[8] | 1 | <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"> |
---|
| 2 | <html><head><meta http-equiv="Content-Type" content="text/html;charset=UTF-8"> |
---|
[19] | 3 | <title>mixpp: work/mixpp/bdm/stat/libEF.h Source File</title> |
---|
[8] | 4 | <link href="doxygen.css" rel="stylesheet" type="text/css"> |
---|
| 5 | <link href="tabs.css" rel="stylesheet" type="text/css"> |
---|
| 6 | </head><body> |
---|
[91] | 7 | <!-- Generated by Doxygen 1.5.5 --> |
---|
| 8 | <div class="navigation" id="top"> |
---|
| 9 | <div class="tabs"> |
---|
| 10 | <ul> |
---|
| 11 | <li><a href="index.html"><span>Main Page</span></a></li> |
---|
| 12 | <li><a href="pages.html"><span>Related Pages</span></a></li> |
---|
| 13 | <li><a href="annotated.html"><span>Classes</span></a></li> |
---|
| 14 | <li class="current"><a href="files.html"><span>Files</span></a></li> |
---|
| 15 | </ul> |
---|
| 16 | </div> |
---|
[19] | 17 | <h1>work/mixpp/bdm/stat/libEF.h</h1><a href="libEF_8h.html">Go to the documentation of this file.</a><div class="fragment"><pre class="fragment"><a name="l00001"></a>00001 |
---|
[8] | 18 | <a name="l00013"></a>00013 <span class="preprocessor">#ifndef EF_H</span> |
---|
| 19 | <a name="l00014"></a>00014 <span class="preprocessor"></span><span class="preprocessor">#define EF_H</span> |
---|
| 20 | <a name="l00015"></a>00015 <span class="preprocessor"></span> |
---|
| 21 | <a name="l00016"></a>00016 <span class="preprocessor">#include <itpp/itbase.h></span> |
---|
[19] | 22 | <a name="l00017"></a>00017 <span class="preprocessor">#include "../math/libDC.h"</span> |
---|
| 23 | <a name="l00018"></a>00018 <span class="preprocessor">#include "<a class="code" href="libBM_8h.html" title="Bayesian Models (bm) that use Bayes rule to learn from observations.">libBM.h</a>"</span> |
---|
[32] | 24 | <a name="l00019"></a>00019 <span class="preprocessor">#include "../itpp_ext.h"</span> |
---|
| 25 | <a name="l00020"></a>00020 <span class="comment">//#include <std></span> |
---|
| 26 | <a name="l00021"></a>00021 |
---|
| 27 | <a name="l00022"></a>00022 <span class="keyword">using namespace </span>itpp; |
---|
| 28 | <a name="l00023"></a>00023 |
---|
| 29 | <a name="l00024"></a>00024 |
---|
| 30 | <a name="l00026"></a>00026 <span class="keyword">extern</span> Uniform_RNG UniRNG; |
---|
[33] | 31 | <a name="l00028"></a>00028 <span class="keyword">extern</span> Normal_RNG NorRNG; |
---|
| 32 | <a name="l00030"></a>00030 <span class="keyword">extern</span> <a class="code" href="classitpp_1_1Gamma__RNG.html" title="Gamma distribution.">Gamma_RNG</a> GamRNG; |
---|
| 33 | <a name="l00031"></a>00031 |
---|
| 34 | <a name="l00038"></a><a class="code" href="classeEF.html">00038</a> <span class="keyword">class </span><a class="code" href="classeEF.html" title="General conjugate exponential family posterior density.">eEF</a> : <span class="keyword">public</span> <a class="code" href="classepdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a> { |
---|
| 35 | <a name="l00039"></a>00039 |
---|
| 36 | <a name="l00040"></a>00040 <span class="keyword">public</span>: |
---|
| 37 | <a name="l00041"></a>00041 <span class="comment">// eEF() :epdf() {};</span> |
---|
| 38 | <a name="l00043"></a><a class="code" href="classeEF.html#7e3c63655e8375c76bf1f421245427a7">00043</a> <span class="comment"></span> <a class="code" href="classeEF.html#7e3c63655e8375c76bf1f421245427a7" title="default constructor">eEF</a> ( <span class="keyword">const</span> <a class="code" href="classRV.html" title="Class representing variables, most often random variables.">RV</a> &<a class="code" href="classepdf.html#74da992e3f5d598da8850b646b79b9d9" title="Identified of the random variable.">rv</a> ) :<a class="code" href="classepdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a> ( rv ) {}; |
---|
| 39 | <a name="l00045"></a><a class="code" href="classeEF.html#fd88bc35550ec8fe9281d358216d0fcf">00045</a> <span class="keyword">virtual</span> <span class="keywordtype">void</span> <a class="code" href="classeEF.html#fd88bc35550ec8fe9281d358216d0fcf" title="TODO decide if it is really needed.">tupdate</a> ( <span class="keywordtype">double</span> phi, mat &vbar, <span class="keywordtype">double</span> nubar ) {}; |
---|
| 40 | <a name="l00047"></a><a class="code" href="classeEF.html#5863718c3b2fb1496dece10c5b745d5c">00047</a> <span class="keyword">virtual</span> <span class="keywordtype">void</span> <a class="code" href="classeEF.html#5863718c3b2fb1496dece10c5b745d5c" title="TODO decide if it is really needed.">dupdate</a> ( mat &v,<span class="keywordtype">double</span> nu=1.0 ) {}; |
---|
[32] | 41 | <a name="l00048"></a>00048 }; |
---|
| 42 | <a name="l00049"></a>00049 |
---|
[33] | 43 | <a name="l00056"></a><a class="code" href="classmEF.html">00056</a> <span class="keyword">class </span><a class="code" href="classmEF.html" title="Exponential family model.">mEF</a> : <span class="keyword">public</span> <a class="code" href="classmpdf.html" title="Conditional probability density, e.g. modeling some dependencies.">mpdf</a> { |
---|
| 44 | <a name="l00057"></a>00057 |
---|
| 45 | <a name="l00058"></a>00058 <span class="keyword">public</span>: |
---|
| 46 | <a name="l00060"></a><a class="code" href="classmEF.html#8bf51fe8654d7b83c8c8afeb19409d4f">00060</a> <a class="code" href="classmEF.html#8bf51fe8654d7b83c8c8afeb19409d4f" title="Default constructor.">mEF</a> ( <span class="keyword">const</span> <a class="code" href="classRV.html" title="Class representing variables, most often random variables.">RV</a> &rv0, <span class="keyword">const</span> <a class="code" href="classRV.html" title="Class representing variables, most often random variables.">RV</a> &rvc0 ) :<a class="code" href="classmpdf.html" title="Conditional probability density, e.g. modeling some dependencies.">mpdf</a> ( rv0,rvc0 ) {}; |
---|
| 47 | <a name="l00061"></a>00061 }; |
---|
[32] | 48 | <a name="l00062"></a>00062 |
---|
[33] | 49 | <a name="l00068"></a>00068 <span class="keyword">template</span><<span class="keyword">class</span> sq_T> |
---|
| 50 | <a name="l00069"></a>00069 |
---|
| 51 | <a name="l00070"></a><a class="code" href="classenorm.html">00070</a> <span class="keyword">class </span><a class="code" href="classenorm.html" title="Gaussian density with positive definite (decomposed) covariance matrix.">enorm</a> : <span class="keyword">public</span> <a class="code" href="classeEF.html" title="General conjugate exponential family posterior density.">eEF</a> { |
---|
| 52 | <a name="l00071"></a>00071 <span class="keyword">protected</span>: |
---|
| 53 | <a name="l00073"></a><a class="code" href="classenorm.html#71fde0d54bba147e00f612577f95ad20">00073</a> vec <a class="code" href="classenorm.html#71fde0d54bba147e00f612577f95ad20" title="mean value">mu</a>; |
---|
| 54 | <a name="l00075"></a><a class="code" href="classenorm.html#4ccc8d8514d644ef1c98d8ab023748a1">00075</a> sq_T <a class="code" href="classenorm.html#4ccc8d8514d644ef1c98d8ab023748a1" title="Covariance matrix in decomposed form.">R</a>; |
---|
[79] | 55 | <a name="l00077"></a><a class="code" href="classenorm.html#6938fc390a19cdaf6ad4503fcbaada4e">00077</a> <span class="keywordtype">int</span> <a class="code" href="classenorm.html#6938fc390a19cdaf6ad4503fcbaada4e" title="dimension (redundant from rv.count() for easier coding )">dim</a>; |
---|
| 56 | <a name="l00078"></a>00078 <span class="keyword">public</span>: |
---|
| 57 | <a name="l00079"></a>00079 <span class="comment">// enorm() :eEF() {};</span> |
---|
| 58 | <a name="l00081"></a>00081 <span class="comment"></span> <a class="code" href="classenorm.html#7b5cb487a2570e8109bfdc0df149aa06" title="Default constructor.">enorm</a> ( <a class="code" href="classRV.html" title="Class representing variables, most often random variables.">RV</a> &<a class="code" href="classepdf.html#74da992e3f5d598da8850b646b79b9d9" title="Identified of the random variable.">rv</a> ); |
---|
| 59 | <a name="l00083"></a>00083 <span class="keywordtype">void</span> <a class="code" href="classenorm.html#1394a65caa6e00d42e00cc99b12227af" title="Set mean value mu and covariance R.">set_parameters</a> ( <span class="keyword">const</span> vec &<a class="code" href="classenorm.html#71fde0d54bba147e00f612577f95ad20" title="mean value">mu</a>,<span class="keyword">const</span> sq_T &<a class="code" href="classenorm.html#4ccc8d8514d644ef1c98d8ab023748a1" title="Covariance matrix in decomposed form.">R</a> ); |
---|
| 60 | <a name="l00085"></a>00085 <span class="keywordtype">void</span> <a class="code" href="classenorm.html#5b5fd142b6b17ea334597960e3fe126a" title="tupdate in exponential form (not really handy)">tupdate</a> ( <span class="keywordtype">double</span> phi, mat &vbar, <span class="keywordtype">double</span> nubar ); |
---|
| 61 | <a name="l00087"></a>00087 <span class="keywordtype">void</span> <a class="code" href="classenorm.html#5bf185e31e5954fceb90ada3debd2ff2" title="dupdate in exponential form (not really handy)">dupdate</a> ( mat &v,<span class="keywordtype">double</span> nu=1.0 ); |
---|
| 62 | <a name="l00088"></a>00088 |
---|
| 63 | <a name="l00089"></a>00089 vec <a class="code" href="classenorm.html#60b47544f6181ffd4530d3e415ce12c5" title="Returns the required moment of the epdf.">sample</a>() <span class="keyword">const</span>; |
---|
| 64 | <a name="l00091"></a>00091 mat <a class="code" href="classenorm.html#60b47544f6181ffd4530d3e415ce12c5" title="Returns the required moment of the epdf.">sample</a> ( <span class="keywordtype">int</span> N ) <span class="keyword">const</span>; |
---|
| 65 | <a name="l00092"></a>00092 <span class="keywordtype">double</span> <a class="code" href="classenorm.html#b9e1dfd33692d7b3f1a59f17b0e61bd0" title="Compute probability of argument val.">eval</a> ( <span class="keyword">const</span> vec &val ) <span class="keyword">const</span> ; |
---|
| 66 | <a name="l00093"></a>00093 <span class="keywordtype">double</span> <a class="code" href="classenorm.html#609a7c33dbb4fdfab050f3bdd1122401" title="Compute log-probability of argument val.">evalpdflog</a> ( <span class="keyword">const</span> vec &val ) <span class="keyword">const</span>; |
---|
| 67 | <a name="l00094"></a><a class="code" href="classenorm.html#50fa84da7bae02f7af17a98f37566899">00094</a> vec <a class="code" href="classenorm.html#50fa84da7bae02f7af17a98f37566899" title="return expected value">mean</a>()<span class="keyword"> const </span>{<span class="keywordflow">return</span> <a class="code" href="classenorm.html#71fde0d54bba147e00f612577f95ad20" title="mean value">mu</a>;} |
---|
| 68 | <a name="l00095"></a>00095 |
---|
| 69 | <a name="l00096"></a>00096 <span class="comment">//Access methods</span> |
---|
| 70 | <a name="l00098"></a><a class="code" href="classenorm.html#0b8cb284e5af920a1b64a21d057ec5ac">00098</a> <span class="comment"></span> vec& <a class="code" href="classenorm.html#0b8cb284e5af920a1b64a21d057ec5ac" title="returns a pointer to the internal mean value. Use with Care!">_mu</a>() {<span class="keywordflow">return</span> <a class="code" href="classenorm.html#71fde0d54bba147e00f612577f95ad20" title="mean value">mu</a>;} |
---|
| 71 | <a name="l00099"></a>00099 |
---|
| 72 | <a name="l00101"></a><a class="code" href="classenorm.html#d892a38f03be12e572ea57d9689cef6b">00101</a> <span class="keywordtype">void</span> <a class="code" href="classenorm.html#d892a38f03be12e572ea57d9689cef6b" title="access function">set_mu</a>(<span class="keyword">const</span> vec mu0) { <a class="code" href="classenorm.html#71fde0d54bba147e00f612577f95ad20" title="mean value">mu</a>=mu0;} |
---|
| 73 | <a name="l00102"></a>00102 |
---|
| 74 | <a name="l00104"></a><a class="code" href="classenorm.html#7a5034b25771a84450a990d10fc40ac9">00104</a> sq_T& <a class="code" href="classenorm.html#7a5034b25771a84450a990d10fc40ac9" title="returns pointers to the internal variance and its inverse. Use with Care!">_R</a>() {<span class="keywordflow">return</span> <a class="code" href="classenorm.html#4ccc8d8514d644ef1c98d8ab023748a1" title="Covariance matrix in decomposed form.">R</a>;} |
---|
| 75 | <a name="l00105"></a>00105 |
---|
| 76 | <a name="l00107"></a><a class="code" href="classenorm.html#9b9f58dc86affa23511c246887420658">00107</a> mat <a class="code" href="classenorm.html#9b9f58dc86affa23511c246887420658" title="access method">getR</a> () {<span class="keywordflow">return</span> <a class="code" href="classenorm.html#4ccc8d8514d644ef1c98d8ab023748a1" title="Covariance matrix in decomposed form.">R</a>.to_mat();} |
---|
| 77 | <a name="l00108"></a>00108 }; |
---|
[33] | 78 | <a name="l00109"></a>00109 |
---|
[79] | 79 | <a name="l00119"></a><a class="code" href="classegamma.html">00119</a> <span class="keyword">class </span><a class="code" href="classegamma.html" title="Gamma posterior density.">egamma</a> : <span class="keyword">public</span> <a class="code" href="classeEF.html" title="General conjugate exponential family posterior density.">eEF</a> { |
---|
| 80 | <a name="l00120"></a>00120 <span class="keyword">protected</span>: |
---|
| 81 | <a name="l00122"></a><a class="code" href="classegamma.html#376cebd8932546c440f21b182910b01b">00122</a> vec <a class="code" href="classegamma.html#376cebd8932546c440f21b182910b01b" title="Vector .">alpha</a>; |
---|
| 82 | <a name="l00124"></a><a class="code" href="classegamma.html#cfc5f136467488a421ab22f886323790">00124</a> vec <a class="code" href="classegamma.html#cfc5f136467488a421ab22f886323790" title="Vector .">beta</a>; |
---|
| 83 | <a name="l00125"></a>00125 <span class="keyword">public</span> : |
---|
| 84 | <a name="l00127"></a><a class="code" href="classegamma.html#4b1d34f3b244ea51a58ec10c468788c1">00127</a> <a class="code" href="classegamma.html#4b1d34f3b244ea51a58ec10c468788c1" title="Default constructor.">egamma</a> ( <span class="keyword">const</span> <a class="code" href="classRV.html" title="Class representing variables, most often random variables.">RV</a> &<a class="code" href="classepdf.html#74da992e3f5d598da8850b646b79b9d9" title="Identified of the random variable.">rv</a> ) :<a class="code" href="classeEF.html" title="General conjugate exponential family posterior density.">eEF</a> ( rv ) {}; |
---|
| 85 | <a name="l00129"></a><a class="code" href="classegamma.html#8e348b89be82b70471fe8c5630f61339">00129</a> <span class="keywordtype">void</span> <a class="code" href="classegamma.html#8e348b89be82b70471fe8c5630f61339" title="Sets parameters.">set_parameters</a> ( <span class="keyword">const</span> vec &a, <span class="keyword">const</span> vec &b ) {<a class="code" href="classegamma.html#376cebd8932546c440f21b182910b01b" title="Vector .">alpha</a>=a,<a class="code" href="classegamma.html#cfc5f136467488a421ab22f886323790" title="Vector .">beta</a>=b;}; |
---|
| 86 | <a name="l00130"></a>00130 vec <a class="code" href="classegamma.html#8e10c0021b5dfdd9cb62c6959b5ef425" title="Returns the required moment of the epdf.">sample</a>() <span class="keyword">const</span>; |
---|
| 87 | <a name="l00132"></a>00132 mat <a class="code" href="classegamma.html#8e10c0021b5dfdd9cb62c6959b5ef425" title="Returns the required moment of the epdf.">sample</a> ( <span class="keywordtype">int</span> N ) <span class="keyword">const</span>; |
---|
| 88 | <a name="l00133"></a>00133 <span class="keywordtype">double</span> <a class="code" href="classegamma.html#de84faac8f9799dfe2777ddbedf997ef" title="Compute log-probability of argument val.">evalpdflog</a> ( <span class="keyword">const</span> vec &val ) <span class="keyword">const</span>; |
---|
| 89 | <a name="l00135"></a><a class="code" href="classegamma.html#44445c56e60b91b377f207f8d5089790">00135</a> <span class="keywordtype">void</span> <a class="code" href="classegamma.html#44445c56e60b91b377f207f8d5089790" title="Returns poiter to alpha and beta. Potentially dengerous: use with care!">_param</a> ( vec* &a, vec* &b ) {a=&<a class="code" href="classegamma.html#376cebd8932546c440f21b182910b01b" title="Vector .">alpha</a>;b=&<a class="code" href="classegamma.html#cfc5f136467488a421ab22f886323790" title="Vector .">beta</a>;}; |
---|
| 90 | <a name="l00136"></a><a class="code" href="classegamma.html#6ab5ba56f7cdb2e5921c3e77524fa50a">00136</a> vec <a class="code" href="classegamma.html#6ab5ba56f7cdb2e5921c3e77524fa50a" title="return expected value">mean</a>()<span class="keyword"> const </span>{vec pom ( <a class="code" href="classegamma.html#376cebd8932546c440f21b182910b01b" title="Vector .">alpha</a> ); pom/=<a class="code" href="classegamma.html#cfc5f136467488a421ab22f886323790" title="Vector .">beta</a>; <span class="keywordflow">return</span> pom;} |
---|
| 91 | <a name="l00137"></a>00137 }; |
---|
| 92 | <a name="l00138"></a>00138 <span class="comment">/*</span> |
---|
| 93 | <a name="l00140"></a>00140 <span class="comment">class emix : public epdf {</span> |
---|
| 94 | <a name="l00141"></a>00141 <span class="comment">protected:</span> |
---|
| 95 | <a name="l00142"></a>00142 <span class="comment"> int n;</span> |
---|
| 96 | <a name="l00143"></a>00143 <span class="comment"> vec &w;</span> |
---|
| 97 | <a name="l00144"></a>00144 <span class="comment"> Array<epdf*> Coms;</span> |
---|
| 98 | <a name="l00145"></a>00145 <span class="comment">public:</span> |
---|
| 99 | <a name="l00147"></a>00147 <span class="comment"> emix ( const RV &rv, vec &w0): epdf(rv), n(w0.length()), w(w0), Coms(n) {};</span> |
---|
| 100 | <a name="l00148"></a>00148 <span class="comment"> void set_parameters( int &i, double wi, epdf* ep){w(i)=wi;Coms(i)=ep;}</span> |
---|
| 101 | <a name="l00149"></a>00149 <span class="comment"> vec mean(){vec pom; for(int i=0;i<n;i++){pom+=Coms(i)->mean()*w(i);} return pom;};</span> |
---|
| 102 | <a name="l00150"></a>00150 <span class="comment"> vec sample() {it_error ( "Not implemented" );return 0;}</span> |
---|
| 103 | <a name="l00151"></a>00151 <span class="comment">};</span> |
---|
| 104 | <a name="l00152"></a>00152 <span class="comment">*/</span> |
---|
| 105 | <a name="l00153"></a>00153 |
---|
| 106 | <a name="l00155"></a>00155 |
---|
| 107 | <a name="l00156"></a><a class="code" href="classeuni.html">00156</a> <span class="keyword">class </span><a class="code" href="classeuni.html" title="Uniform distributed density on a rectangular support.">euni</a>: <span class="keyword">public</span> <a class="code" href="classepdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a> { |
---|
| 108 | <a name="l00157"></a>00157 <span class="keyword">protected</span>: |
---|
| 109 | <a name="l00159"></a><a class="code" href="classeuni.html#ef42cd8d7645422048d46c46ec5cdac1">00159</a> vec <a class="code" href="classeuni.html#ef42cd8d7645422048d46c46ec5cdac1" title="lower bound on support">low</a>; |
---|
| 110 | <a name="l00161"></a><a class="code" href="classeuni.html#71b6d6b41aeb61a7f76f682b72119231">00161</a> vec <a class="code" href="classeuni.html#71b6d6b41aeb61a7f76f682b72119231" title="upper bound on support">high</a>; |
---|
| 111 | <a name="l00163"></a><a class="code" href="classeuni.html#52a6ff4a54010f88a6a19fca605c64a4">00163</a> vec <a class="code" href="classeuni.html#52a6ff4a54010f88a6a19fca605c64a4" title="internal">distance</a>; |
---|
| 112 | <a name="l00165"></a><a class="code" href="classeuni.html#63105490e946e43372d6187ad1bafdda">00165</a> <span class="keywordtype">double</span> <a class="code" href="classeuni.html#63105490e946e43372d6187ad1bafdda" title="normalizing coefficients">nk</a>; |
---|
| 113 | <a name="l00167"></a><a class="code" href="classeuni.html#f445a0ce24f39d14c1a4eed53fc8e2c3">00167</a> <span class="keywordtype">double</span> <a class="code" href="classeuni.html#f445a0ce24f39d14c1a4eed53fc8e2c3" title="cache of log( nk )">lnk</a>; |
---|
| 114 | <a name="l00168"></a>00168 <span class="keyword">public</span>: |
---|
| 115 | <a name="l00170"></a><a class="code" href="classeuni.html#2537a6c239cff52e3ba814851a1116cd">00170</a> <a class="code" href="classeuni.html#2537a6c239cff52e3ba814851a1116cd" title="Defualt constructor.">euni</a> ( <span class="keyword">const</span> <a class="code" href="classRV.html" title="Class representing variables, most often random variables.">RV</a> <a class="code" href="classepdf.html#74da992e3f5d598da8850b646b79b9d9" title="Identified of the random variable.">rv</a> ) :<a class="code" href="classepdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a> ( rv ) {} |
---|
| 116 | <a name="l00171"></a><a class="code" href="classeuni.html#2723d4992900b5c5495bfa03628195ed">00171</a> <span class="keywordtype">double</span> <a class="code" href="classeuni.html#2723d4992900b5c5495bfa03628195ed" title="Compute probability of argument val.">eval</a> ( <span class="keyword">const</span> vec &val )<span class="keyword"> const </span>{<span class="keywordflow">return</span> <a class="code" href="classeuni.html#63105490e946e43372d6187ad1bafdda" title="normalizing coefficients">nk</a>;} |
---|
| 117 | <a name="l00172"></a><a class="code" href="classeuni.html#06af95d514a6623ad4688bd2ad50ad71">00172</a> <span class="keywordtype">double</span> <a class="code" href="classeuni.html#06af95d514a6623ad4688bd2ad50ad71" title="Compute log-probability of argument val.">evalpdflog</a> ( <span class="keyword">const</span> vec &val )<span class="keyword"> const </span>{<span class="keywordflow">return</span> <a class="code" href="classeuni.html#f445a0ce24f39d14c1a4eed53fc8e2c3" title="cache of log( nk )">lnk</a>;} |
---|
| 118 | <a name="l00173"></a><a class="code" href="classeuni.html#4a0e09392be17beaee120ba98fc038cd">00173</a> vec <a class="code" href="classeuni.html#4a0e09392be17beaee120ba98fc038cd" title="Returns the required moment of the epdf.">sample</a>()<span class="keyword"> const </span>{ |
---|
[91] | 119 | <a name="l00174"></a>00174 vec smp ( <a class="code" href="classepdf.html#74da992e3f5d598da8850b646b79b9d9" title="Identified of the random variable.">rv</a>.<a class="code" href="classRV.html#f5c7b8bd589eef09ccdf3329a0addea0" title="Return number of scalars in the RV.">count</a>() ); UniRNG.sample_vector ( <a class="code" href="classepdf.html#74da992e3f5d598da8850b646b79b9d9" title="Identified of the random variable.">rv</a>.<a class="code" href="classRV.html#f5c7b8bd589eef09ccdf3329a0addea0" title="Return number of scalars in the RV.">count</a>(),smp ); |
---|
[79] | 120 | <a name="l00175"></a>00175 <span class="keywordflow">return</span> <a class="code" href="classeuni.html#ef42cd8d7645422048d46c46ec5cdac1" title="lower bound on support">low</a>+<a class="code" href="classeuni.html#52a6ff4a54010f88a6a19fca605c64a4" title="internal">distance</a>*smp; |
---|
| 121 | <a name="l00176"></a>00176 } |
---|
| 122 | <a name="l00178"></a><a class="code" href="classeuni.html#4fd7c6a05100616ad16ece405cad7bf2">00178</a> <span class="keywordtype">void</span> <a class="code" href="classeuni.html#4fd7c6a05100616ad16ece405cad7bf2" title="set values of low and high ">set_parameters</a> ( <span class="keyword">const</span> vec &low0, <span class="keyword">const</span> vec &high0 ) { |
---|
| 123 | <a name="l00179"></a>00179 <a class="code" href="classeuni.html#52a6ff4a54010f88a6a19fca605c64a4" title="internal">distance</a> = high0-low0; |
---|
| 124 | <a name="l00180"></a>00180 it_assert_debug ( min ( <a class="code" href="classeuni.html#52a6ff4a54010f88a6a19fca605c64a4" title="internal">distance</a> ) >0.0,<span class="stringliteral">"bad support"</span> ); |
---|
| 125 | <a name="l00181"></a>00181 <a class="code" href="classeuni.html#ef42cd8d7645422048d46c46ec5cdac1" title="lower bound on support">low</a> = low0; |
---|
| 126 | <a name="l00182"></a>00182 <a class="code" href="classeuni.html#71b6d6b41aeb61a7f76f682b72119231" title="upper bound on support">high</a> = high0; |
---|
| 127 | <a name="l00183"></a>00183 <a class="code" href="classeuni.html#63105490e946e43372d6187ad1bafdda" title="normalizing coefficients">nk</a> = prod ( 1.0/<a class="code" href="classeuni.html#52a6ff4a54010f88a6a19fca605c64a4" title="internal">distance</a> ); |
---|
| 128 | <a name="l00184"></a>00184 <a class="code" href="classeuni.html#f445a0ce24f39d14c1a4eed53fc8e2c3" title="cache of log( nk )">lnk</a> = log ( <a class="code" href="classeuni.html#63105490e946e43372d6187ad1bafdda" title="normalizing coefficients">nk</a> ); |
---|
| 129 | <a name="l00185"></a>00185 } |
---|
| 130 | <a name="l00186"></a><a class="code" href="classeuni.html#8050087e421a9cfd1b4b1f8bd33b1cc1">00186</a> vec <a class="code" href="classeuni.html#8050087e421a9cfd1b4b1f8bd33b1cc1" title="return expected value">mean</a>()<span class="keyword"> const </span>{vec pom=<a class="code" href="classeuni.html#71b6d6b41aeb61a7f76f682b72119231" title="upper bound on support">high</a>; pom-=<a class="code" href="classeuni.html#ef42cd8d7645422048d46c46ec5cdac1" title="lower bound on support">low</a>; pom/=2.0; <span class="keywordflow">return</span> pom;} |
---|
| 131 | <a name="l00187"></a>00187 }; |
---|
| 132 | <a name="l00188"></a>00188 |
---|
| 133 | <a name="l00189"></a>00189 |
---|
| 134 | <a name="l00195"></a>00195 <span class="keyword">template</span><<span class="keyword">class</span> sq_T> |
---|
| 135 | <a name="l00196"></a><a class="code" href="classmlnorm.html">00196</a> <span class="keyword">class </span><a class="code" href="classmlnorm.html" title="Normal distributed linear function with linear function of mean value;.">mlnorm</a> : <span class="keyword">public</span> <a class="code" href="classmEF.html" title="Exponential family model.">mEF</a> { |
---|
| 136 | <a name="l00198"></a>00198 <a class="code" href="classenorm.html" title="Gaussian density with positive definite (decomposed) covariance matrix.">enorm<sq_T></a> <a class="code" href="classepdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>; |
---|
[91] | 137 | <a name="l00199"></a>00199 mat A; |
---|
| 138 | <a name="l00200"></a>00200 vec& _mu; <span class="comment">//cached epdf.mu;</span> |
---|
[79] | 139 | <a name="l00201"></a>00201 <span class="keyword">public</span>: |
---|
| 140 | <a name="l00203"></a>00203 <a class="code" href="classmlnorm.html#f927203b3f31171c5c10ffc7caa797f5" title="Constructor.">mlnorm</a> ( <a class="code" href="classRV.html" title="Class representing variables, most often random variables.">RV</a> &<a class="code" href="classmpdf.html#f6687c07ff07d47812dd565368ca59eb" title="modeled random variable">rv</a>,<a class="code" href="classRV.html" title="Class representing variables, most often random variables.">RV</a> &<a class="code" href="classmpdf.html#acb7dda792b3cd5576f39fa3129abbab" title="random variable in condition">rvc</a> ); |
---|
| 141 | <a name="l00205"></a>00205 <span class="keywordtype">void</span> <a class="code" href="classmlnorm.html#b6749030c5d5abcb3eb6898f74cea3c0" title="Set A and R.">set_parameters</a> ( <span class="keyword">const</span> mat &A, <span class="keyword">const</span> sq_T &R ); |
---|
| 142 | <a name="l00207"></a>00207 vec <a class="code" href="classmlnorm.html#decf3e3b5c8e0812e5b4dbe94fa2ae18" title="Generate one sample of the posterior.">samplecond</a> ( vec &cond, <span class="keywordtype">double</span> &lik ); |
---|
| 143 | <a name="l00209"></a>00209 mat <a class="code" href="classmlnorm.html#decf3e3b5c8e0812e5b4dbe94fa2ae18" title="Generate one sample of the posterior.">samplecond</a> ( vec &cond, vec &lik, <span class="keywordtype">int</span> n ); |
---|
| 144 | <a name="l00211"></a>00211 <span class="keywordtype">void</span> <a class="code" href="classmlnorm.html#5232fc7e305eceab4e2bd6a8daa44195" title="Set value of rvc . Result of this operation is stored in epdf use function _ep to...">condition</a> ( vec &cond ); |
---|
| 145 | <a name="l00212"></a>00212 }; |
---|
| 146 | <a name="l00213"></a>00213 |
---|
| 147 | <a name="l00223"></a><a class="code" href="classmgamma.html">00223</a> <span class="keyword">class </span><a class="code" href="classmgamma.html" title="Gamma random walk.">mgamma</a> : <span class="keyword">public</span> <a class="code" href="classmEF.html" title="Exponential family model.">mEF</a> { |
---|
| 148 | <a name="l00224"></a>00224 <span class="keyword">protected</span>: |
---|
| 149 | <a name="l00226"></a><a class="code" href="classmgamma.html#612dbf35c770a780027619aaac2c443e">00226</a> <a class="code" href="classegamma.html" title="Gamma posterior density.">egamma</a> <a class="code" href="classepdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>; |
---|
[91] | 150 | <a name="l00228"></a><a class="code" href="classmgamma.html#43f733cce0245a52363d566099add687">00228</a> <span class="keywordtype">double</span> <a class="code" href="classmgamma.html#43f733cce0245a52363d566099add687" title="Constant .">k</a>; |
---|
[79] | 151 | <a name="l00230"></a><a class="code" href="classmgamma.html#5e90652837448bcc29707e7412f99691">00230</a> vec* <a class="code" href="classmgamma.html#5e90652837448bcc29707e7412f99691" title="cache of epdf.beta">_beta</a>; |
---|
| 152 | <a name="l00231"></a>00231 |
---|
| 153 | <a name="l00232"></a>00232 <span class="keyword">public</span>: |
---|
| 154 | <a name="l00234"></a>00234 <a class="code" href="classmgamma.html#af43e61b86900c0398d5c0ffc83b94e6" title="Constructor.">mgamma</a> ( <span class="keyword">const</span> <a class="code" href="classRV.html" title="Class representing variables, most often random variables.">RV</a> &<a class="code" href="classmpdf.html#f6687c07ff07d47812dd565368ca59eb" title="modeled random variable">rv</a>,<span class="keyword">const</span> <a class="code" href="classRV.html" title="Class representing variables, most often random variables.">RV</a> &<a class="code" href="classmpdf.html#acb7dda792b3cd5576f39fa3129abbab" title="random variable in condition">rvc</a> ); |
---|
[91] | 155 | <a name="l00236"></a>00236 <span class="keywordtype">void</span> <a class="code" href="classmgamma.html#a9d646cf758a70126dde7c48790b6e94" title="Set value of k.">set_parameters</a> ( <span class="keywordtype">double</span> <a class="code" href="classmgamma.html#43f733cce0245a52363d566099add687" title="Constant .">k</a> ); |
---|
[79] | 156 | <a name="l00238"></a>00238 vec <a class="code" href="classmgamma.html#9f40dc43885085fad8e3d6652b79e139" title="Generate one sample of the posterior.">samplecond</a> ( vec &cond, <span class="keywordtype">double</span> &lik ); |
---|
| 157 | <a name="l00240"></a>00240 mat <a class="code" href="classmgamma.html#9f40dc43885085fad8e3d6652b79e139" title="Generate one sample of the posterior.">samplecond</a> ( vec &cond, vec &lik, <span class="keywordtype">int</span> n ); |
---|
[91] | 158 | <a name="l00241"></a><a class="code" href="classmgamma.html#a61094c9f7a2d64ea77b130cbc031f97">00241</a> <span class="keywordtype">void</span> <a class="code" href="classmgamma.html#a61094c9f7a2d64ea77b130cbc031f97" title="Update ep so that it represents this mpdf conditioned on rvc = cond.">condition</a> ( <span class="keyword">const</span> vec &val ) {*<a class="code" href="classmgamma.html#5e90652837448bcc29707e7412f99691" title="cache of epdf.beta">_beta</a>=<a class="code" href="classmgamma.html#43f733cce0245a52363d566099add687" title="Constant .">k</a>/val;}; |
---|
[79] | 159 | <a name="l00242"></a>00242 }; |
---|
| 160 | <a name="l00243"></a>00243 |
---|
| 161 | <a name="l00255"></a><a class="code" href="classmgamma__fix.html">00255</a> <span class="keyword">class </span><a class="code" href="classmgamma__fix.html" title="Gamma random walk around a fixed point.">mgamma_fix</a> : <span class="keyword">public</span> <a class="code" href="classmgamma.html" title="Gamma random walk.">mgamma</a> { |
---|
| 162 | <a name="l00256"></a>00256 <span class="keyword">protected</span>: |
---|
| 163 | <a name="l00257"></a>00257 <span class="keywordtype">double</span> l; |
---|
| 164 | <a name="l00258"></a>00258 vec refl; |
---|
| 165 | <a name="l00259"></a>00259 <span class="keyword">public</span>: |
---|
| 166 | <a name="l00261"></a><a class="code" href="classmgamma__fix.html#b92c3d2e5fd0381033a072e5ef3bcf80">00261</a> <a class="code" href="classmgamma__fix.html#b92c3d2e5fd0381033a072e5ef3bcf80" title="Constructor.">mgamma_fix</a> ( <span class="keyword">const</span> <a class="code" href="classRV.html" title="Class representing variables, most often random variables.">RV</a> &<a class="code" href="classmpdf.html#f6687c07ff07d47812dd565368ca59eb" title="modeled random variable">rv</a>,<span class="keyword">const</span> <a class="code" href="classRV.html" title="Class representing variables, most often random variables.">RV</a> &<a class="code" href="classmpdf.html#acb7dda792b3cd5576f39fa3129abbab" title="random variable in condition">rvc</a> ) : <a class="code" href="classmgamma.html" title="Gamma random walk.">mgamma</a> ( rv,rvc ),refl ( rv.count() ) {}; |
---|
| 167 | <a name="l00263"></a><a class="code" href="classmgamma__fix.html#ec6f846896749e27cb7be9fa48dd1cb1">00263</a> <span class="keywordtype">void</span> <a class="code" href="classmgamma__fix.html#ec6f846896749e27cb7be9fa48dd1cb1" title="Set value of k.">set_parameters</a> ( <span class="keywordtype">double</span> k0 , vec ref0, <span class="keywordtype">double</span> l0 ) { |
---|
| 168 | <a name="l00264"></a>00264 <a class="code" href="classmgamma.html#a9d646cf758a70126dde7c48790b6e94" title="Set value of k.">mgamma::set_parameters</a> ( k0 ); |
---|
| 169 | <a name="l00265"></a>00265 refl=pow ( ref0,1.0-l0 );l=l0; |
---|
| 170 | <a name="l00266"></a>00266 }; |
---|
| 171 | <a name="l00267"></a>00267 |
---|
[91] | 172 | <a name="l00268"></a><a class="code" href="classmgamma__fix.html#6ea3931eec7b7da7b693e45981052460">00268</a> <span class="keywordtype">void</span> <a class="code" href="classmgamma__fix.html#6ea3931eec7b7da7b693e45981052460" title="Update ep so that it represents this mpdf conditioned on rvc = cond.">condition</a> ( <span class="keyword">const</span> vec &val ) {vec mean=elem_mult ( refl,pow ( val,l ) ); *<a class="code" href="classmgamma.html#5e90652837448bcc29707e7412f99691" title="cache of epdf.beta">_beta</a>=<a class="code" href="classmgamma.html#43f733cce0245a52363d566099add687" title="Constant .">k</a>/mean;}; |
---|
[79] | 173 | <a name="l00269"></a>00269 }; |
---|
| 174 | <a name="l00270"></a>00270 |
---|
| 175 | <a name="l00272"></a><a class="code" href="libEF_8h.html#99497a3ff630f761cf6bff7babd23212">00272</a> <span class="keyword">enum</span> <a class="code" href="libEF_8h.html#99497a3ff630f761cf6bff7babd23212" title="Switch between various resampling methods.">RESAMPLING_METHOD</a> { MULTINOMIAL = 0, STRATIFIED = 1, SYSTEMATIC = 3 }; |
---|
| 176 | <a name="l00278"></a><a class="code" href="classeEmp.html">00278</a> <span class="keyword">class </span><a class="code" href="classeEmp.html" title="Weighted empirical density.">eEmp</a>: <span class="keyword">public</span> <a class="code" href="classepdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a> { |
---|
| 177 | <a name="l00279"></a>00279 <span class="keyword">protected</span> : |
---|
| 178 | <a name="l00281"></a><a class="code" href="classeEmp.html#8c33034de0e35f03f8bb85d3d67438fd">00281</a> <span class="keywordtype">int</span> <a class="code" href="classeEmp.html#8c33034de0e35f03f8bb85d3d67438fd" title="Number of particles.">n</a>; |
---|
[91] | 179 | <a name="l00283"></a><a class="code" href="classeEmp.html#ae78d144404ddba843c93b171b215de8">00283</a> vec <a class="code" href="classeEmp.html#ae78d144404ddba843c93b171b215de8" title="Sample weights .">w</a>; |
---|
[79] | 180 | <a name="l00285"></a><a class="code" href="classeEmp.html#a4d6f4bbd6a6824fc39f14676701279a">00285</a> Array<vec> <a class="code" href="classeEmp.html#a4d6f4bbd6a6824fc39f14676701279a" title="Samples .">samples</a>; |
---|
| 181 | <a name="l00286"></a>00286 <span class="keyword">public</span>: |
---|
[91] | 182 | <a name="l00288"></a><a class="code" href="classeEmp.html#0c04b073ecd0dae3d498e680ae27e9e4">00288</a> <a class="code" href="classeEmp.html#0c04b073ecd0dae3d498e680ae27e9e4" title="Default constructor.">eEmp</a> ( <span class="keyword">const</span> <a class="code" href="classRV.html" title="Class representing variables, most often random variables.">RV</a> &rv0 ,<span class="keywordtype">int</span> n0 ) :<a class="code" href="classepdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a> ( rv0 ),<a class="code" href="classeEmp.html#8c33034de0e35f03f8bb85d3d67438fd" title="Number of particles.">n</a> ( n0 ),<a class="code" href="classeEmp.html#ae78d144404ddba843c93b171b215de8" title="Sample weights .">w</a> ( <a class="code" href="classeEmp.html#8c33034de0e35f03f8bb85d3d67438fd" title="Number of particles.">n</a> ),<a class="code" href="classeEmp.html#a4d6f4bbd6a6824fc39f14676701279a" title="Samples .">samples</a> ( <a class="code" href="classeEmp.html#8c33034de0e35f03f8bb85d3d67438fd" title="Number of particles.">n</a> ) {}; |
---|
[79] | 183 | <a name="l00290"></a>00290 <span class="keywordtype">void</span> <a class="code" href="classeEmp.html#6606a656c1b28114f7384c25aaf80e8d" title="Set sample.">set_parameters</a> ( <span class="keyword">const</span> vec &w0, <a class="code" href="classepdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>* pdf0 ); |
---|
[91] | 184 | <a name="l00292"></a><a class="code" href="classeEmp.html#31b2bfb73b72486a5c89f2ab850c7a9b">00292</a> vec& <a class="code" href="classeEmp.html#31b2bfb73b72486a5c89f2ab850c7a9b" title="Potentially dangerous, use with care.">_w</a>() {<span class="keywordflow">return</span> <a class="code" href="classeEmp.html#ae78d144404ddba843c93b171b215de8" title="Sample weights .">w</a>;}; |
---|
[79] | 185 | <a name="l00294"></a><a class="code" href="classeEmp.html#31b747eca73b16f30370827ba4cc3575">00294</a> Array<vec>& <a class="code" href="classeEmp.html#31b747eca73b16f30370827ba4cc3575" title="access function">_samples</a>() {<span class="keywordflow">return</span> <a class="code" href="classeEmp.html#a4d6f4bbd6a6824fc39f14676701279a" title="Samples .">samples</a>;}; |
---|
| 186 | <a name="l00296"></a>00296 ivec <a class="code" href="classeEmp.html#77268292fc4465cb73ddbfb1f2932a59" title="Function performs resampling, i.e. removal of low-weight samples and duplication...">resample</a> ( <a class="code" href="libEF_8h.html#99497a3ff630f761cf6bff7babd23212" title="Switch between various resampling methods.">RESAMPLING_METHOD</a> method = SYSTEMATIC ); |
---|
| 187 | <a name="l00298"></a><a class="code" href="classeEmp.html#83f9283f92b805508d896479dc1ccf12">00298</a> vec <a class="code" href="classeEmp.html#83f9283f92b805508d896479dc1ccf12" title="inherited operation : NOT implemneted">sample</a>()<span class="keyword"> const </span>{it_error ( <span class="stringliteral">"Not implemented"</span> );<span class="keywordflow">return</span> 0;} |
---|
| 188 | <a name="l00300"></a><a class="code" href="classeEmp.html#23e7358995400865ad2e278945922fb3">00300</a> <span class="keywordtype">double</span> <a class="code" href="classeEmp.html#23e7358995400865ad2e278945922fb3" title="inherited operation : NOT implemneted">evalpdflog</a> ( <span class="keyword">const</span> vec &val )<span class="keyword"> const </span>{it_error ( <span class="stringliteral">"Not implemented"</span> );<span class="keywordflow">return</span> 0.0;} |
---|
| 189 | <a name="l00301"></a><a class="code" href="classeEmp.html#ba055c19038cc72628d98e25197e982d">00301</a> vec <a class="code" href="classeEmp.html#ba055c19038cc72628d98e25197e982d" title="return expected value">mean</a>()<span class="keyword"> const </span>{ |
---|
[91] | 190 | <a name="l00302"></a>00302 vec pom=zeros ( <a class="code" href="classepdf.html#74da992e3f5d598da8850b646b79b9d9" title="Identified of the random variable.">rv</a>.<a class="code" href="classRV.html#f5c7b8bd589eef09ccdf3329a0addea0" title="Return number of scalars in the RV.">count</a>() ); |
---|
| 191 | <a name="l00303"></a>00303 <span class="keywordflow">for</span> ( <span class="keywordtype">int</span> i=0;i<<a class="code" href="classeEmp.html#8c33034de0e35f03f8bb85d3d67438fd" title="Number of particles.">n</a>;i++ ) {pom+=<a class="code" href="classeEmp.html#a4d6f4bbd6a6824fc39f14676701279a" title="Samples .">samples</a> ( i ) *<a class="code" href="classeEmp.html#ae78d144404ddba843c93b171b215de8" title="Sample weights .">w</a> ( i );} |
---|
[79] | 192 | <a name="l00304"></a>00304 <span class="keywordflow">return</span> pom; |
---|
| 193 | <a name="l00305"></a>00305 } |
---|
| 194 | <a name="l00306"></a>00306 }; |
---|
| 195 | <a name="l00307"></a>00307 |
---|
[33] | 196 | <a name="l00308"></a>00308 |
---|
[79] | 197 | <a name="l00310"></a>00310 |
---|
| 198 | <a name="l00311"></a>00311 <span class="keyword">template</span><<span class="keyword">class</span> sq_T> |
---|
| 199 | <a name="l00312"></a><a class="code" href="classenorm.html#7b5cb487a2570e8109bfdc0df149aa06">00312</a> <a class="code" href="classenorm.html#7b5cb487a2570e8109bfdc0df149aa06" title="Default constructor.">enorm<sq_T>::enorm</a> ( <a class="code" href="classRV.html" title="Class representing variables, most often random variables.">RV</a> &rv ) :<a class="code" href="classeEF.html" title="General conjugate exponential family posterior density.">eEF</a> ( rv ), mu ( rv.count() ),R ( rv.count() ),dim ( rv.count() ) {}; |
---|
| 200 | <a name="l00313"></a>00313 |
---|
| 201 | <a name="l00314"></a>00314 <span class="keyword">template</span><<span class="keyword">class</span> sq_T> |
---|
| 202 | <a name="l00315"></a><a class="code" href="classenorm.html#1394a65caa6e00d42e00cc99b12227af">00315</a> <span class="keywordtype">void</span> <a class="code" href="classenorm.html#1394a65caa6e00d42e00cc99b12227af" title="Set mean value mu and covariance R.">enorm<sq_T>::set_parameters</a> ( <span class="keyword">const</span> vec &mu0, <span class="keyword">const</span> sq_T &R0 ) { |
---|
| 203 | <a name="l00316"></a>00316 <span class="comment">//Fixme test dimensions of mu0 and R0;</span> |
---|
| 204 | <a name="l00317"></a>00317 <a class="code" href="classenorm.html#71fde0d54bba147e00f612577f95ad20" title="mean value">mu</a> = mu0; |
---|
| 205 | <a name="l00318"></a>00318 <a class="code" href="classenorm.html#4ccc8d8514d644ef1c98d8ab023748a1" title="Covariance matrix in decomposed form.">R</a> = R0; |
---|
| 206 | <a name="l00319"></a>00319 }; |
---|
| 207 | <a name="l00320"></a>00320 |
---|
| 208 | <a name="l00321"></a>00321 <span class="keyword">template</span><<span class="keyword">class</span> sq_T> |
---|
| 209 | <a name="l00322"></a><a class="code" href="classenorm.html#5bf185e31e5954fceb90ada3debd2ff2">00322</a> <span class="keywordtype">void</span> <a class="code" href="classenorm.html#5bf185e31e5954fceb90ada3debd2ff2" title="dupdate in exponential form (not really handy)">enorm<sq_T>::dupdate</a> ( mat &v, <span class="keywordtype">double</span> nu ) { |
---|
| 210 | <a name="l00323"></a>00323 <span class="comment">//</span> |
---|
| 211 | <a name="l00324"></a>00324 }; |
---|
[33] | 212 | <a name="l00325"></a>00325 |
---|
[79] | 213 | <a name="l00326"></a>00326 <span class="keyword">template</span><<span class="keyword">class</span> sq_T> |
---|
| 214 | <a name="l00327"></a><a class="code" href="classenorm.html#5b5fd142b6b17ea334597960e3fe126a">00327</a> <span class="keywordtype">void</span> <a class="code" href="classenorm.html#5b5fd142b6b17ea334597960e3fe126a" title="tupdate in exponential form (not really handy)">enorm<sq_T>::tupdate</a> ( <span class="keywordtype">double</span> phi, mat &vbar, <span class="keywordtype">double</span> nubar ) { |
---|
| 215 | <a name="l00328"></a>00328 <span class="comment">//</span> |
---|
| 216 | <a name="l00329"></a>00329 }; |
---|
| 217 | <a name="l00330"></a>00330 |
---|
| 218 | <a name="l00331"></a>00331 <span class="keyword">template</span><<span class="keyword">class</span> sq_T> |
---|
| 219 | <a name="l00332"></a><a class="code" href="classenorm.html#60b47544f6181ffd4530d3e415ce12c5">00332</a> vec <a class="code" href="classenorm.html#60b47544f6181ffd4530d3e415ce12c5" title="Returns the required moment of the epdf.">enorm<sq_T>::sample</a>()<span class="keyword"> const </span>{ |
---|
| 220 | <a name="l00333"></a>00333 vec x ( <a class="code" href="classenorm.html#6938fc390a19cdaf6ad4503fcbaada4e" title="dimension (redundant from rv.count() for easier coding )">dim</a> ); |
---|
| 221 | <a name="l00334"></a>00334 NorRNG.sample_vector ( <a class="code" href="classenorm.html#6938fc390a19cdaf6ad4503fcbaada4e" title="dimension (redundant from rv.count() for easier coding )">dim</a>,x ); |
---|
| 222 | <a name="l00335"></a>00335 vec smp = <a class="code" href="classenorm.html#4ccc8d8514d644ef1c98d8ab023748a1" title="Covariance matrix in decomposed form.">R</a>.sqrt_mult ( x ); |
---|
| 223 | <a name="l00336"></a>00336 |
---|
| 224 | <a name="l00337"></a>00337 smp += <a class="code" href="classenorm.html#71fde0d54bba147e00f612577f95ad20" title="mean value">mu</a>; |
---|
| 225 | <a name="l00338"></a>00338 <span class="keywordflow">return</span> smp; |
---|
| 226 | <a name="l00339"></a>00339 }; |
---|
| 227 | <a name="l00340"></a>00340 |
---|
| 228 | <a name="l00341"></a>00341 <span class="keyword">template</span><<span class="keyword">class</span> sq_T> |
---|
| 229 | <a name="l00342"></a><a class="code" href="classenorm.html#60f0f3bfa53d6e65843eea9532b16d36">00342</a> mat <a class="code" href="classenorm.html#60b47544f6181ffd4530d3e415ce12c5" title="Returns the required moment of the epdf.">enorm<sq_T>::sample</a> ( <span class="keywordtype">int</span> N )<span class="keyword"> const </span>{ |
---|
| 230 | <a name="l00343"></a>00343 mat X ( <a class="code" href="classenorm.html#6938fc390a19cdaf6ad4503fcbaada4e" title="dimension (redundant from rv.count() for easier coding )">dim</a>,N ); |
---|
| 231 | <a name="l00344"></a>00344 vec x ( <a class="code" href="classenorm.html#6938fc390a19cdaf6ad4503fcbaada4e" title="dimension (redundant from rv.count() for easier coding )">dim</a> ); |
---|
| 232 | <a name="l00345"></a>00345 vec pom; |
---|
| 233 | <a name="l00346"></a>00346 <span class="keywordtype">int</span> i; |
---|
[33] | 234 | <a name="l00347"></a>00347 |
---|
[79] | 235 | <a name="l00348"></a>00348 <span class="keywordflow">for</span> ( i=0;i<N;i++ ) { |
---|
| 236 | <a name="l00349"></a>00349 NorRNG.sample_vector ( <a class="code" href="classenorm.html#6938fc390a19cdaf6ad4503fcbaada4e" title="dimension (redundant from rv.count() for easier coding )">dim</a>,x ); |
---|
| 237 | <a name="l00350"></a>00350 pom = <a class="code" href="classenorm.html#4ccc8d8514d644ef1c98d8ab023748a1" title="Covariance matrix in decomposed form.">R</a>.sqrt_mult ( x ); |
---|
| 238 | <a name="l00351"></a>00351 pom +=<a class="code" href="classenorm.html#71fde0d54bba147e00f612577f95ad20" title="mean value">mu</a>; |
---|
| 239 | <a name="l00352"></a>00352 X.set_col ( i, pom ); |
---|
| 240 | <a name="l00353"></a>00353 } |
---|
| 241 | <a name="l00354"></a>00354 |
---|
| 242 | <a name="l00355"></a>00355 <span class="keywordflow">return</span> X; |
---|
| 243 | <a name="l00356"></a>00356 }; |
---|
[33] | 244 | <a name="l00357"></a>00357 |
---|
| 245 | <a name="l00358"></a>00358 <span class="keyword">template</span><<span class="keyword">class</span> sq_T> |
---|
[79] | 246 | <a name="l00359"></a><a class="code" href="classenorm.html#b9e1dfd33692d7b3f1a59f17b0e61bd0">00359</a> <span class="keywordtype">double</span> <a class="code" href="classenorm.html#b9e1dfd33692d7b3f1a59f17b0e61bd0" title="Compute probability of argument val.">enorm<sq_T>::eval</a> ( <span class="keyword">const</span> vec &val )<span class="keyword"> const </span>{ |
---|
| 247 | <a name="l00360"></a>00360 <span class="keywordtype">double</span> pdfl,e; |
---|
| 248 | <a name="l00361"></a>00361 pdfl = <a class="code" href="classenorm.html#609a7c33dbb4fdfab050f3bdd1122401" title="Compute log-probability of argument val.">evalpdflog</a> ( val ); |
---|
| 249 | <a name="l00362"></a>00362 e = exp ( pdfl ); |
---|
| 250 | <a name="l00363"></a>00363 <span class="keywordflow">return</span> e; |
---|
| 251 | <a name="l00364"></a>00364 }; |
---|
| 252 | <a name="l00365"></a>00365 |
---|
| 253 | <a name="l00366"></a>00366 <span class="keyword">template</span><<span class="keyword">class</span> sq_T> |
---|
| 254 | <a name="l00367"></a><a class="code" href="classenorm.html#609a7c33dbb4fdfab050f3bdd1122401">00367</a> <span class="keywordtype">double</span> <a class="code" href="classenorm.html#609a7c33dbb4fdfab050f3bdd1122401" title="Compute log-probability of argument val.">enorm<sq_T>::evalpdflog</a> ( <span class="keyword">const</span> vec &val )<span class="keyword"> const </span>{ |
---|
| 255 | <a name="l00368"></a>00368 <span class="comment">// 1.83787706640935 = log(2pi)</span> |
---|
| 256 | <a name="l00369"></a>00369 <span class="keywordflow">return</span> -0.5* ( <a class="code" href="classenorm.html#4ccc8d8514d644ef1c98d8ab023748a1" title="Covariance matrix in decomposed form.">R</a>.cols() * 1.83787706640935 +<a class="code" href="classenorm.html#4ccc8d8514d644ef1c98d8ab023748a1" title="Covariance matrix in decomposed form.">R</a>.logdet() +<a class="code" href="classenorm.html#4ccc8d8514d644ef1c98d8ab023748a1" title="Covariance matrix in decomposed form.">R</a>.invqform ( <a class="code" href="classenorm.html#71fde0d54bba147e00f612577f95ad20" title="mean value">mu</a>-val ) ); |
---|
| 257 | <a name="l00370"></a>00370 }; |
---|
[33] | 258 | <a name="l00371"></a>00371 |
---|
[79] | 259 | <a name="l00372"></a>00372 |
---|
| 260 | <a name="l00373"></a>00373 <span class="keyword">template</span><<span class="keyword">class</span> sq_T> |
---|
| 261 | <a name="l00374"></a><a class="code" href="classmlnorm.html#f927203b3f31171c5c10ffc7caa797f5">00374</a> <a class="code" href="classmlnorm.html#f927203b3f31171c5c10ffc7caa797f5" title="Constructor.">mlnorm<sq_T>::mlnorm</a> ( <a class="code" href="classRV.html" title="Class representing variables, most often random variables.">RV</a> &rv0,<a class="code" href="classRV.html" title="Class representing variables, most often random variables.">RV</a> &rvc0 ) :<a class="code" href="classmEF.html" title="Exponential family model.">mEF</a> ( rv0,rvc0 ),<a class="code" href="classepdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a> ( <a class="code" href="classepdf.html#74da992e3f5d598da8850b646b79b9d9" title="Identified of the random variable.">rv</a> ),A ( rv0.count(),rv0.count() ),<a class="code" href="classenorm.html#0b8cb284e5af920a1b64a21d057ec5ac" title="returns a pointer to the internal mean value. Use with Care!">_mu</a>(<a class="code" href="classepdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>.<a class="code" href="classenorm.html#0b8cb284e5af920a1b64a21d057ec5ac" title="returns a pointer to the internal mean value. Use with Care!">_mu</a>()) { |
---|
| 262 | <a name="l00375"></a>00375 } |
---|
| 263 | <a name="l00376"></a>00376 |
---|
| 264 | <a name="l00377"></a>00377 <span class="keyword">template</span><<span class="keyword">class</span> sq_T> |
---|
| 265 | <a name="l00378"></a><a class="code" href="classmlnorm.html#b6749030c5d5abcb3eb6898f74cea3c0">00378</a> <span class="keywordtype">void</span> <a class="code" href="classmlnorm.html#b6749030c5d5abcb3eb6898f74cea3c0" title="Set A and R.">mlnorm<sq_T>::set_parameters</a> ( <span class="keyword">const</span> mat &A0, <span class="keyword">const</span> sq_T &R0 ) { |
---|
[91] | 266 | <a name="l00379"></a>00379 <a class="code" href="classepdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>.set_parameters ( zeros ( <a class="code" href="classmpdf.html#f6687c07ff07d47812dd565368ca59eb" title="modeled random variable">rv</a>.<a class="code" href="classRV.html#f5c7b8bd589eef09ccdf3329a0addea0" title="Return number of scalars in the RV.">count</a>() ),R0 ); |
---|
[79] | 267 | <a name="l00380"></a>00380 A = A0; |
---|
| 268 | <a name="l00381"></a>00381 } |
---|
| 269 | <a name="l00382"></a>00382 |
---|
| 270 | <a name="l00383"></a>00383 <span class="keyword">template</span><<span class="keyword">class</span> sq_T> |
---|
| 271 | <a name="l00384"></a><a class="code" href="classmlnorm.html#decf3e3b5c8e0812e5b4dbe94fa2ae18">00384</a> vec <a class="code" href="classmlnorm.html#decf3e3b5c8e0812e5b4dbe94fa2ae18" title="Generate one sample of the posterior.">mlnorm<sq_T>::samplecond</a> ( vec &cond, <span class="keywordtype">double</span> &lik ) { |
---|
| 272 | <a name="l00385"></a>00385 this-><a class="code" href="classmlnorm.html#5232fc7e305eceab4e2bd6a8daa44195" title="Set value of rvc . Result of this operation is stored in epdf use function _ep to...">condition</a> ( cond ); |
---|
| 273 | <a name="l00386"></a>00386 vec smp = <a class="code" href="classepdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>.sample(); |
---|
| 274 | <a name="l00387"></a>00387 lik = <a class="code" href="classepdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>.eval ( smp ); |
---|
| 275 | <a name="l00388"></a>00388 <span class="keywordflow">return</span> smp; |
---|
| 276 | <a name="l00389"></a>00389 } |
---|
| 277 | <a name="l00390"></a>00390 |
---|
| 278 | <a name="l00391"></a>00391 <span class="keyword">template</span><<span class="keyword">class</span> sq_T> |
---|
| 279 | <a name="l00392"></a><a class="code" href="classmlnorm.html#215fb88cc8b95d64cdefd6849abdd1e8">00392</a> mat <a class="code" href="classmlnorm.html#decf3e3b5c8e0812e5b4dbe94fa2ae18" title="Generate one sample of the posterior.">mlnorm<sq_T>::samplecond</a> ( vec &cond, vec &lik, <span class="keywordtype">int</span> n ) { |
---|
| 280 | <a name="l00393"></a>00393 <span class="keywordtype">int</span> i; |
---|
[91] | 281 | <a name="l00394"></a>00394 <span class="keywordtype">int</span> dim = <a class="code" href="classmpdf.html#f6687c07ff07d47812dd565368ca59eb" title="modeled random variable">rv</a>.<a class="code" href="classRV.html#f5c7b8bd589eef09ccdf3329a0addea0" title="Return number of scalars in the RV.">count</a>(); |
---|
[79] | 282 | <a name="l00395"></a>00395 mat Smp ( dim,n ); |
---|
| 283 | <a name="l00396"></a>00396 vec smp ( dim ); |
---|
| 284 | <a name="l00397"></a>00397 this-><a class="code" href="classmlnorm.html#5232fc7e305eceab4e2bd6a8daa44195" title="Set value of rvc . Result of this operation is stored in epdf use function _ep to...">condition</a> ( cond ); |
---|
| 285 | <a name="l00398"></a>00398 |
---|
| 286 | <a name="l00399"></a>00399 <span class="keywordflow">for</span> ( i=0; i<n; i++ ) { |
---|
| 287 | <a name="l00400"></a>00400 smp = <a class="code" href="classepdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>.sample(); |
---|
| 288 | <a name="l00401"></a>00401 lik ( i ) = <a class="code" href="classepdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>.eval ( smp ); |
---|
| 289 | <a name="l00402"></a>00402 Smp.set_col ( i ,smp ); |
---|
| 290 | <a name="l00403"></a>00403 } |
---|
| 291 | <a name="l00404"></a>00404 |
---|
| 292 | <a name="l00405"></a>00405 <span class="keywordflow">return</span> Smp; |
---|
| 293 | <a name="l00406"></a>00406 } |
---|
| 294 | <a name="l00407"></a>00407 |
---|
| 295 | <a name="l00408"></a>00408 <span class="keyword">template</span><<span class="keyword">class</span> sq_T> |
---|
| 296 | <a name="l00409"></a><a class="code" href="classmlnorm.html#5232fc7e305eceab4e2bd6a8daa44195">00409</a> <span class="keywordtype">void</span> <a class="code" href="classmlnorm.html#5232fc7e305eceab4e2bd6a8daa44195" title="Set value of rvc . Result of this operation is stored in epdf use function _ep to...">mlnorm<sq_T>::condition</a> ( vec &cond ) { |
---|
| 297 | <a name="l00410"></a>00410 _mu = A*cond; |
---|
| 298 | <a name="l00411"></a>00411 <span class="comment">//R is already assigned;</span> |
---|
| 299 | <a name="l00412"></a>00412 } |
---|
| 300 | <a name="l00413"></a>00413 |
---|
| 301 | <a name="l00415"></a>00415 |
---|
| 302 | <a name="l00416"></a>00416 |
---|
| 303 | <a name="l00417"></a>00417 <span class="preprocessor">#endif //EF_H</span> |
---|
[91] | 304 | </pre></div></div> |
---|
| 305 | <hr size="1"><address style="text-align: right;"><small>Generated on Tue Apr 29 20:46:25 2008 for mixpp by |
---|
[8] | 306 | <a href="http://www.doxygen.org/index.html"> |
---|
[91] | 307 | <img src="doxygen.png" alt="doxygen" align="middle" border="0"></a> 1.5.5 </small></address> |
---|
[8] | 308 | </body> |
---|
| 309 | </html> |
---|