1 | <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"> |
---|
2 | <html><head><meta http-equiv="Content-Type" content="text/html;charset=UTF-8"> |
---|
3 | <title>mixpp: work/mixpp/bdm/stat/libEF.h Source File</title> |
---|
4 | <link href="doxygen.css" rel="stylesheet" type="text/css"> |
---|
5 | <link href="tabs.css" rel="stylesheet" type="text/css"> |
---|
6 | </head><body> |
---|
7 | <!-- Generated by Doxygen 1.5.3 --> |
---|
8 | <div class="tabs"> |
---|
9 | <ul> |
---|
10 | <li><a href="index.html"><span>Main Page</span></a></li> |
---|
11 | <li><a href="annotated.html"><span>Classes</span></a></li> |
---|
12 | <li class="current"><a href="files.html"><span>Files</span></a></li> |
---|
13 | </ul> |
---|
14 | </div> |
---|
15 | <h1>work/mixpp/bdm/stat/libEF.h</h1><a href="libEF_8h.html">Go to the documentation of this file.</a><div class="fragment"><pre class="fragment"><a name="l00001"></a>00001 |
---|
16 | <a name="l00013"></a>00013 <span class="preprocessor">#ifndef EF_H</span> |
---|
17 | <a name="l00014"></a>00014 <span class="preprocessor"></span><span class="preprocessor">#define EF_H</span> |
---|
18 | <a name="l00015"></a>00015 <span class="preprocessor"></span> |
---|
19 | <a name="l00016"></a>00016 <span class="preprocessor">#include <itpp/itbase.h></span> |
---|
20 | <a name="l00017"></a>00017 <span class="preprocessor">#include "../math/libDC.h"</span> |
---|
21 | <a name="l00018"></a>00018 <span class="preprocessor">#include "<a class="code" href="libBM_8h.html" title="Bayesian Models (bm) that use Bayes rule to learn from observations.">libBM.h</a>"</span> |
---|
22 | <a name="l00019"></a>00019 <span class="comment">//#include <std></span> |
---|
23 | <a name="l00020"></a>00020 |
---|
24 | <a name="l00021"></a>00021 <span class="keyword">using namespace </span>itpp; |
---|
25 | <a name="l00022"></a>00022 |
---|
26 | <a name="l00028"></a><a class="code" href="classeEF.html">00028</a> <span class="keyword">class </span><a class="code" href="classeEF.html" title="General conjugate exponential family posterior density.">eEF</a> : <span class="keyword">public</span> <a class="code" href="classepdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a> { |
---|
27 | <a name="l00029"></a>00029 |
---|
28 | <a name="l00030"></a>00030 <span class="keyword">public</span>: |
---|
29 | <a name="l00031"></a>00031 <span class="keyword">virtual</span> <span class="keywordtype">void</span> tupdate( <span class="keywordtype">double</span> phi, mat &vbar, <span class="keywordtype">double</span> nubar ) {}; |
---|
30 | <a name="l00032"></a>00032 <span class="keyword">virtual</span> <span class="keywordtype">void</span> dupdate( mat &v,<span class="keywordtype">double</span> nu=1.0 ) {}; |
---|
31 | <a name="l00033"></a>00033 }; |
---|
32 | <a name="l00034"></a>00034 |
---|
33 | <a name="l00035"></a>00035 <span class="keyword">class </span>mEF : <span class="keyword">public</span> <a class="code" href="classmpdf.html" title="Conditional probability density, e.g. modeling some dependencies.">mpdf</a> { |
---|
34 | <a name="l00036"></a>00036 |
---|
35 | <a name="l00037"></a>00037 <span class="keyword">public</span>: |
---|
36 | <a name="l00038"></a>00038 |
---|
37 | <a name="l00039"></a>00039 }; |
---|
38 | <a name="l00040"></a>00040 |
---|
39 | <a name="l00046"></a>00046 <span class="keyword">template</span><<span class="keyword">class</span> sq_T> |
---|
40 | <a name="l00047"></a><a class="code" href="classenorm.html">00047</a> <span class="keyword">class </span><a class="code" href="classenorm.html" title="Gaussian density with positive definite (decomposed) covariance matrix.">enorm</a> : <span class="keyword">public</span> <a class="code" href="classeEF.html" title="General conjugate exponential family posterior density.">eEF</a> { |
---|
41 | <a name="l00048"></a>00048 <span class="keywordtype">int</span> dim; |
---|
42 | <a name="l00049"></a>00049 vec mu; |
---|
43 | <a name="l00050"></a>00050 sq_T R; |
---|
44 | <a name="l00051"></a>00051 <span class="keyword">public</span>: |
---|
45 | <a name="l00052"></a>00052 <a class="code" href="classenorm.html" title="Gaussian density with positive definite (decomposed) covariance matrix.">enorm</a>( <a class="code" href="classRV.html" title="Class representing variables, most often random variables.">RV</a> &rv, vec &mu, sq_T &R ); |
---|
46 | <a name="l00053"></a>00053 <a class="code" href="classenorm.html" title="Gaussian density with positive definite (decomposed) covariance matrix.">enorm</a>(); |
---|
47 | <a name="l00055"></a>00055 <span class="keywordtype">void</span> <a class="code" href="classenorm.html#2a1a522504c7788dfd7fb733157ee39e" title="tupdate used in KF">tupdate</a>( <span class="keywordtype">double</span> phi, mat &vbar, <span class="keywordtype">double</span> nubar ); |
---|
48 | <a name="l00056"></a>00056 <span class="keywordtype">void</span> <a class="code" href="classenorm.html#d1b0faf61260de09cf63bf823add5b32" title="dupdate used in KF">dupdate</a>( mat &v,<span class="keywordtype">double</span> nu=1.0 ); |
---|
49 | <a name="l00058"></a>00058 <span class="keywordtype">void</span> <a class="code" href="classenorm.html#2a1a522504c7788dfd7fb733157ee39e" title="tupdate used in KF">tupdate</a>(); |
---|
50 | <a name="l00060"></a>00060 <span class="keywordtype">double</span> <a class="code" href="classenorm.html#d1b0faf61260de09cf63bf823add5b32" title="dupdate used in KF">dupdate</a>(); |
---|
51 | <a name="l00061"></a>00061 |
---|
52 | <a name="l00062"></a>00062 vec <a class="code" href="classenorm.html#6020bcd89db2c9584bd8871001bd2023" title="Returns the required moment of the epdf.">sample</a>(); |
---|
53 | <a name="l00063"></a>00063 mat <a class="code" href="classenorm.html#6020bcd89db2c9584bd8871001bd2023" title="Returns the required moment of the epdf.">sample</a>(<span class="keywordtype">int</span> N); |
---|
54 | <a name="l00064"></a>00064 <span class="keywordtype">double</span> <a class="code" href="classenorm.html#93107f05a8e9b34b64853767200121a4" title="Compute probability of argument val.">eval</a>( <span class="keyword">const</span> vec &val ); |
---|
55 | <a name="l00065"></a>00065 Normal_RNG RNG; |
---|
56 | <a name="l00066"></a>00066 }; |
---|
57 | <a name="l00067"></a>00067 |
---|
58 | <a name="l00071"></a>00071 <span class="keyword">template</span><<span class="keyword">class</span> sq_T> |
---|
59 | <a name="l00072"></a>00072 <span class="keyword">class </span>mlnorm : <span class="keyword">public</span> mEF { |
---|
60 | <a name="l00073"></a>00073 <a class="code" href="classenorm.html" title="Gaussian density with positive definite (decomposed) covariance matrix.">enorm<sq_T></a> <a class="code" href="classepdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>; |
---|
61 | <a name="l00074"></a>00074 mat A; |
---|
62 | <a name="l00075"></a>00075 <span class="keyword">public</span>: |
---|
63 | <a name="l00077"></a>00077 mlnorm( <a class="code" href="classRV.html" title="Class representing variables, most often random variables.">RV</a> &rv,<a class="code" href="classRV.html" title="Class representing variables, most often random variables.">RV</a> &rvc, mat &A, sq_T &R ); |
---|
64 | <a name="l00079"></a>00079 vec samplecond( vec &cond, <span class="keywordtype">double</span> &lik ); |
---|
65 | <a name="l00080"></a>00080 mat samplecond( vec &cond, vec &lik, <span class="keywordtype">int</span> n ); |
---|
66 | <a name="l00081"></a>00081 <span class="keywordtype">void</span> condition( vec &cond ); |
---|
67 | <a name="l00082"></a>00082 }; |
---|
68 | <a name="l00083"></a>00083 |
---|
69 | <a name="l00085"></a>00085 |
---|
70 | <a name="l00086"></a>00086 <span class="keyword">template</span><<span class="keyword">class</span> sq_T> |
---|
71 | <a name="l00087"></a>00087 <a class="code" href="classenorm.html" title="Gaussian density with positive definite (decomposed) covariance matrix.">enorm<sq_T>::enorm</a>( <a class="code" href="classRV.html" title="Class representing variables, most often random variables.">RV</a> &rv, vec &mu0, sq_T &R0 ) { |
---|
72 | <a name="l00088"></a>00088 dim = rv.<a class="code" href="classRV.html#f5c7b8bd589eef09ccdf3329a0addea0" title="Return length (number of scalars) of the RV.">count</a>(); |
---|
73 | <a name="l00089"></a>00089 mu = mu0; |
---|
74 | <a name="l00090"></a>00090 R = R0; |
---|
75 | <a name="l00091"></a>00091 }; |
---|
76 | <a name="l00092"></a>00092 |
---|
77 | <a name="l00093"></a>00093 <span class="keyword">template</span><<span class="keyword">class</span> sq_T> |
---|
78 | <a name="l00094"></a>00094 <span class="keywordtype">void</span> <a class="code" href="classenorm.html#d1b0faf61260de09cf63bf823add5b32" title="dupdate used in KF">enorm<sq_T>::dupdate</a>( mat &v, <span class="keywordtype">double</span> nu ) { |
---|
79 | <a name="l00095"></a>00095 <span class="comment">//</span> |
---|
80 | <a name="l00096"></a>00096 }; |
---|
81 | <a name="l00097"></a>00097 |
---|
82 | <a name="l00098"></a>00098 <span class="keyword">template</span><<span class="keyword">class</span> sq_T> |
---|
83 | <a name="l00099"></a><a class="code" href="classenorm.html#5b5fd142b6b17ea334597960e3fe126a">00099</a> <span class="keywordtype">void</span> <a class="code" href="classenorm.html#2a1a522504c7788dfd7fb733157ee39e" title="tupdate used in KF">enorm<sq_T>::tupdate</a>( <span class="keywordtype">double</span> phi, mat &vbar, <span class="keywordtype">double</span> nubar ) { |
---|
84 | <a name="l00100"></a>00100 <span class="comment">//</span> |
---|
85 | <a name="l00101"></a>00101 }; |
---|
86 | <a name="l00102"></a>00102 |
---|
87 | <a name="l00103"></a>00103 <span class="keyword">template</span><<span class="keyword">class</span> sq_T> |
---|
88 | <a name="l00104"></a><a class="code" href="classenorm.html#6020bcd89db2c9584bd8871001bd2023">00104</a> vec <a class="code" href="classenorm.html#6020bcd89db2c9584bd8871001bd2023" title="Returns the required moment of the epdf.">enorm<sq_T>::sample</a>() { |
---|
89 | <a name="l00105"></a>00105 vec x( dim ); |
---|
90 | <a name="l00106"></a>00106 RNG.sample_vector( dim,x ); |
---|
91 | <a name="l00107"></a>00107 vec smp = R.sqrt_mult( x ); |
---|
92 | <a name="l00108"></a>00108 |
---|
93 | <a name="l00109"></a>00109 smp += mu; |
---|
94 | <a name="l00110"></a>00110 <span class="keywordflow">return</span> smp; |
---|
95 | <a name="l00111"></a>00111 }; |
---|
96 | <a name="l00112"></a>00112 |
---|
97 | <a name="l00113"></a>00113 <span class="keyword">template</span><<span class="keyword">class</span> sq_T> |
---|
98 | <a name="l00114"></a>00114 mat <a class="code" href="classenorm.html#6020bcd89db2c9584bd8871001bd2023" title="Returns the required moment of the epdf.">enorm<sq_T>::sample</a>( <span class="keywordtype">int</span> N ) { |
---|
99 | <a name="l00115"></a>00115 mat X( dim,N ); |
---|
100 | <a name="l00116"></a>00116 vec x( dim ); |
---|
101 | <a name="l00117"></a>00117 vec pom; |
---|
102 | <a name="l00118"></a>00118 <span class="keywordtype">int</span> i; |
---|
103 | <a name="l00119"></a>00119 <span class="keywordflow">for</span> ( i=0;i<N;i++ ) { |
---|
104 | <a name="l00120"></a>00120 RNG.sample_vector( dim,x ); |
---|
105 | <a name="l00121"></a>00121 pom = R.sqrt_mult( x ); |
---|
106 | <a name="l00122"></a>00122 pom +=mu; |
---|
107 | <a name="l00123"></a>00123 X.set_col( i, pom); |
---|
108 | <a name="l00124"></a>00124 } |
---|
109 | <a name="l00125"></a>00125 <span class="keywordflow">return</span> X; |
---|
110 | <a name="l00126"></a>00126 }; |
---|
111 | <a name="l00127"></a>00127 |
---|
112 | <a name="l00128"></a>00128 <span class="keyword">template</span><<span class="keyword">class</span> sq_T> |
---|
113 | <a name="l00129"></a><a class="code" href="classenorm.html#93107f05a8e9b34b64853767200121a4">00129</a> <span class="keywordtype">double</span> <a class="code" href="classenorm.html#93107f05a8e9b34b64853767200121a4" title="Compute probability of argument val.">enorm<sq_T>::eval</a>( <span class="keyword">const</span> vec &val ) { |
---|
114 | <a name="l00130"></a>00130 <span class="comment">//</span> |
---|
115 | <a name="l00131"></a>00131 }; |
---|
116 | <a name="l00132"></a>00132 |
---|
117 | <a name="l00133"></a>00133 |
---|
118 | <a name="l00134"></a>00134 <span class="keyword">template</span><<span class="keyword">class</span> sq_T> |
---|
119 | <a name="l00135"></a>00135 <a class="code" href="classenorm.html" title="Gaussian density with positive definite (decomposed) covariance matrix.">enorm<sq_T>::enorm</a>() {}; |
---|
120 | <a name="l00136"></a>00136 |
---|
121 | <a name="l00137"></a>00137 <span class="keyword">template</span><<span class="keyword">class</span> sq_T> |
---|
122 | <a name="l00138"></a>00138 mlnorm<sq_T>::mlnorm( <a class="code" href="classRV.html" title="Class representing variables, most often random variables.">RV</a> &rv,<a class="code" href="classRV.html" title="Class representing variables, most often random variables.">RV</a> &rvc, mat &A, sq_T &R ) { |
---|
123 | <a name="l00139"></a>00139 <span class="keywordtype">int</span> dim = rv.<a class="code" href="classRV.html#f5c7b8bd589eef09ccdf3329a0addea0" title="Return length (number of scalars) of the RV.">count</a>(); |
---|
124 | <a name="l00140"></a>00140 vec mu( dim ); |
---|
125 | <a name="l00141"></a>00141 |
---|
126 | <a name="l00142"></a>00142 <a class="code" href="classepdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a> = <a class="code" href="classenorm.html" title="Gaussian density with positive definite (decomposed) covariance matrix.">enorm<sq_T></a>( rv,mu,R ); |
---|
127 | <a name="l00143"></a>00143 } |
---|
128 | <a name="l00144"></a>00144 |
---|
129 | <a name="l00145"></a>00145 <span class="keyword">template</span><<span class="keyword">class</span> sq_T> |
---|
130 | <a name="l00146"></a>00146 vec mlnorm<sq_T>::samplecond( vec &cond, <span class="keywordtype">double</span> &lik ) { |
---|
131 | <a name="l00147"></a>00147 this->condition( cond ); |
---|
132 | <a name="l00148"></a>00148 vec smp = <a class="code" href="classepdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>.sample(); |
---|
133 | <a name="l00149"></a>00149 lik = <a class="code" href="classepdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>.eval( smp ); |
---|
134 | <a name="l00150"></a>00150 <span class="keywordflow">return</span> smp; |
---|
135 | <a name="l00151"></a>00151 } |
---|
136 | <a name="l00152"></a>00152 |
---|
137 | <a name="l00153"></a>00153 <span class="keyword">template</span><<span class="keyword">class</span> sq_T> |
---|
138 | <a name="l00154"></a>00154 mat mlnorm<sq_T>::samplecond( vec &cond, vec &lik, <span class="keywordtype">int</span> n ) { |
---|
139 | <a name="l00155"></a>00155 <span class="keywordtype">int</span> i; |
---|
140 | <a name="l00156"></a>00156 <span class="keywordtype">int</span> dim = rv.<a class="code" href="classRV.html#f5c7b8bd589eef09ccdf3329a0addea0" title="Return length (number of scalars) of the RV.">count</a>(); |
---|
141 | <a name="l00157"></a>00157 mat Smp( dim,n ); |
---|
142 | <a name="l00158"></a>00158 vec smp( dim ); |
---|
143 | <a name="l00159"></a>00159 this->condition( cond ); |
---|
144 | <a name="l00160"></a>00160 <span class="keywordflow">for</span> ( i=0; i<dim; i++ ) { |
---|
145 | <a name="l00161"></a>00161 smp = <a class="code" href="classepdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>.sample(); |
---|
146 | <a name="l00162"></a>00162 lik( i ) = <a class="code" href="classepdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>.eval( smp ); |
---|
147 | <a name="l00163"></a>00163 Smp.set_col( i ,smp ); |
---|
148 | <a name="l00164"></a>00164 } |
---|
149 | <a name="l00165"></a>00165 <span class="keywordflow">return</span> Smp; |
---|
150 | <a name="l00166"></a>00166 } |
---|
151 | <a name="l00167"></a>00167 |
---|
152 | <a name="l00168"></a>00168 <span class="keyword">template</span><<span class="keyword">class</span> sq_T> |
---|
153 | <a name="l00169"></a>00169 <span class="keywordtype">void</span> mlnorm<sq_T>::condition( vec &cond ) { |
---|
154 | <a name="l00170"></a>00170 <a class="code" href="classepdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>.mu = A*cond; |
---|
155 | <a name="l00171"></a>00171 <span class="comment">//R is already assigned;</span> |
---|
156 | <a name="l00172"></a>00172 } |
---|
157 | <a name="l00173"></a>00173 |
---|
158 | <a name="l00174"></a>00174 <span class="preprocessor">#endif //EF_H</span> |
---|
159 | </pre></div><hr size="1"><address style="text-align: right;"><small>Generated on Sun Feb 17 16:14:14 2008 for mixpp by |
---|
160 | <a href="http://www.doxygen.org/index.html"> |
---|
161 | <img src="doxygen.png" alt="doxygen" align="middle" border="0"></a> 1.5.3 </small></address> |
---|
162 | </body> |
---|
163 | </html> |
---|