.html#e13aeed5b543b2179bacdc4fa2ae47a3">00725</a> <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1enorm.html" title="Gaussian density with positive definite (decomposed) covariance matrix.">enorm<sq_T>::evallog_nn</a> ( <span class="keyword">const</span> vec &val )<span class="keyword"> const </span>{ |
---|
| 505 | <a name="l00726"></a>00726 <span class="comment">// 1.83787706640935 = log(2pi)</span> |
---|
| 506 | <a name="l00727"></a>00727 <span class="keywordtype">double</span> tmp=-0.5* ( <a class="code" href="classbdm_1_1enorm.html#2d92dde696b2a7a5b10ddef5d22ba2c2" title="Covariance matrix in decomposed form.">R</a>.invqform ( <a class="code" href="classbdm_1_1enorm.html#c702a194720853570d08b65482f842c7" title="mean value">mu</a>-val ) );<span class="comment">// - lognc();</span> |
---|
| 507 | <a name="l00728"></a>00728 <span class="keywordflow">return</span> tmp; |
---|
| 508 | <a name="l00729"></a>00729 }; |
---|
| 509 | <a name="l00730"></a>00730 |
---|
| 510 | <a name="l00731"></a>00731 <span class="keyword">template</span><<span class="keyword">class</span> sq_T> |
---|
| 511 | <a name="l00732"></a><a class="code" href="classbdm_1_1enorm.html#25785343aff102cc5df1cab08ba16d32">00732</a> <span class="keyword">inline</span> <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1enorm.html" title="Gaussian density with positive definite (decomposed) covariance matrix.">enorm<sq_T>::lognc</a> ()<span class="keyword"> const </span>{ |
---|
| 512 | <a name="l00733"></a>00733 <span class="comment">// 1.83787706640935 = log(2pi)</span> |
---|
| 513 | <a name="l00734"></a>00734 <span class="keywordtype">double</span> tmp=0.5* ( <a class="code" href="classbdm_1_1enorm.html#2d92dde696b2a7a5b10ddef5d22ba2c2" title="Covariance matrix in decomposed form.">R</a>.cols() * 1.83787706640935 +<a class="code" href="classbdm_1_1enorm.html#2d92dde696b2a7a5b10ddef5d22ba2c2" title="Covariance matrix in decomposed form.">R</a>.logdet() ); |
---|
| 514 | <a name="l00735"></a>00735 <span class="keywordflow">return</span> tmp; |
---|
| 515 | <a name="l00736"></a>00736 }; |
---|
| 516 | <a name="l00737"></a>00737 |
---|
| 517 | <a name="l00738"></a>00738 <span class="keyword">template</span><<span class="keyword">class</span> sq_T> |
---|
| 518 | <a name="l00739"></a><a class="code" href="classbdm_1_1mlnorm.html#64d965df6811ff65b94718c427048f4a">00739</a> <a class="code" href="classbdm_1_1mlnorm.html" title="Normal distributed linear function with linear function of mean value;.">mlnorm<sq_T>::mlnorm</a> ( <span class="keyword">const</span> <a class="code" href="classbdm_1_1RV.html" title="Class representing variables, most often random variables.">RV</a> &rv0, <span class="keyword">const</span> <a class="code" href="classbdm_1_1RV.html" title="Class representing variables, most often random variables.">RV</a> &rvc0 ) :<a class="code" href="classbdm_1_1mEF.html" title="Exponential family model.">mEF</a> ( rv0,rvc0 ),<a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a> ( rv0 ),A ( rv0.count(),rv0.count() ),<a class="code" href="classbdm_1_1enorm.html#766127847e9482aea9226ea157295ea2" title="returns a pointer to the internal mean value. Use with Care!">_mu</a> ( <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>.<a class="code" href="classbdm_1_1enorm.html#766127847e9482aea9226ea157295ea2" title="returns a pointer to the internal mean value. Use with Care!">_mu</a>() ) { |
---|
| 519 | <a name="l00740"></a>00740 <a class="code" href="classbdm_1_1mpdf.html#5eea43c56d38e4441bfb30270db949c0" title="pointer to internal epdf">ep</a> =&<a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>; |
---|
| 520 | <a name="l00741"></a>00741 } |
---|
| 521 | <a name="l00742"></a>00742 |
---|
| 522 | <a name="l00743"></a>00743 <span class="keyword">template</span><<span class="keyword">class</span> sq_T> |
---|
| 523 | <a name="l00744"></a><a class="code" href="classbdm_1_1mlnorm.html#5d18dec3167584338a4775c1d165d96f">00744</a> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1mlnorm.html" title="Normal distributed linear function with linear function of mean value;.">mlnorm<sq_T>::set_parameters</a> ( <span class="keyword">const</span> mat &A0, <span class="keyword">const</span> vec &mu0, <span class="keyword">const</span> sq_T &R0 ) { |
---|
| 524 | <a name="l00745"></a>00745 <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>.set_parameters ( zeros ( <a class="code" href="classbdm_1_1mpdf.html#9bcfb45435d30983f436d41c298cbb51" title="modeled random variable">rv</a>.<a class="code" href="classbdm_1_1RV.html#2174751a00ce19f941edd2c1a861be67" title="Return number of scalars in the RV.">count</a>() ),R0 ); |
---|
| 525 | <a name="l00746"></a>00746 A = A0; |
---|
| 526 | <a name="l00747"></a>00747 mu_const = mu0; |
---|
| 527 | <a name="l00748"></a>00748 } |
---|
| 528 | <a name="l00749"></a>00749 |
---|
| 529 | <a name="l00750"></a>00750 <span class="comment">// template<class sq_T></span> |
---|
| 530 | <a name="l00751"></a>00751 <span class="comment">// vec mlnorm<sq_T>::samplecond (const vec &cond, double &lik ) {</span> |
---|
| 531 | <a name="l00752"></a>00752 <span class="comment">// this->condition ( cond );</span> |
---|
| 532 | <a name="l00753"></a>00753 <span class="comment">// vec smp = epdf.sample();</span> |
---|
| 533 | <a name="l00754"></a>00754 <span class="comment">// lik = epdf.eval ( smp );</span> |
---|
| 534 | <a name="l00755"></a>00755 <span class="comment">// return smp;</span> |
---|
| 535 | <a name="l00756"></a>00756 <span class="comment">// }</span> |
---|
| 536 | <a name="l00757"></a>00757 |
---|
| 537 | <a name="l00758"></a>00758 <span class="comment">// template<class sq_T></span> |
---|
| 538 | <a name="l00759"></a>00759 <span class="comment">// mat mlnorm<sq_T>::samplecond (const vec &cond, vec &lik, int n ) {</span> |
---|
| 539 | <a name="l00760"></a>00760 <span class="comment">// int i;</span> |
---|
| 540 | <a name="l00761"></a>00761 <span class="comment">// int dim = rv.count();</span> |
---|
| 541 | <a name="l00762"></a>00762 <span class="comment">// mat Smp ( dim,n );</span> |
---|
| 542 | <a name="l00763"></a>00763 <span class="comment">// vec smp ( dim );</span> |
---|
| 543 | <a name="l00764"></a>00764 <span class="comment">// this->condition ( cond );</span> |
---|
| 544 | <a name="l00765"></a>00765 <span class="comment">//</span> |
---|
| 545 | <a name="l00766"></a>00766 <span class="comment">// for ( i=0; i<n; i++ ) {</span> |
---|
| 546 | <a name="l00767"></a>00767 <span class="comment">// smp = epdf.sample();</span> |
---|
| 547 | <a name="l00768"></a>00768 <span class="comment">// lik ( i ) = epdf.eval ( smp );</span> |
---|
| 548 | <a name="l00769"></a>00769 <span class="comment">// Smp.set_col ( i ,smp );</span> |
---|
| 549 | <a name="l00770"></a>00770 <span class="comment">// }</span> |
---|
| 550 | <a name="l00771"></a>00771 <span class="comment">//</span> |
---|
| 551 | <a name="l00772"></a>00772 <span class="comment">// return Smp;</span> |
---|
| 552 | <a name="l00773"></a>00773 <span class="comment">// }</span> |
---|
| 553 | <a name="l00774"></a>00774 |
---|
| 554 | <a name="l00775"></a>00775 <span class="keyword">template</span><<span class="keyword">class</span> sq_T> |
---|
| 555 | <a name="l00776"></a><a class="code" href="classbdm_1_1mlnorm.html#0dafc0196e7e07fd06dc6716e0e18bc2">00776</a> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1mlnorm.html" title="Normal distributed linear function with linear function of mean value;.">mlnorm<sq_T>::condition</a> ( <span class="keyword">const</span> vec &cond ) { |
---|
| 556 | <a name="l00777"></a>00777 _mu = A*cond + mu_const; |
---|
| 557 | <a name="l00778"></a>00778 <span class="comment">//R is already assigned;</span> |
---|
| 558 | <a name="l00779"></a>00779 } |
---|
| 559 | <a name="l00780"></a>00780 |
---|
| 560 | <a name="l00781"></a>00781 <span class="keyword">template</span><<span class="keyword">class</span> sq_T> |
---|
| 561 | <a name="l00782"></a><a class="code" href="classbdm_1_1enorm.html#cd02d76e9d4f96bdd3fa6b604e273039">00782</a> <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>* <a class="code" href="classbdm_1_1enorm.html" title="Gaussian density with positive definite (decomposed) covariance matrix.">enorm<sq_T>::marginal</a> ( <span class="keyword">const</span> <a class="code" href="classbdm_1_1RV.html" title="Class representing variables, most often random variables.">RV</a> &rvn )<span class="keyword"> const </span>{ |
---|
| 562 | <a name="l00783"></a>00783 ivec irvn = rvn.<a class="code" href="classbdm_1_1RV.html#cbebdb5e0d30101a6eb63550ef701c55">dataind</a> ( <a class="code" href="classbdm_1_1epdf.html#62c5b8ff71d9ebe6cd58d3c342eb1dc8" title="Identified of the random variable.">rv</a> ); |
---|
| 563 | <a name="l00784"></a>00784 |
---|
| 564 | <a name="l00785"></a>00785 sq_T Rn ( <a class="code" href="classbdm_1_1enorm.html#2d92dde696b2a7a5b10ddef5d22ba2c2" title="Covariance matrix in decomposed form.">R</a>,irvn ); |
---|
| 565 | <a name="l00786"></a>00786 <a class="code" href="classbdm_1_1enorm.html" title="Gaussian density with positive definite (decomposed) covariance matrix.">enorm<sq_T></a>* tmp = <span class="keyword">new</span> <a class="code" href="classbdm_1_1enorm.html" title="Gaussian density with positive definite (decomposed) covariance matrix.">enorm<sq_T></a> ( rvn ); |
---|
| 566 | <a name="l00787"></a>00787 tmp-><a class="code" href="classbdm_1_1enorm.html#b8322f2c11560871dd922c660f4771bb" title="Set mean value mu and covariance R.">set_parameters</a> ( <a class="code" href="classbdm_1_1enorm.html#c702a194720853570d08b65482f842c7" title="mean value">mu</a> ( irvn ), Rn ); |
---|
| 567 | <a name="l00788"></a>00788 <span class="keywordflow">return</span> tmp; |
---|
| 568 | <a name="l00789"></a>00789 } |
---|
| 569 | <a name="l00790"></a>00790 |
---|
| 570 | <a name="l00791"></a>00791 <span class="keyword">template</span><<span class="keyword">class</span> sq_T> |
---|
| 571 | <a name="l00792"></a><a class="code" href="classbdm_1_1enorm.html#baea4d49c657342b58297d68cda16d26">00792</a> <a class="code" href="classbdm_1_1mpdf.html" title="Conditional probability density, e.g. modeling some dependencies.">mpdf</a>* <a class="code" href="classbdm_1_1enorm.html" title="Gaussian density with positive definite (decomposed) covariance matrix.">enorm<sq_T>::condition</a> ( <span class="keyword">const</span> <a class="code" href="classbdm_1_1RV.html" title="Class representing variables, most often random variables.">RV</a> &rvn )<span class="keyword"> const </span>{ |
---|
| 572 | <a name="l00793"></a>00793 |
---|
| 573 | <a name="l00794"></a>00794 <a class="code" href="classbdm_1_1RV.html" title="Class representing variables, most often random variables.">RV</a> rvc = <a class="code" href="classbdm_1_1epdf.html#62c5b8ff71d9ebe6cd58d3c342eb1dc8" title="Identified of the random variable.">rv</a>.<a class="code" href="classbdm_1_1RV.html#aec44dabdf0a6d90fbae95e1356eda39" title="Subtract another variable from the current one.">subt</a> ( rvn ); |
---|
| 574 | <a name="l00795"></a>00795 it_assert_debug ( ( rvc.<a class="code" href="classbdm_1_1RV.html#2174751a00ce19f941edd2c1a861be67" title="Return number of scalars in the RV.">count</a>() +rvn.<a class="code" href="classbdm_1_1RV.html#2174751a00ce19f941edd2c1a861be67" title="Return number of scalars in the RV.">count</a>() ==<a class="code" href="classbdm_1_1epdf.html#62c5b8ff71d9ebe6cd58d3c342eb1dc8" title="Identified of the random variable.">rv</a>.<a class="code" href="classbdm_1_1RV.html#2174751a00ce19f941edd2c1a861be67" title="Return number of scalars in the RV.">count</a>() ),<span class="stringliteral">"wrong rvn"</span> ); |
---|
| 575 | <a name="l00796"></a>00796 <span class="comment">//Permutation vector of the new R</span> |
---|
| 576 | <a name="l00797"></a>00797 ivec irvn = rvn.<a class="code" href="classbdm_1_1RV.html#cbebdb5e0d30101a6eb63550ef701c55">dataind</a> ( <a class="code" href="classbdm_1_1epdf.html#62c5b8ff71d9ebe6cd58d3c342eb1dc8" title="Identified of the random variable.">rv</a> ); |
---|
| 577 | <a name="l00798"></a>00798 ivec irvc = rvc.<a class="code" href="classbdm_1_1RV.html#cbebdb5e0d30101a6eb63550ef701c55">dataind</a> ( <a class="code" href="classbdm_1_1epdf.html#62c5b8ff71d9ebe6cd58d3c342eb1dc8" title="Identified of the random variable.">rv</a> ); |
---|
| 578 | <a name="l00799"></a>00799 ivec perm=concat ( irvn , irvc ); |
---|
| 579 | <a name="l00800"></a>00800 sq_T Rn ( <a class="code" href="classbdm_1_1enorm.html#2d92dde696b2a7a5b10ddef5d22ba2c2" title="Covariance matrix in decomposed form.">R</a>,perm ); |
---|
| 580 | <a name="l00801"></a>00801 |
---|
| 581 | <a name="l00802"></a>00802 <span class="comment">//fixme - could this be done in general for all sq_T?</span> |
---|
| 582 | <a name="l00803"></a>00803 mat S=Rn.to_mat(); |
---|
| 583 | <a name="l00804"></a>00804 <span class="comment">//fixme</span> |
---|
| 584 | <a name="l00805"></a>00805 <span class="keywordtype">int</span> n=rvn.<a class="code" href="classbdm_1_1RV.html#2174751a00ce19f941edd2c1a861be67" title="Return number of scalars in the RV.">count</a>()-1; |
---|
| 585 | <a name="l00806"></a>00806 <span class="keywordtype">int</span> end=<a class="code" href="classbdm_1_1enorm.html#2d92dde696b2a7a5b10ddef5d22ba2c2" title="Covariance matrix in decomposed form.">R</a>.rows()-1; |
---|
| 586 | <a name="l00807"></a>00807 mat S11 = S.get ( 0,n, 0, n ); |
---|
| 587 | <a name="l00808"></a>00808 mat S12 = S.get ( 0, n , rvn.<a class="code" href="classbdm_1_1RV.html#2174751a00ce19f941edd2c1a861be67" title="Return number of scalars in the RV.">count</a>(), end ); |
---|
| 588 | <a name="l00809"></a>00809 mat S22 = S.get ( rvn.<a class="code" href="classbdm_1_1RV.html#2174751a00ce19f941edd2c1a861be67" title="Return number of scalars in the RV.">count</a>(), end, rvn.<a class="code" href="classbdm_1_1RV.html#2174751a00ce19f941edd2c1a861be67" title="Return number of scalars in the RV.">count</a>(), end ); |
---|
| 589 | <a name="l00810"></a>00810 |
---|
| 590 | <a name="l00811"></a>00811 vec mu1 = <a class="code" href="classbdm_1_1enorm.html#c702a194720853570d08b65482f842c7" title="mean value">mu</a> ( irvn ); |
---|
| 591 | <a name="l00812"></a>00812 vec mu2 = <a class="code" href="classbdm_1_1enorm.html#c702a194720853570d08b65482f842c7" title="mean value">mu</a> ( irvc ); |
---|
| 592 | <a name="l00813"></a>00813 mat A=S12*inv ( S22 ); |
---|
| 593 | <a name="l00814"></a>00814 sq_T R_n ( S11 - A *S12.T() ); |
---|
[234] | 594 | <a name="l00815"></a>00815 |
---|
[255] | 595 | <a name="l00816"></a>00816 <a class="code" href="classbdm_1_1mlnorm.html" title="Normal distributed linear function with linear function of mean value;.">mlnorm<sq_T></a>* tmp=<span class="keyword">new</span> <a class="code" href="classbdm_1_1mlnorm.html" title="Normal distributed linear function with linear function of mean value;.">mlnorm<sq_T></a> ( rvn,rvc ); |
---|
| 596 | <a name="l00817"></a>00817 |
---|
| 597 | <a name="l00818"></a>00818 tmp->set_parameters ( A,mu1-A*mu2,R_n ); |
---|
| 598 | <a name="l00819"></a>00819 <span class="keywordflow">return</span> tmp; |
---|
| 599 | <a name="l00820"></a>00820 } |
---|
[234] | 600 | <a name="l00821"></a>00821 |
---|
[255] | 601 | <a name="l00823"></a>00823 |
---|
| 602 | <a name="l00824"></a>00824 <span class="keyword">template</span><<span class="keyword">class</span> sq_T> |
---|
| 603 | <a name="l00825"></a>00825 std::ostream &operator<< ( std::ostream &os, mlnorm<sq_T> &ml ) { |
---|
| 604 | <a name="l00826"></a>00826 os << <span class="stringliteral">"A:"</span><< ml.A<<endl; |
---|
| 605 | <a name="l00827"></a>00827 os << <span class="stringliteral">"mu:"</span><< ml.mu_const<<endl; |
---|
| 606 | <a name="l00828"></a>00828 os << <span class="stringliteral">"R:"</span> << ml.epdf._R().to_mat() <<endl; |
---|
| 607 | <a name="l00829"></a>00829 <span class="keywordflow">return</span> os; |
---|
| 608 | <a name="l00830"></a>00830 }; |
---|
| 609 | <a name="l00831"></a>00831 |
---|
| 610 | <a name="l00832"></a>00832 } |
---|
| 611 | <a name="l00833"></a>00833 <span class="preprocessor">#endif //EF_H</span> |
---|
[91] | 612 | </pre></div></div> |
---|
[255] | 613 | <hr size="1"><address style="text-align: right;"><small>Generated on Tue Jan 27 16:29:53 2009 for mixpp by |
---|
[8] | 614 | <a href="http://www.doxygen.org/index.html"> |
---|
[139] | 615 | <img src="doxygen.png" alt="doxygen" align="middle" border="0"></a> 1.5.6 </small></address> |
---|
[8] | 616 | </body> |
---|
| 617 | </html> |
---|