1 | <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"> |
---|
2 | <html><head><meta http-equiv="Content-Type" content="text/html;charset=UTF-8"> |
---|
3 | <title>mixpp: work/git/mixpp/bdm/stat/libEF.h Source File</title> |
---|
4 | <link href="doxygen.css" rel="stylesheet" type="text/css"> |
---|
5 | <link href="tabs.css" rel="stylesheet" type="text/css"> |
---|
6 | </head><body> |
---|
7 | <!-- Generated by Doxygen 1.5.6 --> |
---|
8 | <div class="navigation" id="top"> |
---|
9 | <div class="tabs"> |
---|
10 | <ul> |
---|
11 | <li><a href="index.html"><span>Main Page</span></a></li> |
---|
12 | <li><a href="pages.html"><span>Related Pages</span></a></li> |
---|
13 | <li><a href="annotated.html"><span>Classes</span></a></li> |
---|
14 | <li class="current"><a href="files.html"><span>Files</span></a></li> |
---|
15 | </ul> |
---|
16 | </div> |
---|
17 | <h1>work/git/mixpp/bdm/stat/libEF.h</h1><a href="libEF_8h.html">Go to the documentation of this file.</a><div class="fragment"><pre class="fragment"><a name="l00001"></a>00001 |
---|
18 | <a name="l00013"></a>00013 <span class="preprocessor">#ifndef EF_H</span> |
---|
19 | <a name="l00014"></a>00014 <span class="preprocessor"></span><span class="preprocessor">#define EF_H</span> |
---|
20 | <a name="l00015"></a>00015 <span class="preprocessor"></span> |
---|
21 | <a name="l00016"></a>00016 <span class="preprocessor">#include <itpp/itbase.h></span> |
---|
22 | <a name="l00017"></a>00017 <span class="preprocessor">#include "../math/libDC.h"</span> |
---|
23 | <a name="l00018"></a>00018 <span class="preprocessor">#include "<a class="code" href="libBM_8h.html" title="Bayesian Models (bm) that use Bayes rule to learn from observations.">libBM.h</a>"</span> |
---|
24 | <a name="l00019"></a>00019 <span class="preprocessor">#include "../itpp_ext.h"</span> |
---|
25 | <a name="l00020"></a>00020 <span class="comment">//#include <std></span> |
---|
26 | <a name="l00021"></a>00021 |
---|
27 | <a name="l00022"></a>00022 <span class="keyword">using namespace </span>itpp; |
---|
28 | <a name="l00023"></a>00023 |
---|
29 | <a name="l00024"></a>00024 |
---|
30 | <a name="l00026"></a>00026 <span class="keyword">extern</span> Uniform_RNG UniRNG; |
---|
31 | <a name="l00028"></a>00028 <span class="keyword">extern</span> Normal_RNG NorRNG; |
---|
32 | <a name="l00030"></a>00030 <span class="keyword">extern</span> <a class="code" href="classitpp_1_1Gamma__RNG.html" title="Gamma distribution.">Gamma_RNG</a> GamRNG; |
---|
33 | <a name="l00031"></a>00031 |
---|
34 | <a name="l00038"></a><a class="code" href="classeEF.html">00038</a> <span class="keyword">class </span><a class="code" href="classeEF.html" title="General conjugate exponential family posterior density.">eEF</a> : <span class="keyword">public</span> <a class="code" href="classepdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a> { |
---|
35 | <a name="l00039"></a>00039 <span class="keyword">public</span>: |
---|
36 | <a name="l00040"></a>00040 <span class="comment">// eEF() :epdf() {};</span> |
---|
37 | <a name="l00042"></a><a class="code" href="classeEF.html#7e3c63655e8375c76bf1f421245427a7">00042</a> <span class="comment"></span> <a class="code" href="classeEF.html#7e3c63655e8375c76bf1f421245427a7" title="default constructor">eEF</a> ( <span class="keyword">const</span> <a class="code" href="classRV.html" title="Class representing variables, most often random variables.">RV</a> &<a class="code" href="classepdf.html#74da992e3f5d598da8850b646b79b9d9" title="Identified of the random variable.">rv</a> ) :<a class="code" href="classepdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a> ( rv ) {}; |
---|
38 | <a name="l00044"></a>00044 <span class="keyword">virtual</span> <span class="keywordtype">double</span> <a class="code" href="classeEF.html#69e5680dac10375d62520d26c672477d" title="logarithm of the normalizing constant, ">lognc</a>()<span class="keyword">const</span> =0; |
---|
39 | <a name="l00046"></a><a class="code" href="classeEF.html#fd88bc35550ec8fe9281d358216d0fcf">00046</a> <span class="keyword">virtual</span> <span class="keywordtype">void</span> <a class="code" href="classeEF.html#fd88bc35550ec8fe9281d358216d0fcf" title="TODO decide if it is really needed.">tupdate</a> ( <span class="keywordtype">double</span> phi, mat &vbar, <span class="keywordtype">double</span> nubar ) {}; |
---|
40 | <a name="l00048"></a><a class="code" href="classeEF.html#5863718c3b2fb1496dece10c5b745d5c">00048</a> <span class="keyword">virtual</span> <span class="keywordtype">void</span> <a class="code" href="classeEF.html#5863718c3b2fb1496dece10c5b745d5c" title="TODO decide if it is really needed.">dupdate</a> ( mat &v,<span class="keywordtype">double</span> nu=1.0 ) {}; |
---|
41 | <a name="l00049"></a>00049 }; |
---|
42 | <a name="l00050"></a>00050 |
---|
43 | <a name="l00057"></a><a class="code" href="classmEF.html">00057</a> <span class="keyword">class </span><a class="code" href="classmEF.html" title="Exponential family model.">mEF</a> : <span class="keyword">public</span> <a class="code" href="classmpdf.html" title="Conditional probability density, e.g. modeling some dependencies.">mpdf</a> { |
---|
44 | <a name="l00058"></a>00058 |
---|
45 | <a name="l00059"></a>00059 <span class="keyword">public</span>: |
---|
46 | <a name="l00061"></a><a class="code" href="classmEF.html#8bf51fe8654d7b83c8c8afeb19409d4f">00061</a> <a class="code" href="classmEF.html#8bf51fe8654d7b83c8c8afeb19409d4f" title="Default constructor.">mEF</a> ( <span class="keyword">const</span> <a class="code" href="classRV.html" title="Class representing variables, most often random variables.">RV</a> &rv0, <span class="keyword">const</span> <a class="code" href="classRV.html" title="Class representing variables, most often random variables.">RV</a> &rvc0 ) :<a class="code" href="classmpdf.html" title="Conditional probability density, e.g. modeling some dependencies.">mpdf</a> ( rv0,rvc0 ) {}; |
---|
47 | <a name="l00062"></a>00062 }; |
---|
48 | <a name="l00063"></a>00063 |
---|
49 | <a name="l00069"></a>00069 <span class="keyword">template</span><<span class="keyword">class</span> sq_T> |
---|
50 | <a name="l00070"></a>00070 |
---|
51 | <a name="l00071"></a><a class="code" href="classenorm.html">00071</a> <span class="keyword">class </span><a class="code" href="classenorm.html" title="Gaussian density with positive definite (decomposed) covariance matrix.">enorm</a> : <span class="keyword">public</span> <a class="code" href="classeEF.html" title="General conjugate exponential family posterior density.">eEF</a> { |
---|
52 | <a name="l00072"></a>00072 <span class="keyword">protected</span>: |
---|
53 | <a name="l00074"></a><a class="code" href="classenorm.html#71fde0d54bba147e00f612577f95ad20">00074</a> vec <a class="code" href="classenorm.html#71fde0d54bba147e00f612577f95ad20" title="mean value">mu</a>; |
---|
54 | <a name="l00076"></a><a class="code" href="classenorm.html#4ccc8d8514d644ef1c98d8ab023748a1">00076</a> sq_T <a class="code" href="classenorm.html#4ccc8d8514d644ef1c98d8ab023748a1" title="Covariance matrix in decomposed form.">R</a>; |
---|
55 | <a name="l00078"></a><a class="code" href="classenorm.html#6938fc390a19cdaf6ad4503fcbaada4e">00078</a> <span class="keywordtype">int</span> <a class="code" href="classenorm.html#6938fc390a19cdaf6ad4503fcbaada4e" title="dimension (redundant from rv.count() for easier coding )">dim</a>; |
---|
56 | <a name="l00079"></a>00079 <span class="keyword">public</span>: |
---|
57 | <a name="l00080"></a>00080 <span class="comment">// enorm() :eEF() {};</span> |
---|
58 | <a name="l00082"></a>00082 <span class="comment"></span> <a class="code" href="classenorm.html#7b5cb487a2570e8109bfdc0df149aa06" title="Default constructor.">enorm</a> ( <a class="code" href="classRV.html" title="Class representing variables, most often random variables.">RV</a> &<a class="code" href="classepdf.html#74da992e3f5d598da8850b646b79b9d9" title="Identified of the random variable.">rv</a> ); |
---|
59 | <a name="l00084"></a>00084 <span class="keywordtype">void</span> <a class="code" href="classenorm.html#1394a65caa6e00d42e00cc99b12227af" title="Set mean value mu and covariance R.">set_parameters</a> ( <span class="keyword">const</span> vec &<a class="code" href="classenorm.html#71fde0d54bba147e00f612577f95ad20" title="mean value">mu</a>,<span class="keyword">const</span> sq_T &<a class="code" href="classenorm.html#4ccc8d8514d644ef1c98d8ab023748a1" title="Covariance matrix in decomposed form.">R</a> ); |
---|
60 | <a name="l00086"></a>00086 <span class="keywordtype">void</span> <a class="code" href="classenorm.html#5b5fd142b6b17ea334597960e3fe126a" title="tupdate in exponential form (not really handy)">tupdate</a> ( <span class="keywordtype">double</span> phi, mat &vbar, <span class="keywordtype">double</span> nubar ); |
---|
61 | <a name="l00088"></a>00088 <span class="keywordtype">void</span> <a class="code" href="classenorm.html#5bf185e31e5954fceb90ada3debd2ff2" title="dupdate in exponential form (not really handy)">dupdate</a> ( mat &v,<span class="keywordtype">double</span> nu=1.0 ); |
---|
62 | <a name="l00089"></a>00089 |
---|
63 | <a name="l00090"></a>00090 vec <a class="code" href="classenorm.html#60b47544f6181ffd4530d3e415ce12c5" title="Returns the required moment of the epdf.">sample</a>() <span class="keyword">const</span>; |
---|
64 | <a name="l00092"></a>00092 mat <a class="code" href="classenorm.html#60b47544f6181ffd4530d3e415ce12c5" title="Returns the required moment of the epdf.">sample</a> ( <span class="keywordtype">int</span> N ) <span class="keyword">const</span>; |
---|
65 | <a name="l00093"></a>00093 <span class="keywordtype">double</span> <a class="code" href="classenorm.html#b9e1dfd33692d7b3f1a59f17b0e61bd0" title="Compute probability of argument val.">eval</a> ( <span class="keyword">const</span> vec &val ) <span class="keyword">const</span> ; |
---|
66 | <a name="l00094"></a>00094 <span class="keywordtype">double</span> <a class="code" href="classenorm.html#609a7c33dbb4fdfab050f3bdd1122401" title="Compute log-probability of argument val.">evalpdflog</a> ( <span class="keyword">const</span> vec &val ) <span class="keyword">const</span>; |
---|
67 | <a name="l00095"></a>00095 <span class="keywordtype">double</span> <a class="code" href="classenorm.html#b289a36a69db59d182bb6eba9c05d4a8" title="logarithm of the normalizing constant, ">lognc</a> () <span class="keyword">const</span>; |
---|
68 | <a name="l00096"></a><a class="code" href="classenorm.html#50fa84da7bae02f7af17a98f37566899">00096</a> vec <a class="code" href="classenorm.html#50fa84da7bae02f7af17a98f37566899" title="return expected value">mean</a>()<span class="keyword"> const </span>{<span class="keywordflow">return</span> <a class="code" href="classenorm.html#71fde0d54bba147e00f612577f95ad20" title="mean value">mu</a>;} |
---|
69 | <a name="l00097"></a>00097 |
---|
70 | <a name="l00098"></a>00098 <span class="comment">//Access methods</span> |
---|
71 | <a name="l00100"></a><a class="code" href="classenorm.html#0b8cb284e5af920a1b64a21d057ec5ac">00100</a> <span class="comment"></span> vec& <a class="code" href="classenorm.html#0b8cb284e5af920a1b64a21d057ec5ac" title="returns a pointer to the internal mean value. Use with Care!">_mu</a>() {<span class="keywordflow">return</span> <a class="code" href="classenorm.html#71fde0d54bba147e00f612577f95ad20" title="mean value">mu</a>;} |
---|
72 | <a name="l00101"></a>00101 |
---|
73 | <a name="l00103"></a><a class="code" href="classenorm.html#d892a38f03be12e572ea57d9689cef6b">00103</a> <span class="keywordtype">void</span> <a class="code" href="classenorm.html#d892a38f03be12e572ea57d9689cef6b" title="access function">set_mu</a>(<span class="keyword">const</span> vec mu0) { <a class="code" href="classenorm.html#71fde0d54bba147e00f612577f95ad20" title="mean value">mu</a>=mu0;} |
---|
74 | <a name="l00104"></a>00104 |
---|
75 | <a name="l00106"></a><a class="code" href="classenorm.html#7a5034b25771a84450a990d10fc40ac9">00106</a> sq_T& <a class="code" href="classenorm.html#7a5034b25771a84450a990d10fc40ac9" title="returns pointers to the internal variance and its inverse. Use with Care!">_R</a>() {<span class="keywordflow">return</span> <a class="code" href="classenorm.html#4ccc8d8514d644ef1c98d8ab023748a1" title="Covariance matrix in decomposed form.">R</a>;} |
---|
76 | <a name="l00107"></a>00107 |
---|
77 | <a name="l00109"></a><a class="code" href="classenorm.html#9b9f58dc86affa23511c246887420658">00109</a> mat <a class="code" href="classenorm.html#9b9f58dc86affa23511c246887420658" title="access method">getR</a> () {<span class="keywordflow">return</span> <a class="code" href="classenorm.html#4ccc8d8514d644ef1c98d8ab023748a1" title="Covariance matrix in decomposed form.">R</a>.to_mat();} |
---|
78 | <a name="l00110"></a>00110 }; |
---|
79 | <a name="l00111"></a>00111 |
---|
80 | <a name="l00117"></a><a class="code" href="classegiw.html">00117</a> <span class="keyword">class </span><a class="code" href="classegiw.html" title="Gauss-inverse-Wishart density stored in LD form.">egiw</a> : <span class="keyword">public</span> <a class="code" href="classeEF.html" title="General conjugate exponential family posterior density.">eEF</a> { |
---|
81 | <a name="l00118"></a>00118 <span class="keyword">protected</span>: |
---|
82 | <a name="l00120"></a><a class="code" href="classegiw.html#f343d03ede89db820edf44a6297fa442">00120</a> <a class="code" href="classldmat.html" title="Matrix stored in LD form, (typically known as UD).">ldmat</a> <a class="code" href="classegiw.html#f343d03ede89db820edf44a6297fa442" title="Extended information matrix of sufficient statistics.">V</a>; |
---|
83 | <a name="l00122"></a><a class="code" href="classegiw.html#4a2f130b91afe84f6d62fed289d5d453">00122</a> <span class="keywordtype">double</span> <a class="code" href="classegiw.html#4a2f130b91afe84f6d62fed289d5d453" title="Number of data records (degrees of freedom) of sufficient statistics.">nu</a>; |
---|
84 | <a name="l00123"></a>00123 <span class="keyword">public</span>: |
---|
85 | <a name="l00125"></a><a class="code" href="classegiw.html#c52a2173c6eb1490edce9c6c7c05d60b">00125</a> <a class="code" href="classegiw.html#c52a2173c6eb1490edce9c6c7c05d60b" title="Default constructor.">egiw</a>(<a class="code" href="classRV.html" title="Class representing variables, most often random variables.">RV</a> <a class="code" href="classepdf.html#74da992e3f5d598da8850b646b79b9d9" title="Identified of the random variable.">rv</a>, mat V0, <span class="keywordtype">double</span> nu0): <a class="code" href="classeEF.html" title="General conjugate exponential family posterior density.">eEF</a>(rv), <a class="code" href="classegiw.html#f343d03ede89db820edf44a6297fa442" title="Extended information matrix of sufficient statistics.">V</a>(V0), <a class="code" href="classegiw.html#4a2f130b91afe84f6d62fed289d5d453" title="Number of data records (degrees of freedom) of sufficient statistics.">nu</a>(nu0) { |
---|
86 | <a name="l00126"></a>00126 it_assert_debug(rv.<a class="code" href="classRV.html#f5c7b8bd589eef09ccdf3329a0addea0" title="Return number of scalars in the RV.">count</a>()==<a class="code" href="classegiw.html#f343d03ede89db820edf44a6297fa442" title="Extended information matrix of sufficient statistics.">V</a>.<a class="code" href="classldmat.html#96dfb21865db4f5bd36fa70f9b0b1163" title="access function">rows</a>(),<span class="stringliteral">"Incompatible V0."</span>); |
---|
87 | <a name="l00127"></a>00127 } |
---|
88 | <a name="l00128"></a>00128 |
---|
89 | <a name="l00129"></a>00129 vec <a class="code" href="classegiw.html#3d2c1f2ba0f9966781f1e0ae695e8a6f" title="Returns the required moment of the epdf.">sample</a>() <span class="keyword">const</span>; |
---|
90 | <a name="l00130"></a>00130 vec <a class="code" href="classegiw.html#6deb0ff2859f41ef7cbdf6a842cabb29" title="return expected value">mean</a>() <span class="keyword">const</span>; |
---|
91 | <a name="l00131"></a>00131 <span class="keywordtype">double</span> <a class="code" href="classegiw.html#425cbc53b377274e28c6add942bab62d" title="Compute log-probability of argument val.">evalpdflog</a> ( <span class="keyword">const</span> vec &val ) <span class="keyword">const</span>; |
---|
92 | <a name="l00132"></a>00132 <span class="keywordtype">double</span> <a class="code" href="classegiw.html#70eb1a0b88459b227f919b425b0d3359" title="logarithm of the normalizing constant, ">lognc</a> () <span class="keyword">const</span>; |
---|
93 | <a name="l00133"></a>00133 |
---|
94 | <a name="l00134"></a>00134 <span class="comment">//Access</span> |
---|
95 | <a name="l00136"></a><a class="code" href="classegiw.html#533e792e1175bfa06d5d595dc5d080d5">00136</a> <span class="comment"></span> <a class="code" href="classldmat.html" title="Matrix stored in LD form, (typically known as UD).">ldmat</a>& <a class="code" href="classegiw.html#533e792e1175bfa06d5d595dc5d080d5" title="returns a pointer to the internal statistics. Use with Care!">_V</a>() {<span class="keywordflow">return</span> <a class="code" href="classegiw.html#f343d03ede89db820edf44a6297fa442" title="Extended information matrix of sufficient statistics.">V</a>;} |
---|
96 | <a name="l00138"></a><a class="code" href="classegiw.html#08029c481ff95d24f093df0573879afe">00138</a> <span class="keywordtype">double</span>& <a class="code" href="classegiw.html#08029c481ff95d24f093df0573879afe" title="returns a pointer to the internal statistics. Use with Care!">_nu</a>() {<span class="keywordflow">return</span> <a class="code" href="classegiw.html#4a2f130b91afe84f6d62fed289d5d453" title="Number of data records (degrees of freedom) of sufficient statistics.">nu</a>;} |
---|
97 | <a name="l00139"></a>00139 |
---|
98 | <a name="l00140"></a>00140 }; |
---|
99 | <a name="l00141"></a>00141 |
---|
100 | <a name="l00151"></a><a class="code" href="classegamma.html">00151</a> <span class="keyword">class </span><a class="code" href="classegamma.html" title="Gamma posterior density.">egamma</a> : <span class="keyword">public</span> <a class="code" href="classeEF.html" title="General conjugate exponential family posterior density.">eEF</a> { |
---|
101 | <a name="l00152"></a>00152 <span class="keyword">protected</span>: |
---|
102 | <a name="l00154"></a><a class="code" href="classegamma.html#376cebd8932546c440f21b182910b01b">00154</a> vec <a class="code" href="classegamma.html#376cebd8932546c440f21b182910b01b" title="Vector .">alpha</a>; |
---|
103 | <a name="l00156"></a><a class="code" href="classegamma.html#cfc5f136467488a421ab22f886323790">00156</a> vec <a class="code" href="classegamma.html#cfc5f136467488a421ab22f886323790" title="Vector .">beta</a>; |
---|
104 | <a name="l00157"></a>00157 <span class="keyword">public</span> : |
---|
105 | <a name="l00159"></a><a class="code" href="classegamma.html#4b1d34f3b244ea51a58ec10c468788c1">00159</a> <a class="code" href="classegamma.html#4b1d34f3b244ea51a58ec10c468788c1" title="Default constructor.">egamma</a> ( <span class="keyword">const</span> <a class="code" href="classRV.html" title="Class representing variables, most often random variables.">RV</a> &<a class="code" href="classepdf.html#74da992e3f5d598da8850b646b79b9d9" title="Identified of the random variable.">rv</a> ) :<a class="code" href="classeEF.html" title="General conjugate exponential family posterior density.">eEF</a> ( rv ) {}; |
---|
106 | <a name="l00161"></a><a class="code" href="classegamma.html#8e348b89be82b70471fe8c5630f61339">00161</a> <span class="keywordtype">void</span> <a class="code" href="classegamma.html#8e348b89be82b70471fe8c5630f61339" title="Sets parameters.">set_parameters</a> ( <span class="keyword">const</span> vec &a, <span class="keyword">const</span> vec &b ) {<a class="code" href="classegamma.html#376cebd8932546c440f21b182910b01b" title="Vector .">alpha</a>=a,<a class="code" href="classegamma.html#cfc5f136467488a421ab22f886323790" title="Vector .">beta</a>=b;}; |
---|
107 | <a name="l00162"></a>00162 vec <a class="code" href="classegamma.html#8e10c0021b5dfdd9cb62c6959b5ef425" title="Returns the required moment of the epdf.">sample</a>() <span class="keyword">const</span>; |
---|
108 | <a name="l00164"></a>00164 <span class="comment">// mat sample ( int N ) const;</span> |
---|
109 | <a name="l00165"></a>00165 <span class="keywordtype">double</span> <a class="code" href="classegamma.html#de84faac8f9799dfe2777ddbedf997ef" title="TODO: is it used anywhere?">evalpdflog</a> ( <span class="keyword">const</span> vec &val ) <span class="keyword">const</span>; |
---|
110 | <a name="l00166"></a>00166 <span class="keywordtype">double</span> <a class="code" href="classegamma.html#d6dbbdb72360f9e54d64501f80318bb6" title="logarithm of the normalizing constant, ">lognc</a> () <span class="keyword">const</span>; |
---|
111 | <a name="l00168"></a><a class="code" href="classegamma.html#44445c56e60b91b377f207f8d5089790">00168</a> <span class="keywordtype">void</span> <a class="code" href="classegamma.html#44445c56e60b91b377f207f8d5089790" title="Returns poiter to alpha and beta. Potentially dengerous: use with care!">_param</a> ( vec* &a, vec* &b ) {a=&<a class="code" href="classegamma.html#376cebd8932546c440f21b182910b01b" title="Vector .">alpha</a>;b=&<a class="code" href="classegamma.html#cfc5f136467488a421ab22f886323790" title="Vector .">beta</a>;}; |
---|
112 | <a name="l00169"></a><a class="code" href="classegamma.html#6ab5ba56f7cdb2e5921c3e77524fa50a">00169</a> vec <a class="code" href="classegamma.html#6ab5ba56f7cdb2e5921c3e77524fa50a" title="return expected value">mean</a>()<span class="keyword"> const </span>{vec pom ( <a class="code" href="classegamma.html#376cebd8932546c440f21b182910b01b" title="Vector .">alpha</a> ); pom/=<a class="code" href="classegamma.html#cfc5f136467488a421ab22f886323790" title="Vector .">beta</a>; <span class="keywordflow">return</span> pom;} |
---|
113 | <a name="l00170"></a>00170 }; |
---|
114 | <a name="l00171"></a>00171 <span class="comment">/*</span> |
---|
115 | <a name="l00173"></a>00173 <span class="comment">class emix : public epdf {</span> |
---|
116 | <a name="l00174"></a>00174 <span class="comment">protected:</span> |
---|
117 | <a name="l00175"></a>00175 <span class="comment"> int n;</span> |
---|
118 | <a name="l00176"></a>00176 <span class="comment"> vec &w;</span> |
---|
119 | <a name="l00177"></a>00177 <span class="comment"> Array<epdf*> Coms;</span> |
---|
120 | <a name="l00178"></a>00178 <span class="comment">public:</span> |
---|
121 | <a name="l00180"></a>00180 <span class="comment"> emix ( const RV &rv, vec &w0): epdf(rv), n(w0.length()), w(w0), Coms(n) {};</span> |
---|
122 | <a name="l00181"></a>00181 <span class="comment"> void set_parameters( int &i, double wi, epdf* ep){w(i)=wi;Coms(i)=ep;}</span> |
---|
123 | <a name="l00182"></a>00182 <span class="comment"> vec mean(){vec pom; for(int i=0;i<n;i++){pom+=Coms(i)->mean()*w(i);} return pom;};</span> |
---|
124 | <a name="l00183"></a>00183 <span class="comment"> vec sample() {it_error ( "Not implemented" );return 0;}</span> |
---|
125 | <a name="l00184"></a>00184 <span class="comment">};</span> |
---|
126 | <a name="l00185"></a>00185 <span class="comment">*/</span> |
---|
127 | <a name="l00186"></a>00186 |
---|
128 | <a name="l00188"></a>00188 |
---|
129 | <a name="l00189"></a><a class="code" href="classeuni.html">00189</a> <span class="keyword">class </span><a class="code" href="classeuni.html" title="Uniform distributed density on a rectangular support.">euni</a>: <span class="keyword">public</span> <a class="code" href="classepdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a> { |
---|
130 | <a name="l00190"></a>00190 <span class="keyword">protected</span>: |
---|
131 | <a name="l00192"></a><a class="code" href="classeuni.html#ef42cd8d7645422048d46c46ec5cdac1">00192</a> vec <a class="code" href="classeuni.html#ef42cd8d7645422048d46c46ec5cdac1" title="lower bound on support">low</a>; |
---|
132 | <a name="l00194"></a><a class="code" href="classeuni.html#71b6d6b41aeb61a7f76f682b72119231">00194</a> vec <a class="code" href="classeuni.html#71b6d6b41aeb61a7f76f682b72119231" title="upper bound on support">high</a>; |
---|
133 | <a name="l00196"></a><a class="code" href="classeuni.html#52a6ff4a54010f88a6a19fca605c64a4">00196</a> vec <a class="code" href="classeuni.html#52a6ff4a54010f88a6a19fca605c64a4" title="internal">distance</a>; |
---|
134 | <a name="l00198"></a><a class="code" href="classeuni.html#63105490e946e43372d6187ad1bafdda">00198</a> <span class="keywordtype">double</span> <a class="code" href="classeuni.html#63105490e946e43372d6187ad1bafdda" title="normalizing coefficients">nk</a>; |
---|
135 | <a name="l00200"></a><a class="code" href="classeuni.html#f445a0ce24f39d14c1a4eed53fc8e2c3">00200</a> <span class="keywordtype">double</span> <a class="code" href="classeuni.html#f445a0ce24f39d14c1a4eed53fc8e2c3" title="cache of log( nk )">lnk</a>; |
---|
136 | <a name="l00201"></a>00201 <span class="keyword">public</span>: |
---|
137 | <a name="l00203"></a><a class="code" href="classeuni.html#2537a6c239cff52e3ba814851a1116cd">00203</a> <a class="code" href="classeuni.html#2537a6c239cff52e3ba814851a1116cd" title="Defualt constructor.">euni</a> ( <span class="keyword">const</span> <a class="code" href="classRV.html" title="Class representing variables, most often random variables.">RV</a> <a class="code" href="classepdf.html#74da992e3f5d598da8850b646b79b9d9" title="Identified of the random variable.">rv</a> ) :<a class="code" href="classepdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a> ( rv ) {} |
---|
138 | <a name="l00204"></a><a class="code" href="classeuni.html#2723d4992900b5c5495bfa03628195ed">00204</a> <span class="keywordtype">double</span> <a class="code" href="classeuni.html#2723d4992900b5c5495bfa03628195ed" title="Compute probability of argument val.">eval</a> ( <span class="keyword">const</span> vec &val )<span class="keyword"> const </span>{<span class="keywordflow">return</span> <a class="code" href="classeuni.html#63105490e946e43372d6187ad1bafdda" title="normalizing coefficients">nk</a>;} |
---|
139 | <a name="l00205"></a><a class="code" href="classeuni.html#06af95d514a6623ad4688bd2ad50ad71">00205</a> <span class="keywordtype">double</span> <a class="code" href="classeuni.html#06af95d514a6623ad4688bd2ad50ad71" title="Compute log-probability of argument val.">evalpdflog</a> ( <span class="keyword">const</span> vec &val )<span class="keyword"> const </span>{<span class="keywordflow">return</span> <a class="code" href="classeuni.html#f445a0ce24f39d14c1a4eed53fc8e2c3" title="cache of log( nk )">lnk</a>;} |
---|
140 | <a name="l00206"></a><a class="code" href="classeuni.html#4a0e09392be17beaee120ba98fc038cd">00206</a> vec <a class="code" href="classeuni.html#4a0e09392be17beaee120ba98fc038cd" title="Returns the required moment of the epdf.">sample</a>()<span class="keyword"> const </span>{ |
---|
141 | <a name="l00207"></a>00207 vec smp ( <a class="code" href="classepdf.html#74da992e3f5d598da8850b646b79b9d9" title="Identified of the random variable.">rv</a>.<a class="code" href="classRV.html#f5c7b8bd589eef09ccdf3329a0addea0" title="Return number of scalars in the RV.">count</a>() ); |
---|
142 | <a name="l00208"></a>00208 <span class="preprocessor"> #pragma omp critical</span> |
---|
143 | <a name="l00209"></a>00209 <span class="preprocessor"></span> UniRNG.sample_vector ( <a class="code" href="classepdf.html#74da992e3f5d598da8850b646b79b9d9" title="Identified of the random variable.">rv</a>.<a class="code" href="classRV.html#f5c7b8bd589eef09ccdf3329a0addea0" title="Return number of scalars in the RV.">count</a>(),smp ); |
---|
144 | <a name="l00210"></a>00210 <span class="keywordflow">return</span> <a class="code" href="classeuni.html#ef42cd8d7645422048d46c46ec5cdac1" title="lower bound on support">low</a>+elem_mult(<a class="code" href="classeuni.html#52a6ff4a54010f88a6a19fca605c64a4" title="internal">distance</a>,smp); |
---|
145 | <a name="l00211"></a>00211 } |
---|
146 | <a name="l00213"></a><a class="code" href="classeuni.html#4fd7c6a05100616ad16ece405cad7bf2">00213</a> <span class="keywordtype">void</span> <a class="code" href="classeuni.html#4fd7c6a05100616ad16ece405cad7bf2" title="set values of low and high ">set_parameters</a> ( <span class="keyword">const</span> vec &low0, <span class="keyword">const</span> vec &high0 ) { |
---|
147 | <a name="l00214"></a>00214 <a class="code" href="classeuni.html#52a6ff4a54010f88a6a19fca605c64a4" title="internal">distance</a> = high0-low0; |
---|
148 | <a name="l00215"></a>00215 it_assert_debug ( min ( <a class="code" href="classeuni.html#52a6ff4a54010f88a6a19fca605c64a4" title="internal">distance</a> ) >0.0,<span class="stringliteral">"bad support"</span> ); |
---|
149 | <a name="l00216"></a>00216 <a class="code" href="classeuni.html#ef42cd8d7645422048d46c46ec5cdac1" title="lower bound on support">low</a> = low0; |
---|
150 | <a name="l00217"></a>00217 <a class="code" href="classeuni.html#71b6d6b41aeb61a7f76f682b72119231" title="upper bound on support">high</a> = high0; |
---|
151 | <a name="l00218"></a>00218 <a class="code" href="classeuni.html#63105490e946e43372d6187ad1bafdda" title="normalizing coefficients">nk</a> = prod ( 1.0/<a class="code" href="classeuni.html#52a6ff4a54010f88a6a19fca605c64a4" title="internal">distance</a> ); |
---|
152 | <a name="l00219"></a>00219 <a class="code" href="classeuni.html#f445a0ce24f39d14c1a4eed53fc8e2c3" title="cache of log( nk )">lnk</a> = log ( <a class="code" href="classeuni.html#63105490e946e43372d6187ad1bafdda" title="normalizing coefficients">nk</a> ); |
---|
153 | <a name="l00220"></a>00220 } |
---|
154 | <a name="l00221"></a><a class="code" href="classeuni.html#8050087e421a9cfd1b4b1f8bd33b1cc1">00221</a> vec <a class="code" href="classeuni.html#8050087e421a9cfd1b4b1f8bd33b1cc1" title="return expected value">mean</a>()<span class="keyword"> const </span>{vec pom=<a class="code" href="classeuni.html#71b6d6b41aeb61a7f76f682b72119231" title="upper bound on support">high</a>; pom-=<a class="code" href="classeuni.html#ef42cd8d7645422048d46c46ec5cdac1" title="lower bound on support">low</a>; pom/=2.0; <span class="keywordflow">return</span> pom;} |
---|
155 | <a name="l00222"></a>00222 }; |
---|
156 | <a name="l00223"></a>00223 |
---|
157 | <a name="l00224"></a>00224 |
---|
158 | <a name="l00230"></a>00230 <span class="keyword">template</span><<span class="keyword">class</span> sq_T> |
---|
159 | <a name="l00231"></a><a class="code" href="classmlnorm.html">00231</a> <span class="keyword">class </span><a class="code" href="classmlnorm.html" title="Normal distributed linear function with linear function of mean value;.">mlnorm</a> : <span class="keyword">public</span> <a class="code" href="classmEF.html" title="Exponential family model.">mEF</a> { |
---|
160 | <a name="l00233"></a>00233 <a class="code" href="classenorm.html" title="Gaussian density with positive definite (decomposed) covariance matrix.">enorm<sq_T></a> <a class="code" href="classepdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>; |
---|
161 | <a name="l00234"></a>00234 mat A; |
---|
162 | <a name="l00235"></a>00235 vec& _mu; <span class="comment">//cached epdf.mu;</span> |
---|
163 | <a name="l00236"></a>00236 <span class="keyword">public</span>: |
---|
164 | <a name="l00238"></a>00238 <a class="code" href="classmlnorm.html#f927203b3f31171c5c10ffc7caa797f5" title="Constructor.">mlnorm</a> ( <a class="code" href="classRV.html" title="Class representing variables, most often random variables.">RV</a> &<a class="code" href="classmpdf.html#f6687c07ff07d47812dd565368ca59eb" title="modeled random variable">rv</a>,<a class="code" href="classRV.html" title="Class representing variables, most often random variables.">RV</a> &<a class="code" href="classmpdf.html#acb7dda792b3cd5576f39fa3129abbab" title="random variable in condition">rvc</a> ); |
---|
165 | <a name="l00240"></a>00240 <span class="keywordtype">void</span> <a class="code" href="classmlnorm.html#b6749030c5d5abcb3eb6898f74cea3c0" title="Set A and R.">set_parameters</a> ( <span class="keyword">const</span> mat &A, <span class="keyword">const</span> sq_T &R ); |
---|
166 | <a name="l00242"></a>00242 vec <a class="code" href="classmlnorm.html#decf3e3b5c8e0812e5b4dbe94fa2ae18" title="Generate one sample of the posterior.">samplecond</a> ( vec &cond, <span class="keywordtype">double</span> &lik ); |
---|
167 | <a name="l00244"></a>00244 mat <a class="code" href="classmlnorm.html#decf3e3b5c8e0812e5b4dbe94fa2ae18" title="Generate one sample of the posterior.">samplecond</a> ( vec &cond, vec &lik, <span class="keywordtype">int</span> n ); |
---|
168 | <a name="l00246"></a>00246 <span class="keywordtype">void</span> <a class="code" href="classmlnorm.html#5232fc7e305eceab4e2bd6a8daa44195" title="Set value of rvc . Result of this operation is stored in epdf use function _ep to...">condition</a> ( vec &cond ); |
---|
169 | <a name="l00247"></a>00247 }; |
---|
170 | <a name="l00248"></a>00248 |
---|
171 | <a name="l00258"></a><a class="code" href="classmgamma.html">00258</a> <span class="keyword">class </span><a class="code" href="classmgamma.html" title="Gamma random walk.">mgamma</a> : <span class="keyword">public</span> <a class="code" href="classmEF.html" title="Exponential family model.">mEF</a> { |
---|
172 | <a name="l00259"></a>00259 <span class="keyword">protected</span>: |
---|
173 | <a name="l00261"></a><a class="code" href="classmgamma.html#612dbf35c770a780027619aaac2c443e">00261</a> <a class="code" href="classegamma.html" title="Gamma posterior density.">egamma</a> <a class="code" href="classepdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>; |
---|
174 | <a name="l00263"></a><a class="code" href="classmgamma.html#43f733cce0245a52363d566099add687">00263</a> <span class="keywordtype">double</span> <a class="code" href="classmgamma.html#43f733cce0245a52363d566099add687" title="Constant .">k</a>; |
---|
175 | <a name="l00265"></a><a class="code" href="classmgamma.html#5e90652837448bcc29707e7412f99691">00265</a> vec* <a class="code" href="classmgamma.html#5e90652837448bcc29707e7412f99691" title="cache of epdf.beta">_beta</a>; |
---|
176 | <a name="l00266"></a>00266 |
---|
177 | <a name="l00267"></a>00267 <span class="keyword">public</span>: |
---|
178 | <a name="l00269"></a>00269 <a class="code" href="classmgamma.html#af43e61b86900c0398d5c0ffc83b94e6" title="Constructor.">mgamma</a> ( <span class="keyword">const</span> <a class="code" href="classRV.html" title="Class representing variables, most often random variables.">RV</a> &<a class="code" href="classmpdf.html#f6687c07ff07d47812dd565368ca59eb" title="modeled random variable">rv</a>,<span class="keyword">const</span> <a class="code" href="classRV.html" title="Class representing variables, most often random variables.">RV</a> &<a class="code" href="classmpdf.html#acb7dda792b3cd5576f39fa3129abbab" title="random variable in condition">rvc</a> ); |
---|
179 | <a name="l00271"></a>00271 <span class="keywordtype">void</span> <a class="code" href="classmgamma.html#a9d646cf758a70126dde7c48790b6e94" title="Set value of k.">set_parameters</a> ( <span class="keywordtype">double</span> <a class="code" href="classmgamma.html#43f733cce0245a52363d566099add687" title="Constant .">k</a> ); |
---|
180 | <a name="l00272"></a><a class="code" href="classmgamma.html#a61094c9f7a2d64ea77b130cbc031f97">00272</a> <span class="keywordtype">void</span> <a class="code" href="classmgamma.html#a61094c9f7a2d64ea77b130cbc031f97" title="Update ep so that it represents this mpdf conditioned on rvc = cond.">condition</a> ( <span class="keyword">const</span> vec &val ) {*<a class="code" href="classmgamma.html#5e90652837448bcc29707e7412f99691" title="cache of epdf.beta">_beta</a>=<a class="code" href="classmgamma.html#43f733cce0245a52363d566099add687" title="Constant .">k</a>/val;}; |
---|
181 | <a name="l00273"></a>00273 }; |
---|
182 | <a name="l00274"></a>00274 |
---|
183 | <a name="l00286"></a><a class="code" href="classmgamma__fix.html">00286</a> <span class="keyword">class </span><a class="code" href="classmgamma__fix.html" title="Gamma random walk around a fixed point.">mgamma_fix</a> : <span class="keyword">public</span> <a class="code" href="classmgamma.html" title="Gamma random walk.">mgamma</a> { |
---|
184 | <a name="l00287"></a>00287 <span class="keyword">protected</span>: |
---|
185 | <a name="l00289"></a><a class="code" href="classmgamma__fix.html#3f48c09caddc298901ad75fe7c0529f6">00289</a> <span class="keywordtype">double</span> <a class="code" href="classmgamma__fix.html#3f48c09caddc298901ad75fe7c0529f6" title="parameter l">l</a>; |
---|
186 | <a name="l00291"></a><a class="code" href="classmgamma__fix.html#81ce49029ecc385418619b200dcafeb0">00291</a> vec <a class="code" href="classmgamma__fix.html#81ce49029ecc385418619b200dcafeb0" title="reference vector">refl</a>; |
---|
187 | <a name="l00292"></a>00292 <span class="keyword">public</span>: |
---|
188 | <a name="l00294"></a><a class="code" href="classmgamma__fix.html#b92c3d2e5fd0381033a072e5ef3bcf80">00294</a> <a class="code" href="classmgamma__fix.html#b92c3d2e5fd0381033a072e5ef3bcf80" title="Constructor.">mgamma_fix</a> ( <span class="keyword">const</span> <a class="code" href="classRV.html" title="Class representing variables, most often random variables.">RV</a> &<a class="code" href="classmpdf.html#f6687c07ff07d47812dd565368ca59eb" title="modeled random variable">rv</a>,<span class="keyword">const</span> <a class="code" href="classRV.html" title="Class representing variables, most often random variables.">RV</a> &<a class="code" href="classmpdf.html#acb7dda792b3cd5576f39fa3129abbab" title="random variable in condition">rvc</a> ) : <a class="code" href="classmgamma.html" title="Gamma random walk.">mgamma</a> ( rv,rvc ),<a class="code" href="classmgamma__fix.html#81ce49029ecc385418619b200dcafeb0" title="reference vector">refl</a> ( rv.count() ) {}; |
---|
189 | <a name="l00296"></a><a class="code" href="classmgamma__fix.html#ec6f846896749e27cb7be9fa48dd1cb1">00296</a> <span class="keywordtype">void</span> <a class="code" href="classmgamma__fix.html#ec6f846896749e27cb7be9fa48dd1cb1" title="Set value of k.">set_parameters</a> ( <span class="keywordtype">double</span> k0 , vec ref0, <span class="keywordtype">double</span> l0 ) { |
---|
190 | <a name="l00297"></a>00297 <a class="code" href="classmgamma.html#a9d646cf758a70126dde7c48790b6e94" title="Set value of k.">mgamma::set_parameters</a> ( k0 ); |
---|
191 | <a name="l00298"></a>00298 <a class="code" href="classmgamma__fix.html#81ce49029ecc385418619b200dcafeb0" title="reference vector">refl</a>=pow ( ref0,1.0-l0 );<a class="code" href="classmgamma__fix.html#3f48c09caddc298901ad75fe7c0529f6" title="parameter l">l</a>=l0; |
---|
192 | <a name="l00299"></a>00299 }; |
---|
193 | <a name="l00300"></a>00300 |
---|
194 | <a name="l00301"></a><a class="code" href="classmgamma__fix.html#6ea3931eec7b7da7b693e45981052460">00301</a> <span class="keywordtype">void</span> <a class="code" href="classmgamma__fix.html#6ea3931eec7b7da7b693e45981052460" title="Update ep so that it represents this mpdf conditioned on rvc = cond.">condition</a> ( <span class="keyword">const</span> vec &val ) {vec mean=elem_mult ( <a class="code" href="classmgamma__fix.html#81ce49029ecc385418619b200dcafeb0" title="reference vector">refl</a>,pow ( val,<a class="code" href="classmgamma__fix.html#3f48c09caddc298901ad75fe7c0529f6" title="parameter l">l</a> ) ); *<a class="code" href="classmgamma.html#5e90652837448bcc29707e7412f99691" title="cache of epdf.beta">_beta</a>=<a class="code" href="classmgamma.html#43f733cce0245a52363d566099add687" title="Constant .">k</a>/mean;}; |
---|
195 | <a name="l00302"></a>00302 }; |
---|
196 | <a name="l00303"></a>00303 |
---|
197 | <a name="l00305"></a><a class="code" href="libEF_8h.html#99497a3ff630f761cf6bff7babd23212">00305</a> <span class="keyword">enum</span> <a class="code" href="libEF_8h.html#99497a3ff630f761cf6bff7babd23212" title="Switch between various resampling methods.">RESAMPLING_METHOD</a> { MULTINOMIAL = 0, STRATIFIED = 1, SYSTEMATIC = 3 }; |
---|
198 | <a name="l00311"></a><a class="code" href="classeEmp.html">00311</a> <span class="keyword">class </span><a class="code" href="classeEmp.html" title="Weighted empirical density.">eEmp</a>: <span class="keyword">public</span> <a class="code" href="classepdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a> { |
---|
199 | <a name="l00312"></a>00312 <span class="keyword">protected</span> : |
---|
200 | <a name="l00314"></a><a class="code" href="classeEmp.html#8c33034de0e35f03f8bb85d3d67438fd">00314</a> <span class="keywordtype">int</span> <a class="code" href="classeEmp.html#8c33034de0e35f03f8bb85d3d67438fd" title="Number of particles.">n</a>; |
---|
201 | <a name="l00316"></a><a class="code" href="classeEmp.html#ae78d144404ddba843c93b171b215de8">00316</a> vec <a class="code" href="classeEmp.html#ae78d144404ddba843c93b171b215de8" title="Sample weights .">w</a>; |
---|
202 | <a name="l00318"></a><a class="code" href="classeEmp.html#a4d6f4bbd6a6824fc39f14676701279a">00318</a> Array<vec> <a class="code" href="classeEmp.html#a4d6f4bbd6a6824fc39f14676701279a" title="Samples .">samples</a>; |
---|
203 | <a name="l00319"></a>00319 <span class="keyword">public</span>: |
---|
204 | <a name="l00321"></a><a class="code" href="classeEmp.html#0c04b073ecd0dae3d498e680ae27e9e4">00321</a> <a class="code" href="classeEmp.html#0c04b073ecd0dae3d498e680ae27e9e4" title="Default constructor.">eEmp</a> ( <span class="keyword">const</span> <a class="code" href="classRV.html" title="Class representing variables, most often random variables.">RV</a> &rv0 ,<span class="keywordtype">int</span> n0 ) :<a class="code" href="classepdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a> ( rv0 ),<a class="code" href="classeEmp.html#8c33034de0e35f03f8bb85d3d67438fd" title="Number of particles.">n</a> ( n0 ),<a class="code" href="classeEmp.html#ae78d144404ddba843c93b171b215de8" title="Sample weights .">w</a> ( <a class="code" href="classeEmp.html#8c33034de0e35f03f8bb85d3d67438fd" title="Number of particles.">n</a> ),<a class="code" href="classeEmp.html#a4d6f4bbd6a6824fc39f14676701279a" title="Samples .">samples</a> ( <a class="code" href="classeEmp.html#8c33034de0e35f03f8bb85d3d67438fd" title="Number of particles.">n</a> ) {}; |
---|
205 | <a name="l00323"></a>00323 <span class="keywordtype">void</span> <a class="code" href="classeEmp.html#6606a656c1b28114f7384c25aaf80e8d" title="Set sample.">set_parameters</a> ( <span class="keyword">const</span> vec &w0, <a class="code" href="classepdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>* pdf0 ); |
---|
206 | <a name="l00325"></a><a class="code" href="classeEmp.html#31b2bfb73b72486a5c89f2ab850c7a9b">00325</a> vec& <a class="code" href="classeEmp.html#31b2bfb73b72486a5c89f2ab850c7a9b" title="Potentially dangerous, use with care.">_w</a>() {<span class="keywordflow">return</span> <a class="code" href="classeEmp.html#ae78d144404ddba843c93b171b215de8" title="Sample weights .">w</a>;}; |
---|
207 | <a name="l00327"></a><a class="code" href="classeEmp.html#31b747eca73b16f30370827ba4cc3575">00327</a> Array<vec>& <a class="code" href="classeEmp.html#31b747eca73b16f30370827ba4cc3575" title="access function">_samples</a>() {<span class="keywordflow">return</span> <a class="code" href="classeEmp.html#a4d6f4bbd6a6824fc39f14676701279a" title="Samples .">samples</a>;}; |
---|
208 | <a name="l00329"></a>00329 ivec <a class="code" href="classeEmp.html#77268292fc4465cb73ddbfb1f2932a59" title="Function performs resampling, i.e. removal of low-weight samples and duplication...">resample</a> ( <a class="code" href="libEF_8h.html#99497a3ff630f761cf6bff7babd23212" title="Switch between various resampling methods.">RESAMPLING_METHOD</a> method = SYSTEMATIC ); |
---|
209 | <a name="l00331"></a><a class="code" href="classeEmp.html#83f9283f92b805508d896479dc1ccf12">00331</a> vec <a class="code" href="classeEmp.html#83f9283f92b805508d896479dc1ccf12" title="inherited operation : NOT implemneted">sample</a>()<span class="keyword"> const </span>{it_error ( <span class="stringliteral">"Not implemented"</span> );<span class="keywordflow">return</span> 0;} |
---|
210 | <a name="l00333"></a><a class="code" href="classeEmp.html#23e7358995400865ad2e278945922fb3">00333</a> <span class="keywordtype">double</span> <a class="code" href="classeEmp.html#23e7358995400865ad2e278945922fb3" title="inherited operation : NOT implemneted">evalpdflog</a> ( <span class="keyword">const</span> vec &val )<span class="keyword"> const </span>{it_error ( <span class="stringliteral">"Not implemented"</span> );<span class="keywordflow">return</span> 0.0;} |
---|
211 | <a name="l00334"></a><a class="code" href="classeEmp.html#ba055c19038cc72628d98e25197e982d">00334</a> vec <a class="code" href="classeEmp.html#ba055c19038cc72628d98e25197e982d" title="return expected value">mean</a>()<span class="keyword"> const </span>{ |
---|
212 | <a name="l00335"></a>00335 vec pom=zeros ( <a class="code" href="classepdf.html#74da992e3f5d598da8850b646b79b9d9" title="Identified of the random variable.">rv</a>.<a class="code" href="classRV.html#f5c7b8bd589eef09ccdf3329a0addea0" title="Return number of scalars in the RV.">count</a>() ); |
---|
213 | <a name="l00336"></a>00336 <span class="keywordflow">for</span> ( <span class="keywordtype">int</span> i=0;i<<a class="code" href="classeEmp.html#8c33034de0e35f03f8bb85d3d67438fd" title="Number of particles.">n</a>;i++ ) {pom+=<a class="code" href="classeEmp.html#a4d6f4bbd6a6824fc39f14676701279a" title="Samples .">samples</a> ( i ) *<a class="code" href="classeEmp.html#ae78d144404ddba843c93b171b215de8" title="Sample weights .">w</a> ( i );} |
---|
214 | <a name="l00337"></a>00337 <span class="keywordflow">return</span> pom; |
---|
215 | <a name="l00338"></a>00338 } |
---|
216 | <a name="l00339"></a>00339 }; |
---|
217 | <a name="l00340"></a>00340 |
---|
218 | <a name="l00341"></a>00341 |
---|
219 | <a name="l00343"></a>00343 |
---|
220 | <a name="l00344"></a>00344 <span class="keyword">template</span><<span class="keyword">class</span> sq_T> |
---|
221 | <a name="l00345"></a><a class="code" href="classenorm.html#7b5cb487a2570e8109bfdc0df149aa06">00345</a> <a class="code" href="classenorm.html#7b5cb487a2570e8109bfdc0df149aa06" title="Default constructor.">enorm<sq_T>::enorm</a> ( <a class="code" href="classRV.html" title="Class representing variables, most often random variables.">RV</a> &rv ) :<a class="code" href="classeEF.html" title="General conjugate exponential family posterior density.">eEF</a> ( rv ), mu ( rv.count() ),R ( rv.count() ),dim ( rv.count() ) {}; |
---|
222 | <a name="l00346"></a>00346 |
---|
223 | <a name="l00347"></a>00347 <span class="keyword">template</span><<span class="keyword">class</span> sq_T> |
---|
224 | <a name="l00348"></a><a class="code" href="classenorm.html#1394a65caa6e00d42e00cc99b12227af">00348</a> <span class="keywordtype">void</span> <a class="code" href="classenorm.html#1394a65caa6e00d42e00cc99b12227af" title="Set mean value mu and covariance R.">enorm<sq_T>::set_parameters</a> ( <span class="keyword">const</span> vec &mu0, <span class="keyword">const</span> sq_T &R0 ) { |
---|
225 | <a name="l00349"></a>00349 <span class="comment">//Fixme test dimensions of mu0 and R0;</span> |
---|
226 | <a name="l00350"></a>00350 <a class="code" href="classenorm.html#71fde0d54bba147e00f612577f95ad20" title="mean value">mu</a> = mu0; |
---|
227 | <a name="l00351"></a>00351 <a class="code" href="classenorm.html#4ccc8d8514d644ef1c98d8ab023748a1" title="Covariance matrix in decomposed form.">R</a> = R0; |
---|
228 | <a name="l00352"></a>00352 }; |
---|
229 | <a name="l00353"></a>00353 |
---|
230 | <a name="l00354"></a>00354 <span class="keyword">template</span><<span class="keyword">class</span> sq_T> |
---|
231 | <a name="l00355"></a><a class="code" href="classenorm.html#5bf185e31e5954fceb90ada3debd2ff2">00355</a> <span class="keywordtype">void</span> <a class="code" href="classenorm.html#5bf185e31e5954fceb90ada3debd2ff2" title="dupdate in exponential form (not really handy)">enorm<sq_T>::dupdate</a> ( mat &v, <span class="keywordtype">double</span> nu ) { |
---|
232 | <a name="l00356"></a>00356 <span class="comment">//</span> |
---|
233 | <a name="l00357"></a>00357 }; |
---|
234 | <a name="l00358"></a>00358 |
---|
235 | <a name="l00359"></a>00359 <span class="keyword">template</span><<span class="keyword">class</span> sq_T> |
---|
236 | <a name="l00360"></a><a class="code" href="classenorm.html#5b5fd142b6b17ea334597960e3fe126a">00360</a> <span class="keywordtype">void</span> <a class="code" href="classenorm.html#5b5fd142b6b17ea334597960e3fe126a" title="tupdate in exponential form (not really handy)">enorm<sq_T>::tupdate</a> ( <span class="keywordtype">double</span> phi, mat &vbar, <span class="keywordtype">double</span> nubar ) { |
---|
237 | <a name="l00361"></a>00361 <span class="comment">//</span> |
---|
238 | <a name="l00362"></a>00362 }; |
---|
239 | <a name="l00363"></a>00363 |
---|
240 | <a name="l00364"></a>00364 <span class="keyword">template</span><<span class="keyword">class</span> sq_T> |
---|
241 | <a name="l00365"></a><a class="code" href="classenorm.html#60b47544f6181ffd4530d3e415ce12c5">00365</a> vec <a class="code" href="classenorm.html#60b47544f6181ffd4530d3e415ce12c5" title="Returns the required moment of the epdf.">enorm<sq_T>::sample</a>()<span class="keyword"> const </span>{ |
---|
242 | <a name="l00366"></a>00366 vec x ( <a class="code" href="classenorm.html#6938fc390a19cdaf6ad4503fcbaada4e" title="dimension (redundant from rv.count() for easier coding )">dim</a> ); |
---|
243 | <a name="l00367"></a>00367 NorRNG.sample_vector ( <a class="code" href="classenorm.html#6938fc390a19cdaf6ad4503fcbaada4e" title="dimension (redundant from rv.count() for easier coding )">dim</a>,x ); |
---|
244 | <a name="l00368"></a>00368 vec smp = <a class="code" href="classenorm.html#4ccc8d8514d644ef1c98d8ab023748a1" title="Covariance matrix in decomposed form.">R</a>.sqrt_mult ( x ); |
---|
245 | <a name="l00369"></a>00369 |
---|
246 | <a name="l00370"></a>00370 smp += <a class="code" href="classenorm.html#71fde0d54bba147e00f612577f95ad20" title="mean value">mu</a>; |
---|
247 | <a name="l00371"></a>00371 <span class="keywordflow">return</span> smp; |
---|
248 | <a name="l00372"></a>00372 }; |
---|
249 | <a name="l00373"></a>00373 |
---|
250 | <a name="l00374"></a>00374 <span class="keyword">template</span><<span class="keyword">class</span> sq_T> |
---|
251 | <a name="l00375"></a><a class="code" href="classenorm.html#60f0f3bfa53d6e65843eea9532b16d36">00375</a> mat <a class="code" href="classenorm.html#60b47544f6181ffd4530d3e415ce12c5" title="Returns the required moment of the epdf.">enorm<sq_T>::sample</a> ( <span class="keywordtype">int</span> N )<span class="keyword"> const </span>{ |
---|
252 | <a name="l00376"></a>00376 mat X ( <a class="code" href="classenorm.html#6938fc390a19cdaf6ad4503fcbaada4e" title="dimension (redundant from rv.count() for easier coding )">dim</a>,N ); |
---|
253 | <a name="l00377"></a>00377 vec x ( <a class="code" href="classenorm.html#6938fc390a19cdaf6ad4503fcbaada4e" title="dimension (redundant from rv.count() for easier coding )">dim</a> ); |
---|
254 | <a name="l00378"></a>00378 vec pom; |
---|
255 | <a name="l00379"></a>00379 <span class="keywordtype">int</span> i; |
---|
256 | <a name="l00380"></a>00380 |
---|
257 | <a name="l00381"></a>00381 <span class="keywordflow">for</span> ( i=0;i<N;i++ ) { |
---|
258 | <a name="l00382"></a>00382 NorRNG.sample_vector ( <a class="code" href="classenorm.html#6938fc390a19cdaf6ad4503fcbaada4e" title="dimension (redundant from rv.count() for easier coding )">dim</a>,x ); |
---|
259 | <a name="l00383"></a>00383 pom = <a class="code" href="classenorm.html#4ccc8d8514d644ef1c98d8ab023748a1" title="Covariance matrix in decomposed form.">R</a>.sqrt_mult ( x ); |
---|
260 | <a name="l00384"></a>00384 pom +=<a class="code" href="classenorm.html#71fde0d54bba147e00f612577f95ad20" title="mean value">mu</a>; |
---|
261 | <a name="l00385"></a>00385 X.set_col ( i, pom ); |
---|
262 | <a name="l00386"></a>00386 } |
---|
263 | <a name="l00387"></a>00387 |
---|
264 | <a name="l00388"></a>00388 <span class="keywordflow">return</span> X; |
---|
265 | <a name="l00389"></a>00389 }; |
---|
266 | <a name="l00390"></a>00390 |
---|
267 | <a name="l00391"></a>00391 <span class="keyword">template</span><<span class="keyword">class</span> sq_T> |
---|
268 | <a name="l00392"></a><a class="code" href="classenorm.html#b9e1dfd33692d7b3f1a59f17b0e61bd0">00392</a> <span class="keywordtype">double</span> <a class="code" href="classenorm.html#b9e1dfd33692d7b3f1a59f17b0e61bd0" title="Compute probability of argument val.">enorm<sq_T>::eval</a> ( <span class="keyword">const</span> vec &val )<span class="keyword"> const </span>{ |
---|
269 | <a name="l00393"></a>00393 <span class="keywordtype">double</span> pdfl,e; |
---|
270 | <a name="l00394"></a>00394 pdfl = <a class="code" href="classenorm.html#609a7c33dbb4fdfab050f3bdd1122401" title="Compute log-probability of argument val.">evalpdflog</a> ( val ); |
---|
271 | <a name="l00395"></a>00395 e = exp ( pdfl ); |
---|
272 | <a name="l00396"></a>00396 <span class="keywordflow">return</span> e; |
---|
273 | <a name="l00397"></a>00397 }; |
---|
274 | <a name="l00398"></a>00398 |
---|
275 | <a name="l00399"></a>00399 <span class="keyword">template</span><<span class="keyword">class</span> sq_T> |
---|
276 | <a name="l00400"></a><a class="code" href="classenorm.html#609a7c33dbb4fdfab050f3bdd1122401">00400</a> <span class="keywordtype">double</span> <a class="code" href="classenorm.html#609a7c33dbb4fdfab050f3bdd1122401" title="Compute log-probability of argument val.">enorm<sq_T>::evalpdflog</a> ( <span class="keyword">const</span> vec &val )<span class="keyword"> const </span>{ |
---|
277 | <a name="l00401"></a>00401 <span class="comment">// 1.83787706640935 = log(2pi)</span> |
---|
278 | <a name="l00402"></a>00402 <span class="keywordflow">return</span> -0.5* ( +<a class="code" href="classenorm.html#4ccc8d8514d644ef1c98d8ab023748a1" title="Covariance matrix in decomposed form.">R</a>.invqform ( <a class="code" href="classenorm.html#71fde0d54bba147e00f612577f95ad20" title="mean value">mu</a>-val ) ) - <a class="code" href="classenorm.html#b289a36a69db59d182bb6eba9c05d4a8" title="logarithm of the normalizing constant, ">lognc</a>(); |
---|
279 | <a name="l00403"></a>00403 }; |
---|
280 | <a name="l00404"></a>00404 |
---|
281 | <a name="l00405"></a>00405 <span class="keyword">template</span><<span class="keyword">class</span> sq_T> |
---|
282 | <a name="l00406"></a><a class="code" href="classenorm.html#b289a36a69db59d182bb6eba9c05d4a8">00406</a> <span class="keyword">inline</span> <span class="keywordtype">double</span> <a class="code" href="classenorm.html#b289a36a69db59d182bb6eba9c05d4a8" title="logarithm of the normalizing constant, ">enorm<sq_T>::lognc</a> ()<span class="keyword"> const </span>{ |
---|
283 | <a name="l00407"></a>00407 <span class="comment">// 1.83787706640935 = log(2pi)</span> |
---|
284 | <a name="l00408"></a>00408 <span class="keywordflow">return</span> -0.5* ( <a class="code" href="classenorm.html#4ccc8d8514d644ef1c98d8ab023748a1" title="Covariance matrix in decomposed form.">R</a>.cols() * 1.83787706640935 +<a class="code" href="classenorm.html#4ccc8d8514d644ef1c98d8ab023748a1" title="Covariance matrix in decomposed form.">R</a>.logdet()); |
---|
285 | <a name="l00409"></a>00409 }; |
---|
286 | <a name="l00410"></a>00410 |
---|
287 | <a name="l00411"></a>00411 <span class="keyword">template</span><<span class="keyword">class</span> sq_T> |
---|
288 | <a name="l00412"></a><a class="code" href="classmlnorm.html#f927203b3f31171c5c10ffc7caa797f5">00412</a> <a class="code" href="classmlnorm.html#f927203b3f31171c5c10ffc7caa797f5" title="Constructor.">mlnorm<sq_T>::mlnorm</a> ( <a class="code" href="classRV.html" title="Class representing variables, most often random variables.">RV</a> &rv0,<a class="code" href="classRV.html" title="Class representing variables, most often random variables.">RV</a> &rvc0 ) :<a class="code" href="classmEF.html" title="Exponential family model.">mEF</a> ( rv0,rvc0 ),<a class="code" href="classepdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a> ( rv0 ),A ( rv0.count(),rv0.count() ),<a class="code" href="classenorm.html#0b8cb284e5af920a1b64a21d057ec5ac" title="returns a pointer to the internal mean value. Use with Care!">_mu</a>(<a class="code" href="classepdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>.<a class="code" href="classenorm.html#0b8cb284e5af920a1b64a21d057ec5ac" title="returns a pointer to the internal mean value. Use with Care!">_mu</a>()) { <a class="code" href="classmpdf.html#7aa894208a32f3487827df6d5054424c" title="pointer to internal epdf">ep</a> =&<a class="code" href="classepdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>; |
---|
289 | <a name="l00413"></a>00413 } |
---|
290 | <a name="l00414"></a>00414 |
---|
291 | <a name="l00415"></a>00415 <span class="keyword">template</span><<span class="keyword">class</span> sq_T> |
---|
292 | <a name="l00416"></a><a class="code" href="classmlnorm.html#b6749030c5d5abcb3eb6898f74cea3c0">00416</a> <span class="keywordtype">void</span> <a class="code" href="classmlnorm.html#b6749030c5d5abcb3eb6898f74cea3c0" title="Set A and R.">mlnorm<sq_T>::set_parameters</a> ( <span class="keyword">const</span> mat &A0, <span class="keyword">const</span> sq_T &R0 ) { |
---|
293 | <a name="l00417"></a>00417 <a class="code" href="classepdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>.set_parameters ( zeros ( <a class="code" href="classmpdf.html#f6687c07ff07d47812dd565368ca59eb" title="modeled random variable">rv</a>.<a class="code" href="classRV.html#f5c7b8bd589eef09ccdf3329a0addea0" title="Return number of scalars in the RV.">count</a>() ),R0 ); |
---|
294 | <a name="l00418"></a>00418 A = A0; |
---|
295 | <a name="l00419"></a>00419 } |
---|
296 | <a name="l00420"></a>00420 |
---|
297 | <a name="l00421"></a>00421 <span class="keyword">template</span><<span class="keyword">class</span> sq_T> |
---|
298 | <a name="l00422"></a><a class="code" href="classmlnorm.html#decf3e3b5c8e0812e5b4dbe94fa2ae18">00422</a> vec <a class="code" href="classmlnorm.html#decf3e3b5c8e0812e5b4dbe94fa2ae18" title="Generate one sample of the posterior.">mlnorm<sq_T>::samplecond</a> ( vec &cond, <span class="keywordtype">double</span> &lik ) { |
---|
299 | <a name="l00423"></a>00423 this-><a class="code" href="classmlnorm.html#5232fc7e305eceab4e2bd6a8daa44195" title="Set value of rvc . Result of this operation is stored in epdf use function _ep to...">condition</a> ( cond ); |
---|
300 | <a name="l00424"></a>00424 vec smp = <a class="code" href="classepdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>.sample(); |
---|
301 | <a name="l00425"></a>00425 lik = <a class="code" href="classepdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>.eval ( smp ); |
---|
302 | <a name="l00426"></a>00426 <span class="keywordflow">return</span> smp; |
---|
303 | <a name="l00427"></a>00427 } |
---|
304 | <a name="l00428"></a>00428 |
---|
305 | <a name="l00429"></a>00429 <span class="keyword">template</span><<span class="keyword">class</span> sq_T> |
---|
306 | <a name="l00430"></a><a class="code" href="classmlnorm.html#215fb88cc8b95d64cdefd6849abdd1e8">00430</a> mat <a class="code" href="classmlnorm.html#decf3e3b5c8e0812e5b4dbe94fa2ae18" title="Generate one sample of the posterior.">mlnorm<sq_T>::samplecond</a> ( vec &cond, vec &lik, <span class="keywordtype">int</span> n ) { |
---|
307 | <a name="l00431"></a>00431 <span class="keywordtype">int</span> i; |
---|
308 | <a name="l00432"></a>00432 <span class="keywordtype">int</span> dim = <a class="code" href="classmpdf.html#f6687c07ff07d47812dd565368ca59eb" title="modeled random variable">rv</a>.<a class="code" href="classRV.html#f5c7b8bd589eef09ccdf3329a0addea0" title="Return number of scalars in the RV.">count</a>(); |
---|
309 | <a name="l00433"></a>00433 mat Smp ( dim,n ); |
---|
310 | <a name="l00434"></a>00434 vec smp ( dim ); |
---|
311 | <a name="l00435"></a>00435 this-><a class="code" href="classmlnorm.html#5232fc7e305eceab4e2bd6a8daa44195" title="Set value of rvc . Result of this operation is stored in epdf use function _ep to...">condition</a> ( cond ); |
---|
312 | <a name="l00436"></a>00436 |
---|
313 | <a name="l00437"></a>00437 <span class="keywordflow">for</span> ( i=0; i<n; i++ ) { |
---|
314 | <a name="l00438"></a>00438 smp = <a class="code" href="classepdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>.sample(); |
---|
315 | <a name="l00439"></a>00439 lik ( i ) = <a class="code" href="classepdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>.eval ( smp ); |
---|
316 | <a name="l00440"></a>00440 Smp.set_col ( i ,smp ); |
---|
317 | <a name="l00441"></a>00441 } |
---|
318 | <a name="l00442"></a>00442 |
---|
319 | <a name="l00443"></a>00443 <span class="keywordflow">return</span> Smp; |
---|
320 | <a name="l00444"></a>00444 } |
---|
321 | <a name="l00445"></a>00445 |
---|
322 | <a name="l00446"></a>00446 <span class="keyword">template</span><<span class="keyword">class</span> sq_T> |
---|
323 | <a name="l00447"></a><a class="code" href="classmlnorm.html#5232fc7e305eceab4e2bd6a8daa44195">00447</a> <span class="keywordtype">void</span> <a class="code" href="classmlnorm.html#5232fc7e305eceab4e2bd6a8daa44195" title="Set value of rvc . Result of this operation is stored in epdf use function _ep to...">mlnorm<sq_T>::condition</a> ( vec &cond ) { |
---|
324 | <a name="l00448"></a>00448 _mu = A*cond; |
---|
325 | <a name="l00449"></a>00449 <span class="comment">//R is already assigned;</span> |
---|
326 | <a name="l00450"></a>00450 } |
---|
327 | <a name="l00451"></a>00451 |
---|
328 | <a name="l00453"></a>00453 |
---|
329 | <a name="l00454"></a>00454 |
---|
330 | <a name="l00455"></a>00455 <span class="preprocessor">#endif //EF_H</span> |
---|
331 | </pre></div></div> |
---|
332 | <hr size="1"><address style="text-align: right;"><small>Generated on Thu Sep 4 19:28:00 2008 for mixpp by |
---|
333 | <a href="http://www.doxygen.org/index.html"> |
---|
334 | <img src="doxygen.png" alt="doxygen" align="middle" border="0"></a> 1.5.6 </small></address> |
---|
335 | </body> |
---|
336 | </html> |
---|