1 | <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"> |
---|
2 | <html><head><meta http-equiv="Content-Type" content="text/html;charset=UTF-8"> |
---|
3 | <title>mixpp: libEF.h Source File</title> |
---|
4 | <link href="doxygen.css" rel="stylesheet" type="text/css"> |
---|
5 | <link href="tabs.css" rel="stylesheet" type="text/css"> |
---|
6 | </head><body> |
---|
7 | <!-- Generated by Doxygen 1.5.6 --> |
---|
8 | <div class="navigation" id="top"> |
---|
9 | <div class="tabs"> |
---|
10 | <ul> |
---|
11 | <li><a href="index.html"><span>Main Page</span></a></li> |
---|
12 | <li><a href="pages.html"><span>Related Pages</span></a></li> |
---|
13 | <li><a href="modules.html"><span>Modules</span></a></li> |
---|
14 | <li><a href="namespaces.html"><span>Namespaces</span></a></li> |
---|
15 | <li><a href="classes.html"><span>Classes</span></a></li> |
---|
16 | <li class="current"><a href="files.html"><span>Files</span></a></li> |
---|
17 | </ul> |
---|
18 | </div> |
---|
19 | <h1>libEF.h</h1><a href="libEF_8h.html">Go to the documentation of this file.</a><div class="fragment"><pre class="fragment"><a name="l00001"></a>00001 |
---|
20 | <a name="l00013"></a>00013 <span class="preprocessor">#ifndef EF_H</span> |
---|
21 | <a name="l00014"></a>00014 <span class="preprocessor"></span><span class="preprocessor">#define EF_H</span> |
---|
22 | <a name="l00015"></a>00015 <span class="preprocessor"></span> |
---|
23 | <a name="l00016"></a>00016 |
---|
24 | <a name="l00017"></a>00017 <span class="preprocessor">#include "<a class="code" href="libBM_8h.html" title="Bayesian Models (bm) that use Bayes rule to learn from observations.">libBM.h</a>"</span> |
---|
25 | <a name="l00018"></a>00018 <span class="preprocessor">#include "../math/chmat.h"</span> |
---|
26 | <a name="l00019"></a>00019 <span class="comment">//#include <std></span> |
---|
27 | <a name="l00020"></a>00020 |
---|
28 | <a name="l00021"></a>00021 <span class="keyword">namespace </span>bdm{ |
---|
29 | <a name="l00022"></a>00022 |
---|
30 | <a name="l00023"></a>00023 |
---|
31 | <a name="l00025"></a>00025 <span class="keyword">extern</span> Uniform_RNG <a class="code" href="namespacebdm.html#96288dbda6916cd442af735f66a9f40b" title="Global Uniform_RNG.">UniRNG</a>; |
---|
32 | <a name="l00027"></a>00027 <span class="keyword">extern</span> Normal_RNG <a class="code" href="namespacebdm.html#c959a7382efbcc31af4b58cf0f0f951a" title="Global Normal_RNG.">NorRNG</a>; |
---|
33 | <a name="l00029"></a>00029 <span class="keyword">extern</span> <a class="code" href="classitpp_1_1Gamma__RNG.html" title="Gamma distribution.">Gamma_RNG</a> <a class="code" href="namespacebdm.html#2828dc833cc283a1fb39a5e8dc06518f" title="Global Gamma_RNG.">GamRNG</a>; |
---|
34 | <a name="l00030"></a>00030 |
---|
35 | <a name="l00037"></a><a class="code" href="classbdm_1_1eEF.html">00037</a> <span class="keyword">class </span><a class="code" href="classbdm_1_1eEF.html" title="General conjugate exponential family posterior density.">eEF</a> : <span class="keyword">public</span> <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a> { |
---|
36 | <a name="l00038"></a>00038 <span class="keyword">public</span>: |
---|
37 | <a name="l00039"></a>00039 <span class="comment">// eEF() :epdf() {};</span> |
---|
38 | <a name="l00041"></a><a class="code" href="classbdm_1_1eEF.html#1e92e3f94e594edb20adfa81ae9e2959">00041</a> <span class="comment"></span> <a class="code" href="classbdm_1_1eEF.html#1e92e3f94e594edb20adfa81ae9e2959" title="default constructor">eEF</a> ( <span class="keyword">const</span> <a class="code" href="classbdm_1_1RV.html" title="Class representing variables, most often random variables.">RV</a> &<a class="code" href="classbdm_1_1epdf.html#62c5b8ff71d9ebe6cd58d3c342eb1dc8" title="Identified of the random variable.">rv</a> ) :<a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a> ( rv ) {}; |
---|
39 | <a name="l00043"></a>00043 <span class="keyword">virtual</span> <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1eEF.html#cd678fc9b02007a4b8d6692e746f1bf8" title="logarithm of the normalizing constant, ">lognc</a>() <span class="keyword">const</span> =0; |
---|
40 | <a name="l00045"></a><a class="code" href="classbdm_1_1eEF.html#deef7d6273ba4d5a5cf0bbd91ec7277a">00045</a> <span class="keyword">virtual</span> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1eEF.html#deef7d6273ba4d5a5cf0bbd91ec7277a" title="TODO decide if it is really needed.">dupdate</a> ( mat &v ) {it_error ( <span class="stringliteral">"Not implemented"</span> );}; |
---|
41 | <a name="l00047"></a><a class="code" href="classbdm_1_1eEF.html#a4135778ecd9ab774762936c82a097c6">00047</a> <span class="keyword">virtual</span> <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1eEF.html#a4135778ecd9ab774762936c82a097c6" title="Evaluate normalized log-probability.">evallog_nn</a> ( <span class="keyword">const</span> vec &val )<span class="keyword"> const</span>{it_error ( <span class="stringliteral">"Not implemented"</span> );<span class="keywordflow">return</span> 0.0;}; |
---|
42 | <a name="l00049"></a><a class="code" href="classbdm_1_1eEF.html#a36d06ecdd6f4c79dc122510eaccc692">00049</a> <span class="keyword">virtual</span> <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1eEF.html#a36d06ecdd6f4c79dc122510eaccc692" title="Evaluate normalized log-probability.">evallog</a> ( <span class="keyword">const</span> vec &val )<span class="keyword"> const </span>{<span class="keywordtype">double</span> tmp;tmp= <a class="code" href="classbdm_1_1eEF.html#a4135778ecd9ab774762936c82a097c6" title="Evaluate normalized log-probability.">evallog_nn</a> ( val )-<a class="code" href="classbdm_1_1eEF.html#cd678fc9b02007a4b8d6692e746f1bf8" title="logarithm of the normalizing constant, ">lognc</a>();it_assert_debug(std::isfinite(tmp),<span class="stringliteral">"Infinite value"</span>); <span class="keywordflow">return</span> tmp;} |
---|
43 | <a name="l00051"></a><a class="code" href="classbdm_1_1eEF.html#79a7c8ea8c02e45d410bd1d7ffd72b41">00051</a> <span class="keyword">virtual</span> vec <a class="code" href="classbdm_1_1eEF.html#a36d06ecdd6f4c79dc122510eaccc692" title="Evaluate normalized log-probability.">evallog</a> ( <span class="keyword">const</span> mat &Val )<span class="keyword"> const </span>{ |
---|
44 | <a name="l00052"></a>00052 vec x ( Val.cols() ); |
---|
45 | <a name="l00053"></a>00053 <span class="keywordflow">for</span> ( <span class="keywordtype">int</span> i=0;i<Val.cols();i++ ) {x ( i ) =<a class="code" href="classbdm_1_1eEF.html#a4135778ecd9ab774762936c82a097c6" title="Evaluate normalized log-probability.">evallog_nn</a> ( Val.get_col ( i ) ) ;} |
---|
46 | <a name="l00054"></a>00054 <span class="keywordflow">return</span> x-<a class="code" href="classbdm_1_1eEF.html#cd678fc9b02007a4b8d6692e746f1bf8" title="logarithm of the normalizing constant, ">lognc</a>(); |
---|
47 | <a name="l00055"></a>00055 } |
---|
48 | <a name="l00057"></a><a class="code" href="classbdm_1_1eEF.html#cf38af29e8e3d650c640509a52396053">00057</a> <span class="keyword">virtual</span> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1eEF.html#cf38af29e8e3d650c640509a52396053" title="Power of the density, used e.g. to flatten the density.">pow</a> ( <span class="keywordtype">double</span> p ) {it_error ( <span class="stringliteral">"Not implemented"</span> );}; |
---|
49 | <a name="l00058"></a>00058 }; |
---|
50 | <a name="l00059"></a>00059 |
---|
51 | <a name="l00066"></a><a class="code" href="classbdm_1_1mEF.html">00066</a> <span class="keyword">class </span><a class="code" href="classbdm_1_1mEF.html" title="Exponential family model.">mEF</a> : <span class="keyword">public</span> <a class="code" href="classbdm_1_1mpdf.html" title="Conditional probability density, e.g. modeling some dependencies.">mpdf</a> { |
---|
52 | <a name="l00067"></a>00067 |
---|
53 | <a name="l00068"></a>00068 <span class="keyword">public</span>: |
---|
54 | <a name="l00070"></a><a class="code" href="classbdm_1_1mEF.html#f6647b16e9c99b8a7d7df93374ef90f3">00070</a> <a class="code" href="classbdm_1_1mEF.html#f6647b16e9c99b8a7d7df93374ef90f3" title="Default constructor.">mEF</a> ( <span class="keyword">const</span> <a class="code" href="classbdm_1_1RV.html" title="Class representing variables, most often random variables.">RV</a> &rv0, <span class="keyword">const</span> <a class="code" href="classbdm_1_1RV.html" title="Class representing variables, most often random variables.">RV</a> &rvc0 ) :<a class="code" href="classbdm_1_1mpdf.html" title="Conditional probability density, e.g. modeling some dependencies.">mpdf</a> ( rv0,rvc0 ) {}; |
---|
55 | <a name="l00071"></a>00071 }; |
---|
56 | <a name="l00072"></a>00072 |
---|
57 | <a name="l00074"></a><a class="code" href="classbdm_1_1BMEF.html">00074</a> <span class="keyword">class </span><a class="code" href="classbdm_1_1BMEF.html" title="Estimator for Exponential family.">BMEF</a> : <span class="keyword">public</span> <a class="code" href="classbdm_1_1BM.html" title="Bayesian Model of the world, i.e. all uncertainty is modeled by probabilities.">BM</a> { |
---|
58 | <a name="l00075"></a>00075 <span class="keyword">protected</span>: |
---|
59 | <a name="l00077"></a><a class="code" href="classbdm_1_1BMEF.html#1331865e10fb1ccef65bb4c47fa3be64">00077</a> <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1BMEF.html#1331865e10fb1ccef65bb4c47fa3be64" title="forgetting factor">frg</a>; |
---|
60 | <a name="l00079"></a><a class="code" href="classbdm_1_1BMEF.html#06e7b3ac03e10017d4288c76888e2865">00079</a> <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1BMEF.html#06e7b3ac03e10017d4288c76888e2865" title="cached value of lognc() in the previous step (used in evaluation of ll )">last_lognc</a>; |
---|
61 | <a name="l00080"></a>00080 <span class="keyword">public</span>: |
---|
62 | <a name="l00082"></a><a class="code" href="classbdm_1_1BMEF.html#73bccd1d8142d4d330e35637ca30decc">00082</a> <a class="code" href="classbdm_1_1BMEF.html#73bccd1d8142d4d330e35637ca30decc" title="Default constructor.">BMEF</a> ( <span class="keyword">const</span> <a class="code" href="classbdm_1_1RV.html" title="Class representing variables, most often random variables.">RV</a> &<a class="code" href="classbdm_1_1BM.html#18d6db4af8ee42077741d9e3618153ca" title="Random variable of the posterior.">rv</a>, <span class="keywordtype">double</span> frg0=1.0 ) :<a class="code" href="classbdm_1_1BM.html" title="Bayesian Model of the world, i.e. all uncertainty is modeled by probabilities.">BM</a> ( rv ), <a class="code" href="classbdm_1_1BMEF.html#1331865e10fb1ccef65bb4c47fa3be64" title="forgetting factor">frg</a> ( frg0 ) {} |
---|
63 | <a name="l00084"></a><a class="code" href="classbdm_1_1BMEF.html#9662379513101405e159e76717104e62">00084</a> <a class="code" href="classbdm_1_1BMEF.html#73bccd1d8142d4d330e35637ca30decc" title="Default constructor.">BMEF</a> ( <span class="keyword">const</span> <a class="code" href="classbdm_1_1BMEF.html" title="Estimator for Exponential family.">BMEF</a> &B ) :<a class="code" href="classbdm_1_1BM.html" title="Bayesian Model of the world, i.e. all uncertainty is modeled by probabilities.">BM</a> ( B ), <a class="code" href="classbdm_1_1BMEF.html#1331865e10fb1ccef65bb4c47fa3be64" title="forgetting factor">frg</a> ( B.<a class="code" href="classbdm_1_1BMEF.html#1331865e10fb1ccef65bb4c47fa3be64" title="forgetting factor">frg</a> ), <a class="code" href="classbdm_1_1BMEF.html#06e7b3ac03e10017d4288c76888e2865" title="cached value of lognc() in the previous step (used in evaluation of ll )">last_lognc</a> ( B.<a class="code" href="classbdm_1_1BMEF.html#06e7b3ac03e10017d4288c76888e2865" title="cached value of lognc() in the previous step (used in evaluation of ll )">last_lognc</a> ) {} |
---|
64 | <a name="l00086"></a><a class="code" href="classbdm_1_1BMEF.html#d2b528b7a41ca67163152142f5404051">00086</a> <span class="keyword">virtual</span> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1BMEF.html#d2b528b7a41ca67163152142f5404051" title="get statistics from another model">set_statistics</a> ( <span class="keyword">const</span> <a class="code" href="classbdm_1_1BMEF.html" title="Estimator for Exponential family.">BMEF</a>* BM0 ) {it_error ( <span class="stringliteral">"Not implemented"</span> );}; |
---|
65 | <a name="l00088"></a><a class="code" href="classbdm_1_1BMEF.html#bf58deb99af2a6cc674f13ff90300de6">00088</a> <span class="keyword">virtual</span> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1BMEF.html#bf58deb99af2a6cc674f13ff90300de6" title="Weighted update of sufficient statistics (Bayes rule).">bayes</a> ( <span class="keyword">const</span> vec &data, <span class="keyword">const</span> <span class="keywordtype">double</span> w ) {}; |
---|
66 | <a name="l00089"></a>00089 <span class="comment">//original Bayes</span> |
---|
67 | <a name="l00090"></a>00090 <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1BMEF.html#bf58deb99af2a6cc674f13ff90300de6" title="Weighted update of sufficient statistics (Bayes rule).">bayes</a> ( <span class="keyword">const</span> vec &dt ); |
---|
68 | <a name="l00092"></a><a class="code" href="classbdm_1_1BMEF.html#b2916a2e71a958665054473124d5e749">00092</a> <span class="keyword">virtual</span> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1BMEF.html#b2916a2e71a958665054473124d5e749" title="Flatten the posterior according to the given BMEF (of the same type!).">flatten</a> ( <span class="keyword">const</span> <a class="code" href="classbdm_1_1BMEF.html" title="Estimator for Exponential family.">BMEF</a> * B ) {it_error ( <span class="stringliteral">"Not implemented"</span> );} |
---|
69 | <a name="l00094"></a>00094 <span class="comment">// virtual void flatten ( double nu0 ) {it_error ( "Not implemented" );}</span> |
---|
70 | <a name="l00095"></a>00095 |
---|
71 | <a name="l00096"></a><a class="code" href="classbdm_1_1BMEF.html#5912dbcf28ae711e30b08c2fa766a3e6">00096</a> <a class="code" href="classbdm_1_1BMEF.html" title="Estimator for Exponential family.">BMEF</a>* <a class="code" href="classbdm_1_1BMEF.html#5912dbcf28ae711e30b08c2fa766a3e6" title="Flatten the posterior as if to keep nu0 data.">_copy_</a> ( <span class="keywordtype">bool</span> changerv=<span class="keyword">false</span> ) {it_error ( <span class="stringliteral">"function _copy_ not implemented for this BM"</span> ); <span class="keywordflow">return</span> NULL;}; |
---|
72 | <a name="l00097"></a>00097 }; |
---|
73 | <a name="l00098"></a>00098 |
---|
74 | <a name="l00099"></a>00099 <span class="keyword">template</span><<span class="keyword">class</span> sq_T> |
---|
75 | <a name="l00100"></a>00100 <span class="keyword">class </span>mlnorm; |
---|
76 | <a name="l00101"></a>00101 |
---|
77 | <a name="l00107"></a>00107 <span class="keyword">template</span><<span class="keyword">class</span> sq_T> |
---|
78 | <a name="l00108"></a><a class="code" href="classbdm_1_1enorm.html">00108</a> <span class="keyword">class </span><a class="code" href="classbdm_1_1enorm.html" title="Gaussian density with positive definite (decomposed) covariance matrix.">enorm</a> : <span class="keyword">public</span> <a class="code" href="classbdm_1_1eEF.html" title="General conjugate exponential family posterior density.">eEF</a> { |
---|
79 | <a name="l00109"></a>00109 <span class="keyword">protected</span>: |
---|
80 | <a name="l00111"></a><a class="code" href="classbdm_1_1enorm.html#c702a194720853570d08b65482f842c7">00111</a> vec <a class="code" href="classbdm_1_1enorm.html#c702a194720853570d08b65482f842c7" title="mean value">mu</a>; |
---|
81 | <a name="l00113"></a><a class="code" href="classbdm_1_1enorm.html#2d92dde696b2a7a5b10ddef5d22ba2c2">00113</a> sq_T <a class="code" href="classbdm_1_1enorm.html#2d92dde696b2a7a5b10ddef5d22ba2c2" title="Covariance matrix in decomposed form.">R</a>; |
---|
82 | <a name="l00115"></a><a class="code" href="classbdm_1_1enorm.html#91a2d4a91364b0144e1523cad4d1135b">00115</a> <span class="keywordtype">int</span> <a class="code" href="classbdm_1_1enorm.html#91a2d4a91364b0144e1523cad4d1135b" title="dimension (redundant from rv.count() for easier coding )">dim</a>; |
---|
83 | <a name="l00116"></a>00116 <span class="keyword">public</span>: |
---|
84 | <a name="l00118"></a>00118 <a class="code" href="classbdm_1_1enorm.html#7d433390d6bbad337986945b63d7fbe9" title="Default constructor.">enorm</a> ( <span class="keyword">const</span> <a class="code" href="classbdm_1_1RV.html" title="Class representing variables, most often random variables.">RV</a> &<a class="code" href="classbdm_1_1epdf.html#62c5b8ff71d9ebe6cd58d3c342eb1dc8" title="Identified of the random variable.">rv</a> ); |
---|
85 | <a name="l00120"></a>00120 <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1enorm.html#b8322f2c11560871dd922c660f4771bb" title="Set mean value mu and covariance R.">set_parameters</a> ( <span class="keyword">const</span> vec &<a class="code" href="classbdm_1_1enorm.html#c702a194720853570d08b65482f842c7" title="mean value">mu</a>,<span class="keyword">const</span> sq_T &<a class="code" href="classbdm_1_1enorm.html#2d92dde696b2a7a5b10ddef5d22ba2c2" title="Covariance matrix in decomposed form.">R</a> ); |
---|
86 | <a name="l00122"></a>00122 <span class="comment">//void tupdate ( double phi, mat &vbar, double nubar );</span> |
---|
87 | <a name="l00124"></a>00124 <span class="comment"></span> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1enorm.html#d2e0d3a1e30ab3ab04df2d0c43ae74a2" title="dupdate in exponential form (not really handy)">dupdate</a> ( mat &v,<span class="keywordtype">double</span> nu=1.0 ); |
---|
88 | <a name="l00125"></a>00125 |
---|
89 | <a name="l00126"></a>00126 vec <a class="code" href="classbdm_1_1enorm.html#e1a48f52351ec3a349bd443b713b1766" title="Returns a sample, from density .">sample</a>() <span class="keyword">const</span>; |
---|
90 | <a name="l00128"></a>00128 mat <a class="code" href="classbdm_1_1enorm.html#e1a48f52351ec3a349bd443b713b1766" title="Returns a sample, from density .">sample</a> ( <span class="keywordtype">int</span> N ) <span class="keyword">const</span>; |
---|
91 | <a name="l00129"></a>00129 <span class="comment">// double eval ( const vec &val ) const ;</span> |
---|
92 | <a name="l00130"></a>00130 <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1enorm.html#e13aeed5b543b2179bacdc4fa2ae47a3" title="Evaluate normalized log-probability.">evallog_nn</a> ( <span class="keyword">const</span> vec &val ) <span class="keyword">const</span>; |
---|
93 | <a name="l00131"></a>00131 <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1enorm.html#25785343aff102cc5df1cab08ba16d32" title="logarithm of the normalizing constant, ">lognc</a> () <span class="keyword">const</span>; |
---|
94 | <a name="l00132"></a><a class="code" href="classbdm_1_1enorm.html#b2fa2915c35366392fe9bb022ca1a600">00132</a> vec <a class="code" href="classbdm_1_1enorm.html#b2fa2915c35366392fe9bb022ca1a600" title="return expected value">mean</a>()<span class="keyword"> const </span>{<span class="keywordflow">return</span> <a class="code" href="classbdm_1_1enorm.html#c702a194720853570d08b65482f842c7" title="mean value">mu</a>;} |
---|
95 | <a name="l00133"></a><a class="code" href="classbdm_1_1enorm.html#729c75ef0fa8abae03d58ad1f81e6773">00133</a> vec <a class="code" href="classbdm_1_1enorm.html#729c75ef0fa8abae03d58ad1f81e6773" title="return expected variance (not covariance!)">variance</a>()<span class="keyword"> const </span>{<span class="keywordflow">return</span> diag(<a class="code" href="classbdm_1_1enorm.html#2d92dde696b2a7a5b10ddef5d22ba2c2" title="Covariance matrix in decomposed form.">R</a>.to_mat());} |
---|
96 | <a name="l00134"></a>00134 <span class="comment">// mlnorm<sq_T>* condition ( const RV &rvn ) const ;</span> |
---|
97 | <a name="l00135"></a>00135 <a class="code" href="classbdm_1_1mpdf.html" title="Conditional probability density, e.g. modeling some dependencies.">mpdf</a>* <a class="code" href="classbdm_1_1enorm.html#baea4d49c657342b58297d68cda16d26" title="Return conditional density on the given RV, the remaining rvs will be in conditioning...">condition</a> ( <span class="keyword">const</span> <a class="code" href="classbdm_1_1RV.html" title="Class representing variables, most often random variables.">RV</a> &rvn ) <span class="keyword">const</span> ; |
---|
98 | <a name="l00136"></a>00136 <span class="comment">// enorm<sq_T>* marginal ( const RV &rv ) const;</span> |
---|
99 | <a name="l00137"></a>00137 <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>* <a class="code" href="classbdm_1_1enorm.html#cd02d76e9d4f96bdd3fa6b604e273039" title="Return marginal density on the given RV, the remainig rvs are intergrated out.">marginal</a> ( <span class="keyword">const</span> <a class="code" href="classbdm_1_1RV.html" title="Class representing variables, most often random variables.">RV</a> &<a class="code" href="classbdm_1_1epdf.html#62c5b8ff71d9ebe6cd58d3c342eb1dc8" title="Identified of the random variable.">rv</a> ) <span class="keyword">const</span>; |
---|
100 | <a name="l00138"></a>00138 <span class="comment">//Access methods</span> |
---|
101 | <a name="l00140"></a><a class="code" href="classbdm_1_1enorm.html#766127847e9482aea9226ea157295ea2">00140</a> <span class="comment"></span> vec& <a class="code" href="classbdm_1_1enorm.html#766127847e9482aea9226ea157295ea2" title="returns a pointer to the internal mean value. Use with Care!">_mu</a>() {<span class="keywordflow">return</span> <a class="code" href="classbdm_1_1enorm.html#c702a194720853570d08b65482f842c7" title="mean value">mu</a>;} |
---|
102 | <a name="l00141"></a>00141 |
---|
103 | <a name="l00143"></a><a class="code" href="classbdm_1_1enorm.html#8915d68ae76ad185c8c314f960a63f0c">00143</a> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1enorm.html#8915d68ae76ad185c8c314f960a63f0c" title="access function">set_mu</a> ( <span class="keyword">const</span> vec mu0 ) { <a class="code" href="classbdm_1_1enorm.html#c702a194720853570d08b65482f842c7" title="mean value">mu</a>=mu0;} |
---|
104 | <a name="l00144"></a>00144 |
---|
105 | <a name="l00146"></a><a class="code" href="classbdm_1_1enorm.html#81d81e35e57c9f194bde248e3affcf1f">00146</a> sq_T& <a class="code" href="classbdm_1_1enorm.html#81d81e35e57c9f194bde248e3affcf1f" title="returns pointers to the internal variance and its inverse. Use with Care!">_R</a>() {<span class="keywordflow">return</span> <a class="code" href="classbdm_1_1enorm.html#2d92dde696b2a7a5b10ddef5d22ba2c2" title="Covariance matrix in decomposed form.">R</a>;} |
---|
106 | <a name="l00147"></a>00147 <span class="keyword">const</span> sq_T& <a class="code" href="classbdm_1_1enorm.html#81d81e35e57c9f194bde248e3affcf1f" title="returns pointers to the internal variance and its inverse. Use with Care!">_R</a>()<span class="keyword"> const </span>{<span class="keywordflow">return</span> <a class="code" href="classbdm_1_1enorm.html#2d92dde696b2a7a5b10ddef5d22ba2c2" title="Covariance matrix in decomposed form.">R</a>;} |
---|
107 | <a name="l00148"></a>00148 |
---|
108 | <a name="l00150"></a>00150 <span class="comment">// mat getR () {return R.to_mat();}</span> |
---|
109 | <a name="l00151"></a>00151 }; |
---|
110 | <a name="l00152"></a>00152 |
---|
111 | <a name="l00159"></a><a class="code" href="classbdm_1_1egiw.html">00159</a> <span class="keyword">class </span><a class="code" href="classbdm_1_1egiw.html" title="Gauss-inverse-Wishart density stored in LD form.">egiw</a> : <span class="keyword">public</span> <a class="code" href="classbdm_1_1eEF.html" title="General conjugate exponential family posterior density.">eEF</a> { |
---|
112 | <a name="l00160"></a>00160 <span class="keyword">protected</span>: |
---|
113 | <a name="l00162"></a><a class="code" href="classbdm_1_1egiw.html#ae56852845c6af176fd9017dbebbbd52">00162</a> <a class="code" href="classldmat.html" title="Matrix stored in LD form, (commonly known as UD).">ldmat</a> <a class="code" href="classbdm_1_1egiw.html#ae56852845c6af176fd9017dbebbbd52" title="Extended information matrix of sufficient statistics.">V</a>; |
---|
114 | <a name="l00164"></a><a class="code" href="classbdm_1_1egiw.html#447eacf19d4f4083872686f044814dc4">00164</a> <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1egiw.html#447eacf19d4f4083872686f044814dc4" title="Number of data records (degrees of freedom) of sufficient statistics.">nu</a>; |
---|
115 | <a name="l00166"></a><a class="code" href="classbdm_1_1egiw.html#40b68a9c3b2120fba94cc4d2fcd291e1">00166</a> <span class="keywordtype">int</span> <a class="code" href="classbdm_1_1egiw.html#40b68a9c3b2120fba94cc4d2fcd291e1" title="Dimension of the output.">xdim</a>; |
---|
116 | <a name="l00168"></a><a class="code" href="classbdm_1_1egiw.html#322414c32d9a21a006a5aab0311f64fd">00168</a> <span class="keywordtype">int</span> <a class="code" href="classbdm_1_1egiw.html#322414c32d9a21a006a5aab0311f64fd" title="Dimension of the regressor.">nPsi</a>; |
---|
117 | <a name="l00169"></a>00169 <span class="keyword">public</span>: |
---|
118 | <a name="l00171"></a><a class="code" href="classbdm_1_1egiw.html#a60e072c191acf65ab480deeb11c5b88">00171</a> <a class="code" href="classbdm_1_1egiw.html#a60e072c191acf65ab480deeb11c5b88" title="Default constructor, if nu0&lt;0 a minimal nu0 will be computed.">egiw</a> ( <a class="code" href="classbdm_1_1RV.html" title="Class representing variables, most often random variables.">RV</a> <a class="code" href="classbdm_1_1epdf.html#62c5b8ff71d9ebe6cd58d3c342eb1dc8" title="Identified of the random variable.">rv</a>, mat V0, <span class="keywordtype">double</span> nu0=-1.0 ) : <a class="code" href="classbdm_1_1eEF.html" title="General conjugate exponential family posterior density.">eEF</a> ( rv ), <a class="code" href="classbdm_1_1egiw.html#ae56852845c6af176fd9017dbebbbd52" title="Extended information matrix of sufficient statistics.">V</a> ( V0 ), <a class="code" href="classbdm_1_1egiw.html#447eacf19d4f4083872686f044814dc4" title="Number of data records (degrees of freedom) of sufficient statistics.">nu</a> ( nu0 ) { |
---|
119 | <a name="l00172"></a>00172 <a class="code" href="classbdm_1_1egiw.html#40b68a9c3b2120fba94cc4d2fcd291e1" title="Dimension of the output.">xdim</a> = rv.<a class="code" href="classbdm_1_1RV.html#2174751a00ce19f941edd2c1a861be67" title="Return number of scalars in the RV.">count</a>() /<a class="code" href="classbdm_1_1egiw.html#ae56852845c6af176fd9017dbebbbd52" title="Extended information matrix of sufficient statistics.">V</a>.<a class="code" href="group__math.html#g96dfb21865db4f5bd36fa70f9b0b1163" title="access function">rows</a>(); |
---|
120 | <a name="l00173"></a>00173 it_assert_debug ( rv.<a class="code" href="classbdm_1_1RV.html#2174751a00ce19f941edd2c1a861be67" title="Return number of scalars in the RV.">count</a>() ==<a class="code" href="classbdm_1_1egiw.html#40b68a9c3b2120fba94cc4d2fcd291e1" title="Dimension of the output.">xdim</a>*<a class="code" href="classbdm_1_1egiw.html#ae56852845c6af176fd9017dbebbbd52" title="Extended information matrix of sufficient statistics.">V</a>.<a class="code" href="group__math.html#g96dfb21865db4f5bd36fa70f9b0b1163" title="access function">rows</a>(),<span class="stringliteral">"Incompatible V0."</span> ); |
---|
121 | <a name="l00174"></a>00174 <a class="code" href="classbdm_1_1egiw.html#322414c32d9a21a006a5aab0311f64fd" title="Dimension of the regressor.">nPsi</a> = <a class="code" href="classbdm_1_1egiw.html#ae56852845c6af176fd9017dbebbbd52" title="Extended information matrix of sufficient statistics.">V</a>.<a class="code" href="group__math.html#g96dfb21865db4f5bd36fa70f9b0b1163" title="access function">rows</a>()-<a class="code" href="classbdm_1_1egiw.html#40b68a9c3b2120fba94cc4d2fcd291e1" title="Dimension of the output.">xdim</a>; |
---|
122 | <a name="l00175"></a>00175 <span class="comment">//set mu to have proper normalization and </span> |
---|
123 | <a name="l00176"></a>00176 <span class="keywordflow">if</span> (nu0<0){ |
---|
124 | <a name="l00177"></a>00177 <a class="code" href="classbdm_1_1egiw.html#447eacf19d4f4083872686f044814dc4" title="Number of data records (degrees of freedom) of sufficient statistics.">nu</a> = 0.1 +nPsi +2*<a class="code" href="classbdm_1_1egiw.html#40b68a9c3b2120fba94cc4d2fcd291e1" title="Dimension of the output.">xdim</a> +2; <span class="comment">// +2 assures finite expected value of R</span> |
---|
125 | <a name="l00178"></a>00178 <span class="comment">// terms before that are sufficient for finite normalization</span> |
---|
126 | <a name="l00179"></a>00179 } |
---|
127 | <a name="l00180"></a>00180 } |
---|
128 | <a name="l00182"></a><a class="code" href="classbdm_1_1egiw.html#bc3db93cb60dd29187eb3c6cfd557f97">00182</a> <a class="code" href="classbdm_1_1egiw.html#a60e072c191acf65ab480deeb11c5b88" title="Default constructor, if nu0&lt;0 a minimal nu0 will be computed.">egiw</a> ( <a class="code" href="classbdm_1_1RV.html" title="Class representing variables, most often random variables.">RV</a> <a class="code" href="classbdm_1_1epdf.html#62c5b8ff71d9ebe6cd58d3c342eb1dc8" title="Identified of the random variable.">rv</a>, <a class="code" href="classldmat.html" title="Matrix stored in LD form, (commonly known as UD).">ldmat</a> V0, <span class="keywordtype">double</span> nu0=-1.0 ) : <a class="code" href="classbdm_1_1eEF.html" title="General conjugate exponential family posterior density.">eEF</a> ( rv ), <a class="code" href="classbdm_1_1egiw.html#ae56852845c6af176fd9017dbebbbd52" title="Extended information matrix of sufficient statistics.">V</a> ( V0 ), <a class="code" href="classbdm_1_1egiw.html#447eacf19d4f4083872686f044814dc4" title="Number of data records (degrees of freedom) of sufficient statistics.">nu</a> ( nu0 ) { |
---|
129 | <a name="l00183"></a>00183 <a class="code" href="classbdm_1_1egiw.html#40b68a9c3b2120fba94cc4d2fcd291e1" title="Dimension of the output.">xdim</a> = rv.<a class="code" href="classbdm_1_1RV.html#2174751a00ce19f941edd2c1a861be67" title="Return number of scalars in the RV.">count</a>() /<a class="code" href="classbdm_1_1egiw.html#ae56852845c6af176fd9017dbebbbd52" title="Extended information matrix of sufficient statistics.">V</a>.<a class="code" href="group__math.html#g96dfb21865db4f5bd36fa70f9b0b1163" title="access function">rows</a>(); |
---|
130 | <a name="l00184"></a>00184 it_assert_debug ( rv.<a class="code" href="classbdm_1_1RV.html#2174751a00ce19f941edd2c1a861be67" title="Return number of scalars in the RV.">count</a>() ==<a class="code" href="classbdm_1_1egiw.html#40b68a9c3b2120fba94cc4d2fcd291e1" title="Dimension of the output.">xdim</a>*<a class="code" href="classbdm_1_1egiw.html#ae56852845c6af176fd9017dbebbbd52" title="Extended information matrix of sufficient statistics.">V</a>.<a class="code" href="group__math.html#g96dfb21865db4f5bd36fa70f9b0b1163" title="access function">rows</a>(),<span class="stringliteral">"Incompatible V0."</span> ); |
---|
131 | <a name="l00185"></a>00185 <a class="code" href="classbdm_1_1egiw.html#322414c32d9a21a006a5aab0311f64fd" title="Dimension of the regressor.">nPsi</a> = <a class="code" href="classbdm_1_1egiw.html#ae56852845c6af176fd9017dbebbbd52" title="Extended information matrix of sufficient statistics.">V</a>.<a class="code" href="group__math.html#g96dfb21865db4f5bd36fa70f9b0b1163" title="access function">rows</a>()-<a class="code" href="classbdm_1_1egiw.html#40b68a9c3b2120fba94cc4d2fcd291e1" title="Dimension of the output.">xdim</a>; |
---|
132 | <a name="l00186"></a>00186 <span class="keywordflow">if</span> (nu0<0){ |
---|
133 | <a name="l00187"></a>00187 <a class="code" href="classbdm_1_1egiw.html#447eacf19d4f4083872686f044814dc4" title="Number of data records (degrees of freedom) of sufficient statistics.">nu</a> = 0.1 +nPsi +2*<a class="code" href="classbdm_1_1egiw.html#40b68a9c3b2120fba94cc4d2fcd291e1" title="Dimension of the output.">xdim</a> +2; <span class="comment">// +2 assures finite expected value of R</span> |
---|
134 | <a name="l00188"></a>00188 <span class="comment">// terms before that are sufficient for finite normalization</span> |
---|
135 | <a name="l00189"></a>00189 } |
---|
136 | <a name="l00190"></a>00190 } |
---|
137 | <a name="l00191"></a>00191 |
---|
138 | <a name="l00192"></a>00192 vec <a class="code" href="classbdm_1_1egiw.html#920f21548b7a3723923dd108fe514c61" title="Returns a sample, from density .">sample</a>() <span class="keyword">const</span>; |
---|
139 | <a name="l00193"></a>00193 vec <a class="code" href="classbdm_1_1egiw.html#df70c05f918c3a6f86d60f10c1fd6ba2" title="return expected value">mean</a>() <span class="keyword">const</span>; |
---|
140 | <a name="l00194"></a>00194 vec <a class="code" href="classbdm_1_1egiw.html#c1ecc406613cc2341225dc10c3d3b46a" title="return expected variance (not covariance!)">variance</a>() <span class="keyword">const</span>; |
---|
141 | <a name="l00195"></a>00195 <span class="keywordtype">void</span> mean_mat ( mat &M, mat&R ) <span class="keyword">const</span>; |
---|
142 | <a name="l00197"></a>00197 <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1egiw.html#bfb8e7c619b34ad804a73bff71742b5e" title="In this instance, val= [theta, r]. For multivariate instances, it is stored columnwise...">evallog_nn</a> ( <span class="keyword">const</span> vec &val ) <span class="keyword">const</span>; |
---|
143 | <a name="l00198"></a>00198 <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1egiw.html#41d72ba7b2abc8a9a4209ffa98ed5633" title="logarithm of the normalizing constant, ">lognc</a> () <span class="keyword">const</span>; |
---|
144 | <a name="l00199"></a>00199 |
---|
145 | <a name="l00200"></a>00200 <span class="comment">//Access</span> |
---|
146 | <a name="l00202"></a><a class="code" href="classbdm_1_1egiw.html#15792f3112e5cf67d572f491b09324c8">00202</a> <span class="comment"></span> <a class="code" href="classldmat.html" title="Matrix stored in LD form, (commonly known as UD).">ldmat</a>& <a class="code" href="classbdm_1_1egiw.html#15792f3112e5cf67d572f491b09324c8" title="returns a pointer to the internal statistics. Use with Care!">_V</a>() {<span class="keywordflow">return</span> <a class="code" href="classbdm_1_1egiw.html#ae56852845c6af176fd9017dbebbbd52" title="Extended information matrix of sufficient statistics.">V</a>;} |
---|
147 | <a name="l00204"></a><a class="code" href="classbdm_1_1egiw.html#ad9c539a80a552e837245ddcebcbbba4">00204</a> <span class="keyword">const</span> <a class="code" href="classldmat.html" title="Matrix stored in LD form, (commonly known as UD).">ldmat</a>& <a class="code" href="classbdm_1_1egiw.html#15792f3112e5cf67d572f491b09324c8" title="returns a pointer to the internal statistics. Use with Care!">_V</a>()<span class="keyword"> const </span>{<span class="keywordflow">return</span> <a class="code" href="classbdm_1_1egiw.html#ae56852845c6af176fd9017dbebbbd52" title="Extended information matrix of sufficient statistics.">V</a>;} |
---|
148 | <a name="l00206"></a><a class="code" href="classbdm_1_1egiw.html#a025ee710274ca142dd0ae978735ad4a">00206</a> <span class="keywordtype">double</span>& <a class="code" href="classbdm_1_1egiw.html#a025ee710274ca142dd0ae978735ad4a" title="returns a pointer to the internal statistics. Use with Care!">_nu</a>() {<span class="keywordflow">return</span> <a class="code" href="classbdm_1_1egiw.html#447eacf19d4f4083872686f044814dc4" title="Number of data records (degrees of freedom) of sufficient statistics.">nu</a>;} |
---|
149 | <a name="l00207"></a>00207 <span class="keyword">const</span> <span class="keywordtype">double</span>& <a class="code" href="classbdm_1_1egiw.html#a025ee710274ca142dd0ae978735ad4a" title="returns a pointer to the internal statistics. Use with Care!">_nu</a>()<span class="keyword"> const </span>{<span class="keywordflow">return</span> <a class="code" href="classbdm_1_1egiw.html#447eacf19d4f4083872686f044814dc4" title="Number of data records (degrees of freedom) of sufficient statistics.">nu</a>;} |
---|
150 | <a name="l00208"></a><a class="code" href="classbdm_1_1egiw.html#8e610e95401a11baf34f65e16ecd87be">00208</a> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1egiw.html#8e610e95401a11baf34f65e16ecd87be" title="Power of the density, used e.g. to flatten the density.">pow</a> ( <span class="keywordtype">double</span> p ) {<a class="code" href="classbdm_1_1egiw.html#ae56852845c6af176fd9017dbebbbd52" title="Extended information matrix of sufficient statistics.">V</a>*=p;<a class="code" href="classbdm_1_1egiw.html#447eacf19d4f4083872686f044814dc4" title="Number of data records (degrees of freedom) of sufficient statistics.">nu</a>*=p;}; |
---|
151 | <a name="l00209"></a>00209 }; |
---|
152 | <a name="l00210"></a>00210 |
---|
153 | <a name="l00219"></a><a class="code" href="classbdm_1_1eDirich.html">00219</a> <span class="keyword">class </span><a class="code" href="classbdm_1_1eDirich.html" title="Dirichlet posterior density.">eDirich</a>: <span class="keyword">public</span> <a class="code" href="classbdm_1_1eEF.html" title="General conjugate exponential family posterior density.">eEF</a> { |
---|
154 | <a name="l00220"></a>00220 <span class="keyword">protected</span>: |
---|
155 | <a name="l00222"></a><a class="code" href="classbdm_1_1eDirich.html#f25886a49b4667af61245de81c83b5d2">00222</a> vec <a class="code" href="classbdm_1_1eDirich.html#f25886a49b4667af61245de81c83b5d2" title="sufficient statistics">beta</a>; |
---|
156 | <a name="l00224"></a><a class="code" href="classbdm_1_1eDirich.html#ee9db192a6f0ab7b29c33b2a18a5e1b4">00224</a> <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1eDirich.html#ee9db192a6f0ab7b29c33b2a18a5e1b4" title="speedup variable">gamma</a>; |
---|
157 | <a name="l00225"></a>00225 <span class="keyword">public</span>: |
---|
158 | <a name="l00227"></a><a class="code" href="classbdm_1_1eDirich.html#2ae893fe9167f67bca09bc159acbf957">00227</a> <a class="code" href="classbdm_1_1eDirich.html#2ae893fe9167f67bca09bc159acbf957" title="Default constructor.">eDirich</a> ( <span class="keyword">const</span> <a class="code" href="classbdm_1_1RV.html" title="Class representing variables, most often random variables.">RV</a> &<a class="code" href="classbdm_1_1epdf.html#62c5b8ff71d9ebe6cd58d3c342eb1dc8" title="Identified of the random variable.">rv</a>, <span class="keyword">const</span> vec &beta0 ) : <a class="code" href="classbdm_1_1eEF.html" title="General conjugate exponential family posterior density.">eEF</a> ( rv ),<a class="code" href="classbdm_1_1eDirich.html#f25886a49b4667af61245de81c83b5d2" title="sufficient statistics">beta</a> ( beta0 ) {it_assert_debug ( rv.<a class="code" href="classbdm_1_1RV.html#2174751a00ce19f941edd2c1a861be67" title="Return number of scalars in the RV.">count</a>() ==<a class="code" href="classbdm_1_1eDirich.html#f25886a49b4667af61245de81c83b5d2" title="sufficient statistics">beta</a>.length(),<span class="stringliteral">"Incompatible statistics"</span> ); }; |
---|
159 | <a name="l00229"></a><a class="code" href="classbdm_1_1eDirich.html#31cc8bf709552c9e7286ac16b27c8e2c">00229</a> <a class="code" href="classbdm_1_1eDirich.html#2ae893fe9167f67bca09bc159acbf957" title="Default constructor.">eDirich</a> ( <span class="keyword">const</span> <a class="code" href="classbdm_1_1eDirich.html" title="Dirichlet posterior density.">eDirich</a> &D0 ) : <a class="code" href="classbdm_1_1eEF.html" title="General conjugate exponential family posterior density.">eEF</a> ( D0.<a class="code" href="classbdm_1_1epdf.html#62c5b8ff71d9ebe6cd58d3c342eb1dc8" title="Identified of the random variable.">rv</a> ),<a class="code" href="classbdm_1_1eDirich.html#f25886a49b4667af61245de81c83b5d2" title="sufficient statistics">beta</a> ( D0.<a class="code" href="classbdm_1_1eDirich.html#f25886a49b4667af61245de81c83b5d2" title="sufficient statistics">beta</a> ) {}; |
---|
160 | <a name="l00230"></a><a class="code" href="classbdm_1_1eDirich.html#3290613d31d58daa8a45a54b003871fc">00230</a> vec <a class="code" href="classbdm_1_1eDirich.html#3290613d31d58daa8a45a54b003871fc" title="Returns a sample, from density .">sample</a>()<span class="keyword"> const </span>{it_error ( <span class="stringliteral">"Not implemented"</span> );<span class="keywordflow">return</span> vec_1 ( 0.0 );}; |
---|
161 | <a name="l00231"></a><a class="code" href="classbdm_1_1eDirich.html#cb343355ec791298bb5a3404cd482fb6">00231</a> vec <a class="code" href="classbdm_1_1eDirich.html#cb343355ec791298bb5a3404cd482fb6" title="return expected value">mean</a>()<span class="keyword"> const </span>{<span class="keywordflow">return</span> <a class="code" href="classbdm_1_1eDirich.html#f25886a49b4667af61245de81c83b5d2" title="sufficient statistics">beta</a>/<a class="code" href="classbdm_1_1eDirich.html#ee9db192a6f0ab7b29c33b2a18a5e1b4" title="speedup variable">gamma</a>;}; |
---|
162 | <a name="l00232"></a><a class="code" href="classbdm_1_1eDirich.html#43c547a2507e233706f92712d8c2aacc">00232</a> vec <a class="code" href="classbdm_1_1eDirich.html#43c547a2507e233706f92712d8c2aacc" title="return expected variance (not covariance!)">variance</a>()<span class="keyword"> const </span>{<span class="keywordflow">return</span> elem_mult(<a class="code" href="classbdm_1_1eDirich.html#f25886a49b4667af61245de81c83b5d2" title="sufficient statistics">beta</a>,(<a class="code" href="classbdm_1_1eDirich.html#f25886a49b4667af61245de81c83b5d2" title="sufficient statistics">beta</a>+1))/ (<a class="code" href="classbdm_1_1eDirich.html#ee9db192a6f0ab7b29c33b2a18a5e1b4" title="speedup variable">gamma</a>*(<a class="code" href="classbdm_1_1eDirich.html#ee9db192a6f0ab7b29c33b2a18a5e1b4" title="speedup variable">gamma</a>+1));} |
---|
163 | <a name="l00234"></a><a class="code" href="classbdm_1_1eDirich.html#e09a24938e80c3d94b0ee842d1552318">00234</a> <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1eDirich.html#e09a24938e80c3d94b0ee842d1552318" title="In this instance, val is ...">evallog_nn</a> ( <span class="keyword">const</span> vec &val )<span class="keyword"> const </span>{<span class="keywordtype">double</span> tmp; tmp=( <a class="code" href="classbdm_1_1eDirich.html#f25886a49b4667af61245de81c83b5d2" title="sufficient statistics">beta</a>-1 ) *log ( val ); it_assert_debug(std::isfinite(tmp),<span class="stringliteral">"Infinite value"</span>); |
---|
164 | <a name="l00235"></a>00235 <span class="keywordflow">return</span> tmp;}; |
---|
165 | <a name="l00236"></a><a class="code" href="classbdm_1_1eDirich.html#279a99f6266c82fe2273e83841f19eb2">00236</a> <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1eDirich.html#279a99f6266c82fe2273e83841f19eb2" title="logarithm of the normalizing constant, ">lognc</a> ()<span class="keyword"> const </span>{ |
---|
166 | <a name="l00237"></a>00237 <span class="keywordtype">double</span> tmp; |
---|
167 | <a name="l00238"></a>00238 <span class="keywordtype">double</span> gam=sum ( <a class="code" href="classbdm_1_1eDirich.html#f25886a49b4667af61245de81c83b5d2" title="sufficient statistics">beta</a> ); |
---|
168 | <a name="l00239"></a>00239 <span class="keywordtype">double</span> lgb=0.0; |
---|
169 | <a name="l00240"></a>00240 <span class="keywordflow">for</span> ( <span class="keywordtype">int</span> i=0;i<<a class="code" href="classbdm_1_1eDirich.html#f25886a49b4667af61245de81c83b5d2" title="sufficient statistics">beta</a>.length();i++ ) {lgb+=lgamma ( <a class="code" href="classbdm_1_1eDirich.html#f25886a49b4667af61245de81c83b5d2" title="sufficient statistics">beta</a> ( i ) );} |
---|
170 | <a name="l00241"></a>00241 tmp= lgb-lgamma ( gam ); |
---|
171 | <a name="l00242"></a>00242 it_assert_debug(std::isfinite(tmp),<span class="stringliteral">"Infinite value"</span>); |
---|
172 | <a name="l00243"></a>00243 <span class="keywordflow">return</span> tmp; |
---|
173 | <a name="l00244"></a>00244 }; |
---|
174 | <a name="l00246"></a><a class="code" href="classbdm_1_1eDirich.html#175e0add26d2105c28d8121eefb9e324">00246</a> vec& <a class="code" href="classbdm_1_1eDirich.html#175e0add26d2105c28d8121eefb9e324" title="access function">_beta</a>() {<span class="keywordflow">return</span> <a class="code" href="classbdm_1_1eDirich.html#f25886a49b4667af61245de81c83b5d2" title="sufficient statistics">beta</a>;} |
---|
175 | <a name="l00248"></a><a class="code" href="classbdm_1_1eDirich.html#a06af2376976a33e1eceaed7e8da75a5">00248</a> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1eDirich.html#a06af2376976a33e1eceaed7e8da75a5" title="Set internal parameters.">set_parameters</a> ( <span class="keyword">const</span> vec &beta0 ) { |
---|
176 | <a name="l00249"></a>00249 <span class="keywordflow">if</span> ( beta0.length() !=<a class="code" href="classbdm_1_1eDirich.html#f25886a49b4667af61245de81c83b5d2" title="sufficient statistics">beta</a>.length() ) { |
---|
177 | <a name="l00250"></a>00250 it_assert_debug ( <a class="code" href="classbdm_1_1epdf.html#62c5b8ff71d9ebe6cd58d3c342eb1dc8" title="Identified of the random variable.">rv</a>.<a class="code" href="classbdm_1_1RV.html#e9ec8c3e756651ff352ab5e3d3acda4b" title="Return length (number of entries) of the RV.">length</a>() ==1,<span class="stringliteral">"Undefined"</span> ); |
---|
178 | <a name="l00251"></a>00251 <a class="code" href="classbdm_1_1epdf.html#62c5b8ff71d9ebe6cd58d3c342eb1dc8" title="Identified of the random variable.">rv</a>.<a class="code" href="classbdm_1_1RV.html#0b2c9e73ff66847c3644ebc3eb559a03" title="access function">set_size</a> ( 0,beta0.length() ); |
---|
179 | <a name="l00252"></a>00252 } |
---|
180 | <a name="l00253"></a>00253 <a class="code" href="classbdm_1_1eDirich.html#f25886a49b4667af61245de81c83b5d2" title="sufficient statistics">beta</a>= beta0; |
---|
181 | <a name="l00254"></a>00254 <a class="code" href="classbdm_1_1eDirich.html#ee9db192a6f0ab7b29c33b2a18a5e1b4" title="speedup variable">gamma</a> = sum(<a class="code" href="classbdm_1_1eDirich.html#f25886a49b4667af61245de81c83b5d2" title="sufficient statistics">beta</a>); |
---|
182 | <a name="l00255"></a>00255 } |
---|
183 | <a name="l00256"></a>00256 }; |
---|
184 | <a name="l00257"></a>00257 |
---|
185 | <a name="l00259"></a><a class="code" href="classbdm_1_1multiBM.html">00259</a> <span class="keyword">class </span><a class="code" href="classbdm_1_1multiBM.html" title="Estimator for Multinomial density.">multiBM</a> : <span class="keyword">public</span> <a class="code" href="classbdm_1_1BMEF.html" title="Estimator for Exponential family.">BMEF</a> { |
---|
186 | <a name="l00260"></a>00260 <span class="keyword">protected</span>: |
---|
187 | <a name="l00262"></a><a class="code" href="classbdm_1_1multiBM.html#9ecc6878abbd20eb8d8e43b6ab3f941a">00262</a> <a class="code" href="classbdm_1_1eDirich.html" title="Dirichlet posterior density.">eDirich</a> <a class="code" href="classbdm_1_1multiBM.html#9ecc6878abbd20eb8d8e43b6ab3f941a" title="Conjugate prior and posterior.">est</a>; |
---|
188 | <a name="l00264"></a><a class="code" href="classbdm_1_1multiBM.html#044263356944c92209eecd39a5187d25">00264</a> vec &<a class="code" href="classbdm_1_1multiBM.html#044263356944c92209eecd39a5187d25" title="Pointer inside est to sufficient statistics.">beta</a>; |
---|
189 | <a name="l00265"></a>00265 <span class="keyword">public</span>: |
---|
190 | <a name="l00267"></a><a class="code" href="classbdm_1_1multiBM.html#65dc7567b67ce86a8f339dd496ed8e88">00267</a> <a class="code" href="classbdm_1_1multiBM.html#65dc7567b67ce86a8f339dd496ed8e88" title="Default constructor.">multiBM</a> ( <span class="keyword">const</span> <a class="code" href="classbdm_1_1RV.html" title="Class representing variables, most often random variables.">RV</a> &<a class="code" href="classbdm_1_1BM.html#18d6db4af8ee42077741d9e3618153ca" title="Random variable of the posterior.">rv</a>, <span class="keyword">const</span> vec beta0 ) : <a class="code" href="classbdm_1_1BMEF.html" title="Estimator for Exponential family.">BMEF</a> ( rv ),<a class="code" href="classbdm_1_1multiBM.html#9ecc6878abbd20eb8d8e43b6ab3f941a" title="Conjugate prior and posterior.">est</a> ( rv,beta0 ),<a class="code" href="classbdm_1_1multiBM.html#044263356944c92209eecd39a5187d25" title="Pointer inside est to sufficient statistics.">beta</a> ( <a class="code" href="classbdm_1_1multiBM.html#9ecc6878abbd20eb8d8e43b6ab3f941a" title="Conjugate prior and posterior.">est</a>._beta() ) {<span class="keywordflow">if</span>(<a class="code" href="classbdm_1_1multiBM.html#044263356944c92209eecd39a5187d25" title="Pointer inside est to sufficient statistics.">beta</a>.length()>0){<a class="code" href="classbdm_1_1BMEF.html#06e7b3ac03e10017d4288c76888e2865" title="cached value of lognc() in the previous step (used in evaluation of ll )">last_lognc</a>=<a class="code" href="classbdm_1_1multiBM.html#9ecc6878abbd20eb8d8e43b6ab3f941a" title="Conjugate prior and posterior.">est</a>.<a class="code" href="classbdm_1_1eDirich.html#279a99f6266c82fe2273e83841f19eb2" title="logarithm of the normalizing constant, ">lognc</a>();}<span class="keywordflow">else</span>{<a class="code" href="classbdm_1_1BMEF.html#06e7b3ac03e10017d4288c76888e2865" title="cached value of lognc() in the previous step (used in evaluation of ll )">last_lognc</a>=0.0;}} |
---|
191 | <a name="l00269"></a><a class="code" href="classbdm_1_1multiBM.html#c4378cf8037f6bed29c74eea63344b31">00269</a> <a class="code" href="classbdm_1_1multiBM.html#65dc7567b67ce86a8f339dd496ed8e88" title="Default constructor.">multiBM</a> ( <span class="keyword">const</span> <a class="code" href="classbdm_1_1multiBM.html" title="Estimator for Multinomial density.">multiBM</a> &B ) : <a class="code" href="classbdm_1_1BMEF.html" title="Estimator for Exponential family.">BMEF</a> ( B ),<a class="code" href="classbdm_1_1multiBM.html#9ecc6878abbd20eb8d8e43b6ab3f941a" title="Conjugate prior and posterior.">est</a> ( <a class="code" href="classbdm_1_1BM.html#18d6db4af8ee42077741d9e3618153ca" title="Random variable of the posterior.">rv</a>,B.<a class="code" href="classbdm_1_1multiBM.html#044263356944c92209eecd39a5187d25" title="Pointer inside est to sufficient statistics.">beta</a> ),<a class="code" href="classbdm_1_1multiBM.html#044263356944c92209eecd39a5187d25" title="Pointer inside est to sufficient statistics.">beta</a> ( <a class="code" href="classbdm_1_1multiBM.html#9ecc6878abbd20eb8d8e43b6ab3f941a" title="Conjugate prior and posterior.">est</a>._beta() ) {} |
---|
192 | <a name="l00271"></a><a class="code" href="classbdm_1_1multiBM.html#dbe6b90d410dc062a233d1dc09eeba52">00271</a> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1multiBM.html#dbe6b90d410dc062a233d1dc09eeba52" title="Sets sufficient statistics to match that of givefrom mB0.">set_statistics</a> ( <span class="keyword">const</span> <a class="code" href="classbdm_1_1BM.html" title="Bayesian Model of the world, i.e. all uncertainty is modeled by probabilities.">BM</a>* mB0 ) {<span class="keyword">const</span> <a class="code" href="classbdm_1_1multiBM.html" title="Estimator for Multinomial density.">multiBM</a>* mB=<span class="keyword">dynamic_cast<</span><span class="keyword">const </span><a class="code" href="classbdm_1_1multiBM.html" title="Estimator for Multinomial density.">multiBM</a>*<span class="keyword">></span> ( mB0 ); <a class="code" href="classbdm_1_1multiBM.html#044263356944c92209eecd39a5187d25" title="Pointer inside est to sufficient statistics.">beta</a>=mB-><a class="code" href="classbdm_1_1multiBM.html#044263356944c92209eecd39a5187d25" title="Pointer inside est to sufficient statistics.">beta</a>;} |
---|
193 | <a name="l00272"></a><a class="code" href="classbdm_1_1multiBM.html#1e4bf41b61937fd80f34049742e23f95">00272</a> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1multiBM.html#1e4bf41b61937fd80f34049742e23f95" title="Incremental Bayes rule.">bayes</a> ( <span class="keyword">const</span> vec &dt ) { |
---|
194 | <a name="l00273"></a>00273 <span class="keywordflow">if</span> ( <a class="code" href="classbdm_1_1BMEF.html#1331865e10fb1ccef65bb4c47fa3be64" title="forgetting factor">frg</a><1.0 ) {<a class="code" href="classbdm_1_1multiBM.html#044263356944c92209eecd39a5187d25" title="Pointer inside est to sufficient statistics.">beta</a>*=<a class="code" href="classbdm_1_1BMEF.html#1331865e10fb1ccef65bb4c47fa3be64" title="forgetting factor">frg</a>;<a class="code" href="classbdm_1_1BMEF.html#06e7b3ac03e10017d4288c76888e2865" title="cached value of lognc() in the previous step (used in evaluation of ll )">last_lognc</a>=<a class="code" href="classbdm_1_1multiBM.html#9ecc6878abbd20eb8d8e43b6ab3f941a" title="Conjugate prior and posterior.">est</a>.<a class="code" href="classbdm_1_1eDirich.html#279a99f6266c82fe2273e83841f19eb2" title="logarithm of the normalizing constant, ">lognc</a>();} |
---|
195 | <a name="l00274"></a>00274 <a class="code" href="classbdm_1_1multiBM.html#044263356944c92209eecd39a5187d25" title="Pointer inside est to sufficient statistics.">beta</a>+=dt; |
---|
196 | <a name="l00275"></a>00275 <span class="keywordflow">if</span> ( <a class="code" href="classbdm_1_1BM.html#faff0ad12556fe7dc0e2807d4fd938ee" title="If true, the filter will compute likelihood of the data record and store it in ll...">evalll</a> ) {<a class="code" href="classbdm_1_1BM.html#4064b6559d962633e4372b12f4cd204a" title="Logarithm of marginalized data likelihood.">ll</a>=<a class="code" href="classbdm_1_1multiBM.html#9ecc6878abbd20eb8d8e43b6ab3f941a" title="Conjugate prior and posterior.">est</a>.<a class="code" href="classbdm_1_1eDirich.html#279a99f6266c82fe2273e83841f19eb2" title="logarithm of the normalizing constant, ">lognc</a>()-<a class="code" href="classbdm_1_1BMEF.html#06e7b3ac03e10017d4288c76888e2865" title="cached value of lognc() in the previous step (used in evaluation of ll )">last_lognc</a>;} |
---|
197 | <a name="l00276"></a>00276 } |
---|
198 | <a name="l00277"></a><a class="code" href="classbdm_1_1multiBM.html#e157b607c1e3fa91d42aeea44458e2bf">00277</a> <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1multiBM.html#e157b607c1e3fa91d42aeea44458e2bf">logpred</a> ( <span class="keyword">const</span> vec &dt )<span class="keyword"> const </span>{ |
---|
199 | <a name="l00278"></a>00278 <a class="code" href="classbdm_1_1eDirich.html" title="Dirichlet posterior density.">eDirich</a> pred ( <a class="code" href="classbdm_1_1multiBM.html#9ecc6878abbd20eb8d8e43b6ab3f941a" title="Conjugate prior and posterior.">est</a> ); |
---|
200 | <a name="l00279"></a>00279 vec &<a class="code" href="classbdm_1_1multiBM.html#044263356944c92209eecd39a5187d25" title="Pointer inside est to sufficient statistics.">beta</a> = pred.<a class="code" href="classbdm_1_1eDirich.html#175e0add26d2105c28d8121eefb9e324" title="access function">_beta</a>(); |
---|
201 | <a name="l00280"></a>00280 |
---|
202 | <a name="l00281"></a>00281 <span class="keywordtype">double</span> lll; |
---|
203 | <a name="l00282"></a>00282 <span class="keywordflow">if</span> ( <a class="code" href="classbdm_1_1BMEF.html#1331865e10fb1ccef65bb4c47fa3be64" title="forgetting factor">frg</a><1.0 ) |
---|
204 | <a name="l00283"></a>00283 {beta*=<a class="code" href="classbdm_1_1BMEF.html#1331865e10fb1ccef65bb4c47fa3be64" title="forgetting factor">frg</a>;lll=pred.<a class="code" href="classbdm_1_1eDirich.html#279a99f6266c82fe2273e83841f19eb2" title="logarithm of the normalizing constant, ">lognc</a>();} |
---|
205 | <a name="l00284"></a>00284 <span class="keywordflow">else</span> |
---|
206 | <a name="l00285"></a>00285 <span class="keywordflow">if</span> ( <a class="code" href="classbdm_1_1BM.html#faff0ad12556fe7dc0e2807d4fd938ee" title="If true, the filter will compute likelihood of the data record and store it in ll...">evalll</a> ) {lll=<a class="code" href="classbdm_1_1BMEF.html#06e7b3ac03e10017d4288c76888e2865" title="cached value of lognc() in the previous step (used in evaluation of ll )">last_lognc</a>;} |
---|
207 | <a name="l00286"></a>00286 <span class="keywordflow">else</span>{lll=pred.<a class="code" href="classbdm_1_1eDirich.html#279a99f6266c82fe2273e83841f19eb2" title="logarithm of the normalizing constant, ">lognc</a>();} |
---|
208 | <a name="l00287"></a>00287 |
---|
209 | <a name="l00288"></a>00288 beta+=dt; |
---|
210 | <a name="l00289"></a>00289 <span class="keywordflow">return</span> pred.<a class="code" href="classbdm_1_1eDirich.html#279a99f6266c82fe2273e83841f19eb2" title="logarithm of the normalizing constant, ">lognc</a>()-lll; |
---|
211 | <a name="l00290"></a>00290 } |
---|
212 | <a name="l00291"></a><a class="code" href="classbdm_1_1multiBM.html#aaeb18c989088feb8d26d300e4971732">00291</a> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1multiBM.html#aaeb18c989088feb8d26d300e4971732" title="Flatten the posterior according to the given BMEF (of the same type!).">flatten</a> ( <span class="keyword">const</span> <a class="code" href="classbdm_1_1BMEF.html" title="Estimator for Exponential family.">BMEF</a>* B ) { |
---|
213 | <a name="l00292"></a>00292 <span class="keyword">const</span> <a class="code" href="classbdm_1_1multiBM.html" title="Estimator for Multinomial density.">multiBM</a>* E=<span class="keyword">dynamic_cast<</span><span class="keyword">const </span><a class="code" href="classbdm_1_1multiBM.html" title="Estimator for Multinomial density.">multiBM</a>*<span class="keyword">></span> ( B ); |
---|
214 | <a name="l00293"></a>00293 <span class="comment">// sum(beta) should be equal to sum(B.beta)</span> |
---|
215 | <a name="l00294"></a>00294 <span class="keyword">const</span> vec &Eb=E-><a class="code" href="classbdm_1_1multiBM.html#044263356944c92209eecd39a5187d25" title="Pointer inside est to sufficient statistics.">beta</a>;<span class="comment">//const_cast<multiBM*> ( E )->_beta();</span> |
---|
216 | <a name="l00295"></a>00295 <a class="code" href="classbdm_1_1multiBM.html#044263356944c92209eecd39a5187d25" title="Pointer inside est to sufficient statistics.">beta</a>*= ( sum ( Eb ) /sum ( <a class="code" href="classbdm_1_1multiBM.html#044263356944c92209eecd39a5187d25" title="Pointer inside est to sufficient statistics.">beta</a> ) ); |
---|
217 | <a name="l00296"></a>00296 <span class="keywordflow">if</span> ( <a class="code" href="classbdm_1_1BM.html#faff0ad12556fe7dc0e2807d4fd938ee" title="If true, the filter will compute likelihood of the data record and store it in ll...">evalll</a> ) {<a class="code" href="classbdm_1_1BMEF.html#06e7b3ac03e10017d4288c76888e2865" title="cached value of lognc() in the previous step (used in evaluation of ll )">last_lognc</a>=<a class="code" href="classbdm_1_1multiBM.html#9ecc6878abbd20eb8d8e43b6ab3f941a" title="Conjugate prior and posterior.">est</a>.<a class="code" href="classbdm_1_1eDirich.html#279a99f6266c82fe2273e83841f19eb2" title="logarithm of the normalizing constant, ">lognc</a>();} |
---|
218 | <a name="l00297"></a>00297 } |
---|
219 | <a name="l00298"></a><a class="code" href="classbdm_1_1multiBM.html#98c22316ecfef589989baca261713c8d">00298</a> <span class="keyword">const</span> <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>& <a class="code" href="classbdm_1_1multiBM.html#98c22316ecfef589989baca261713c8d" title="Returns a reference to the epdf representing posterior density on parameters.">_epdf</a>()<span class="keyword"> const </span>{<span class="keywordflow">return</span> <a class="code" href="classbdm_1_1multiBM.html#9ecc6878abbd20eb8d8e43b6ab3f941a" title="Conjugate prior and posterior.">est</a>;}; |
---|
220 | <a name="l00299"></a><a class="code" href="classbdm_1_1multiBM.html#c996f6b9ca930182030e1027318f1ca6">00299</a> <span class="keyword">const</span> <a class="code" href="classbdm_1_1eDirich.html" title="Dirichlet posterior density.">eDirich</a>* <a class="code" href="classbdm_1_1multiBM.html#c996f6b9ca930182030e1027318f1ca6" title="Returns a pointer to the epdf representing posterior density on parameters. Use with...">_e</a>()<span class="keyword"> const </span>{<span class="keywordflow">return</span> &<a class="code" href="classbdm_1_1multiBM.html#9ecc6878abbd20eb8d8e43b6ab3f941a" title="Conjugate prior and posterior.">est</a>;}; |
---|
221 | <a name="l00300"></a>00300 <span class="keywordtype">void</span> set_parameters ( <span class="keyword">const</span> vec &beta0 ) { |
---|
222 | <a name="l00301"></a>00301 <a class="code" href="classbdm_1_1multiBM.html#9ecc6878abbd20eb8d8e43b6ab3f941a" title="Conjugate prior and posterior.">est</a>.<a class="code" href="classbdm_1_1eDirich.html#a06af2376976a33e1eceaed7e8da75a5" title="Set internal parameters.">set_parameters</a> ( beta0 ); |
---|
223 | <a name="l00302"></a>00302 <a class="code" href="classbdm_1_1BM.html#18d6db4af8ee42077741d9e3618153ca" title="Random variable of the posterior.">rv</a> = <a class="code" href="classbdm_1_1multiBM.html#9ecc6878abbd20eb8d8e43b6ab3f941a" title="Conjugate prior and posterior.">est</a>.<a class="code" href="classbdm_1_1epdf.html#a4ab378d5e004c3ff3e2d4e64f7bba21" title="access function, possibly dangerous!">_rv</a>(); |
---|
224 | <a name="l00303"></a>00303 <span class="keywordflow">if</span> ( <a class="code" href="classbdm_1_1BM.html#faff0ad12556fe7dc0e2807d4fd938ee" title="If true, the filter will compute likelihood of the data record and store it in ll...">evalll</a> ) {<a class="code" href="classbdm_1_1BMEF.html#06e7b3ac03e10017d4288c76888e2865" title="cached value of lognc() in the previous step (used in evaluation of ll )">last_lognc</a>=<a class="code" href="classbdm_1_1multiBM.html#9ecc6878abbd20eb8d8e43b6ab3f941a" title="Conjugate prior and posterior.">est</a>.<a class="code" href="classbdm_1_1eDirich.html#279a99f6266c82fe2273e83841f19eb2" title="logarithm of the normalizing constant, ">lognc</a>();} |
---|
225 | <a name="l00304"></a>00304 } |
---|
226 | <a name="l00305"></a>00305 }; |
---|
227 | <a name="l00306"></a>00306 |
---|
228 | <a name="l00316"></a><a class="code" href="classbdm_1_1egamma.html">00316</a> <span class="keyword">class </span><a class="code" href="classbdm_1_1egamma.html" title="Gamma posterior density.">egamma</a> : <span class="keyword">public</span> <a class="code" href="classbdm_1_1eEF.html" title="General conjugate exponential family posterior density.">eEF</a> { |
---|
229 | <a name="l00317"></a>00317 <span class="keyword">protected</span>: |
---|
230 | <a name="l00319"></a><a class="code" href="classbdm_1_1egamma.html#0901ec983e66b8337aaa506e13b122fa">00319</a> vec <a class="code" href="classbdm_1_1egamma.html#0901ec983e66b8337aaa506e13b122fa" title="Vector .">alpha</a>; |
---|
231 | <a name="l00321"></a><a class="code" href="classbdm_1_1egamma.html#457bfb1ccb2057df85073e519a15ccc1">00321</a> vec <a class="code" href="classbdm_1_1egamma.html#457bfb1ccb2057df85073e519a15ccc1" title="Vector .">beta</a>; |
---|
232 | <a name="l00322"></a>00322 <span class="keyword">public</span> : |
---|
233 | <a name="l00324"></a><a class="code" href="classbdm_1_1egamma.html#4dafabaa0881300b18f791bc614ef487">00324</a> <a class="code" href="classbdm_1_1egamma.html#4dafabaa0881300b18f791bc614ef487" title="Default constructor.">egamma</a> ( <span class="keyword">const</span> <a class="code" href="classbdm_1_1RV.html" title="Class representing variables, most often random variables.">RV</a> &<a class="code" href="classbdm_1_1epdf.html#62c5b8ff71d9ebe6cd58d3c342eb1dc8" title="Identified of the random variable.">rv</a> ) :<a class="code" href="classbdm_1_1eEF.html" title="General conjugate exponential family posterior density.">eEF</a> ( rv ), <a class="code" href="classbdm_1_1egamma.html#0901ec983e66b8337aaa506e13b122fa" title="Vector .">alpha</a>(rv.count()), <a class="code" href="classbdm_1_1egamma.html#457bfb1ccb2057df85073e519a15ccc1" title="Vector .">beta</a>(rv.count()) {}; |
---|
234 | <a name="l00326"></a><a class="code" href="classbdm_1_1egamma.html#749f82293ff23a8319c1bf52489d2ed2">00326</a> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1egamma.html#749f82293ff23a8319c1bf52489d2ed2" title="Sets parameters.">set_parameters</a> ( <span class="keyword">const</span> vec &a, <span class="keyword">const</span> vec &b ) {<a class="code" href="classbdm_1_1egamma.html#0901ec983e66b8337aaa506e13b122fa" title="Vector .">alpha</a>=a,<a class="code" href="classbdm_1_1egamma.html#457bfb1ccb2057df85073e519a15ccc1" title="Vector .">beta</a>=b;}; |
---|
235 | <a name="l00327"></a>00327 vec <a class="code" href="classbdm_1_1egamma.html#6ed82f0fd05f6002487256d8e75a0bbd" title="Returns a sample, from density .">sample</a>() <span class="keyword">const</span>; |
---|
236 | <a name="l00329"></a>00329 <span class="comment">// mat sample ( int N ) const;</span> |
---|
237 | <a name="l00330"></a>00330 <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1egamma.html#a8e11e5a580ff42a1b205974c60768c6" title="TODO: is it used anywhere?">evallog</a> ( <span class="keyword">const</span> vec &val ) <span class="keyword">const</span>; |
---|
238 | <a name="l00331"></a>00331 <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1egamma.html#9a66cbd100e8520c769ccb3c451f86f8" title="logarithm of the normalizing constant, ">lognc</a> () <span class="keyword">const</span>; |
---|
239 | <a name="l00333"></a><a class="code" href="classbdm_1_1egamma.html#498c1fe5e8382ab2f97d629849741855">00333</a> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1egamma.html#498c1fe5e8382ab2f97d629849741855" title="Returns poiter to alpha and beta. Potentially dengerous: use with care!">_param</a> ( vec* &a, vec* &b ) {a=&<a class="code" href="classbdm_1_1egamma.html#0901ec983e66b8337aaa506e13b122fa" title="Vector .">alpha</a>;b=&<a class="code" href="classbdm_1_1egamma.html#457bfb1ccb2057df85073e519a15ccc1" title="Vector .">beta</a>;}; |
---|
240 | <a name="l00334"></a><a class="code" href="classbdm_1_1egamma.html#49d256c42cce14c6faa56ec242b57e85">00334</a> vec <a class="code" href="classbdm_1_1egamma.html#49d256c42cce14c6faa56ec242b57e85" title="return expected value">mean</a>()<span class="keyword"> const </span>{<span class="keywordflow">return</span> elem_div(<a class="code" href="classbdm_1_1egamma.html#0901ec983e66b8337aaa506e13b122fa" title="Vector .">alpha</a>,<a class="code" href="classbdm_1_1egamma.html#457bfb1ccb2057df85073e519a15ccc1" title="Vector .">beta</a>);} |
---|
241 | <a name="l00335"></a><a class="code" href="classbdm_1_1egamma.html#36986cc01917cd0796fadc17125bdec1">00335</a> vec <a class="code" href="classbdm_1_1egamma.html#36986cc01917cd0796fadc17125bdec1" title="return expected variance (not covariance!)">variance</a>()<span class="keyword"> const </span>{<span class="keywordflow">return</span> elem_div(<a class="code" href="classbdm_1_1egamma.html#0901ec983e66b8337aaa506e13b122fa" title="Vector .">alpha</a>,elem_mult(<a class="code" href="classbdm_1_1egamma.html#457bfb1ccb2057df85073e519a15ccc1" title="Vector .">beta</a>,<a class="code" href="classbdm_1_1egamma.html#457bfb1ccb2057df85073e519a15ccc1" title="Vector .">beta</a>)); } |
---|
242 | <a name="l00336"></a>00336 }; |
---|
243 | <a name="l00337"></a>00337 |
---|
244 | <a name="l00352"></a><a class="code" href="classbdm_1_1eigamma.html">00352</a> <span class="keyword">class </span><a class="code" href="classbdm_1_1eigamma.html" title="Inverse-Gamma posterior density.">eigamma</a> : <span class="keyword">public</span> <a class="code" href="classbdm_1_1eEF.html" title="General conjugate exponential family posterior density.">eEF</a> { |
---|
245 | <a name="l00353"></a>00353 <span class="keyword">protected</span>: |
---|
246 | <a name="l00355"></a><a class="code" href="classbdm_1_1eigamma.html#e2c49c77e04a96a9e6a4a628318ceb73">00355</a> vec* <a class="code" href="classbdm_1_1eigamma.html#e2c49c77e04a96a9e6a4a628318ceb73" title="Vector .">alpha</a>; |
---|
247 | <a name="l00357"></a><a class="code" href="classbdm_1_1eigamma.html#b2c62f2e869d1304a4055f6a7ac59cde">00357</a> vec* <a class="code" href="classbdm_1_1eigamma.html#b2c62f2e869d1304a4055f6a7ac59cde" title="Vector (in fact it is 1/beta as used in definition of iG).">beta</a>; |
---|
248 | <a name="l00359"></a><a class="code" href="classbdm_1_1eigamma.html#3e5c03201f073033a7db894fa15ddb96">00359</a> <a class="code" href="classbdm_1_1egamma.html" title="Gamma posterior density.">egamma</a> <a class="code" href="classbdm_1_1eigamma.html#3e5c03201f073033a7db894fa15ddb96" title="internal egamma">eg</a>; |
---|
249 | <a name="l00360"></a>00360 <span class="keyword">public</span> : |
---|
250 | <a name="l00362"></a><a class="code" href="classbdm_1_1eigamma.html#34a8d2cd08399c3449e2efcda6ea2f89">00362</a> <a class="code" href="classbdm_1_1eigamma.html#34a8d2cd08399c3449e2efcda6ea2f89" title="Default constructor.">eigamma</a> ( <span class="keyword">const</span> <a class="code" href="classbdm_1_1RV.html" title="Class representing variables, most often random variables.">RV</a> &<a class="code" href="classbdm_1_1epdf.html#62c5b8ff71d9ebe6cd58d3c342eb1dc8" title="Identified of the random variable.">rv</a> ) :<a class="code" href="classbdm_1_1eEF.html" title="General conjugate exponential family posterior density.">eEF</a> ( rv ), <a class="code" href="classbdm_1_1eigamma.html#3e5c03201f073033a7db894fa15ddb96" title="internal egamma">eg</a>(rv) {<a class="code" href="classbdm_1_1eigamma.html#3e5c03201f073033a7db894fa15ddb96" title="internal egamma">eg</a>.<a class="code" href="classbdm_1_1egamma.html#498c1fe5e8382ab2f97d629849741855" title="Returns poiter to alpha and beta. Potentially dengerous: use with care!">_param</a>(<a class="code" href="classbdm_1_1eigamma.html#e2c49c77e04a96a9e6a4a628318ceb73" title="Vector .">alpha</a>,<a class="code" href="classbdm_1_1eigamma.html#b2c62f2e869d1304a4055f6a7ac59cde" title="Vector (in fact it is 1/beta as used in definition of iG).">beta</a>);}; |
---|
251 | <a name="l00364"></a><a class="code" href="classbdm_1_1eigamma.html#09e616c95f31acddf7dfef96d1c5d645">00364</a> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1eigamma.html#09e616c95f31acddf7dfef96d1c5d645" title="Sets parameters.">set_parameters</a> ( <span class="keyword">const</span> vec &a, <span class="keyword">const</span> vec &b ) {*<a class="code" href="classbdm_1_1eigamma.html#e2c49c77e04a96a9e6a4a628318ceb73" title="Vector .">alpha</a>=a,*<a class="code" href="classbdm_1_1eigamma.html#b2c62f2e869d1304a4055f6a7ac59cde" title="Vector (in fact it is 1/beta as used in definition of iG).">beta</a>=b;}; |
---|
252 | <a name="l00365"></a><a class="code" href="classbdm_1_1eigamma.html#3aff7bf25ddac27731c60826fcfd878f">00365</a> vec <a class="code" href="classbdm_1_1eigamma.html#3aff7bf25ddac27731c60826fcfd878f" title="Returns a sample, from density .">sample</a>()<span class="keyword"> const </span>{<span class="keywordflow">return</span> 1.0/<a class="code" href="classbdm_1_1eigamma.html#3e5c03201f073033a7db894fa15ddb96" title="internal egamma">eg</a>.<a class="code" href="classbdm_1_1egamma.html#6ed82f0fd05f6002487256d8e75a0bbd" title="Returns a sample, from density .">sample</a>();}; |
---|
253 | <a name="l00367"></a>00367 <span class="comment">// mat sample ( int N ) const;</span> |
---|
254 | <a name="l00368"></a><a class="code" href="classbdm_1_1eigamma.html#9e26c80c8e6708bfcf2e684958af6f91">00368</a> <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1eigamma.html#9e26c80c8e6708bfcf2e684958af6f91" title="TODO: is it used anywhere?">evallog</a> ( <span class="keyword">const</span> vec &val )<span class="keyword"> const </span>{<span class="keywordflow">return</span> <a class="code" href="classbdm_1_1eigamma.html#3e5c03201f073033a7db894fa15ddb96" title="internal egamma">eg</a>.<a class="code" href="classbdm_1_1egamma.html#a8e11e5a580ff42a1b205974c60768c6" title="TODO: is it used anywhere?">evallog</a>(val);}; |
---|
255 | <a name="l00369"></a><a class="code" href="classbdm_1_1eigamma.html#a52ac6d523e2fe05642d1f50fe66aec2">00369</a> <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1eigamma.html#a52ac6d523e2fe05642d1f50fe66aec2" title="logarithm of the normalizing constant, ">lognc</a> ()<span class="keyword"> const </span>{<span class="keywordflow">return</span> <a class="code" href="classbdm_1_1eigamma.html#3e5c03201f073033a7db894fa15ddb96" title="internal egamma">eg</a>.<a class="code" href="classbdm_1_1egamma.html#9a66cbd100e8520c769ccb3c451f86f8" title="logarithm of the normalizing constant, ">lognc</a>();}; |
---|
256 | <a name="l00371"></a><a class="code" href="classbdm_1_1eigamma.html#57b9ee79ef5d2cea243bbe6b274a2abe">00371</a> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1eigamma.html#57b9ee79ef5d2cea243bbe6b274a2abe" title="Returns poiter to alpha and beta. Potentially dangerous: use with care!">_param</a> ( vec* &a, vec* &b ) {a=<a class="code" href="classbdm_1_1eigamma.html#e2c49c77e04a96a9e6a4a628318ceb73" title="Vector .">alpha</a>;b=<a class="code" href="classbdm_1_1eigamma.html#b2c62f2e869d1304a4055f6a7ac59cde" title="Vector (in fact it is 1/beta as used in definition of iG).">beta</a>;}; |
---|
257 | <a name="l00372"></a><a class="code" href="classbdm_1_1eigamma.html#46cecb295edbabd28120cb0f6f572bcb">00372</a> vec <a class="code" href="classbdm_1_1eigamma.html#46cecb295edbabd28120cb0f6f572bcb" title="return expected value">mean</a>()<span class="keyword"> const </span>{<span class="keywordflow">return</span> elem_div(*<a class="code" href="classbdm_1_1eigamma.html#b2c62f2e869d1304a4055f6a7ac59cde" title="Vector (in fact it is 1/beta as used in definition of iG).">beta</a>,*<a class="code" href="classbdm_1_1eigamma.html#e2c49c77e04a96a9e6a4a628318ceb73" title="Vector .">alpha</a>-1);} |
---|
258 | <a name="l00373"></a><a class="code" href="classbdm_1_1eigamma.html#c2c696f8c668e9f65392c9449f6a5133">00373</a> vec <a class="code" href="classbdm_1_1eigamma.html#c2c696f8c668e9f65392c9449f6a5133" title="return expected variance (not covariance!)">variance</a>()<span class="keyword"> const </span>{vec mea=<a class="code" href="classbdm_1_1eigamma.html#46cecb295edbabd28120cb0f6f572bcb" title="return expected value">mean</a>(); <span class="keywordflow">return</span> elem_div(elem_mult(mea,mea),*<a class="code" href="classbdm_1_1eigamma.html#e2c49c77e04a96a9e6a4a628318ceb73" title="Vector .">alpha</a>-2);} |
---|
259 | <a name="l00374"></a>00374 }; |
---|
260 | <a name="l00375"></a>00375 <span class="comment">/*</span> |
---|
261 | <a name="l00377"></a>00377 <span class="comment">class emix : public epdf {</span> |
---|
262 | <a name="l00378"></a>00378 <span class="comment">protected:</span> |
---|
263 | <a name="l00379"></a>00379 <span class="comment"> int n;</span> |
---|
264 | <a name="l00380"></a>00380 <span class="comment"> vec &w;</span> |
---|
265 | <a name="l00381"></a>00381 <span class="comment"> Array<epdf*> Coms;</span> |
---|
266 | <a name="l00382"></a>00382 <span class="comment">public:</span> |
---|
267 | <a name="l00384"></a>00384 <span class="comment"> emix ( const RV &rv, vec &w0): epdf(rv), n(w0.length()), w(w0), Coms(n) {};</span> |
---|
268 | <a name="l00385"></a>00385 <span class="comment"> void set_parameters( int &i, double wi, epdf* ep){w(i)=wi;Coms(i)=ep;}</span> |
---|
269 | <a name="l00386"></a>00386 <span class="comment"> vec mean(){vec pom; for(int i=0;i<n;i++){pom+=Coms(i)->mean()*w(i);} return pom;};</span> |
---|
270 | <a name="l00387"></a>00387 <span class="comment"> vec sample() {it_error ( "Not implemented" );return 0;}</span> |
---|
271 | <a name="l00388"></a>00388 <span class="comment">};</span> |
---|
272 | <a name="l00389"></a>00389 <span class="comment">*/</span> |
---|
273 | <a name="l00390"></a>00390 |
---|
274 | <a name="l00392"></a>00392 |
---|
275 | <a name="l00393"></a><a class="code" href="classbdm_1_1euni.html">00393</a> <span class="keyword">class </span><a class="code" href="classbdm_1_1euni.html" title="Uniform distributed density on a rectangular support.">euni</a>: <span class="keyword">public</span> <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a> { |
---|
276 | <a name="l00394"></a>00394 <span class="keyword">protected</span>: |
---|
277 | <a name="l00396"></a><a class="code" href="classbdm_1_1euni.html#ff7ce6a2ef5ef0015bbd1398bed12f32">00396</a> vec <a class="code" href="classbdm_1_1euni.html#ff7ce6a2ef5ef0015bbd1398bed12f32" title="lower bound on support">low</a>; |
---|
278 | <a name="l00398"></a><a class="code" href="classbdm_1_1euni.html#cfad2dea4a62db6872bda8abd75f0de1">00398</a> vec <a class="code" href="classbdm_1_1euni.html#cfad2dea4a62db6872bda8abd75f0de1" title="upper bound on support">high</a>; |
---|
279 | <a name="l00400"></a><a class="code" href="classbdm_1_1euni.html#d3c27e331f90c754d80228108de8ed4c">00400</a> vec <a class="code" href="classbdm_1_1euni.html#d3c27e331f90c754d80228108de8ed4c" title="internal">distance</a>; |
---|
280 | <a name="l00402"></a><a class="code" href="classbdm_1_1euni.html#31bb13e8449a8eff35246d46dae35c20">00402</a> <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1euni.html#31bb13e8449a8eff35246d46dae35c20" title="normalizing coefficients">nk</a>; |
---|
281 | <a name="l00404"></a><a class="code" href="classbdm_1_1euni.html#3e63be48dd58659663ca60cd18700476">00404</a> <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1euni.html#3e63be48dd58659663ca60cd18700476" title="cache of log( nk )">lnk</a>; |
---|
282 | <a name="l00405"></a>00405 <span class="keyword">public</span>: |
---|
283 | <a name="l00407"></a><a class="code" href="classbdm_1_1euni.html#dca02eda833d6295e0c19f6e120b64e0">00407</a> <a class="code" href="classbdm_1_1euni.html#dca02eda833d6295e0c19f6e120b64e0" title="Defualt constructor.">euni</a> ( <span class="keyword">const</span> <a class="code" href="classbdm_1_1RV.html" title="Class representing variables, most often random variables.">RV</a> <a class="code" href="classbdm_1_1epdf.html#62c5b8ff71d9ebe6cd58d3c342eb1dc8" title="Identified of the random variable.">rv</a> ) :<a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a> ( rv ) {} |
---|
284 | <a name="l00408"></a>00408 <span class="keywordtype">double</span> eval ( <span class="keyword">const</span> vec &val )<span class="keyword"> const </span>{<span class="keywordflow">return</span> <a class="code" href="classbdm_1_1euni.html#31bb13e8449a8eff35246d46dae35c20" title="normalizing coefficients">nk</a>;} |
---|
285 | <a name="l00409"></a><a class="code" href="classbdm_1_1euni.html#caa07b8307bd793d5339d6583e0aba81">00409</a> <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1euni.html#caa07b8307bd793d5339d6583e0aba81" title="Compute log-probability of argument val.">evallog</a> ( <span class="keyword">const</span> vec &val )<span class="keyword"> const </span>{<span class="keywordflow">return</span> <a class="code" href="classbdm_1_1euni.html#3e63be48dd58659663ca60cd18700476" title="cache of log( nk )">lnk</a>;} |
---|
286 | <a name="l00410"></a><a class="code" href="classbdm_1_1euni.html#fc5df80359ead2918384b2004ce67194">00410</a> vec <a class="code" href="classbdm_1_1euni.html#fc5df80359ead2918384b2004ce67194" title="Returns a sample, from density .">sample</a>()<span class="keyword"> const </span>{ |
---|
287 | <a name="l00411"></a>00411 vec smp ( <a class="code" href="classbdm_1_1epdf.html#62c5b8ff71d9ebe6cd58d3c342eb1dc8" title="Identified of the random variable.">rv</a>.<a class="code" href="classbdm_1_1RV.html#2174751a00ce19f941edd2c1a861be67" title="Return number of scalars in the RV.">count</a>() ); |
---|
288 | <a name="l00412"></a>00412 <span class="preprocessor">#pragma omp critical</span> |
---|
289 | <a name="l00413"></a>00413 <span class="preprocessor"></span> <a class="code" href="namespacebdm.html#96288dbda6916cd442af735f66a9f40b" title="Global Uniform_RNG.">UniRNG</a>.sample_vector ( <a class="code" href="classbdm_1_1epdf.html#62c5b8ff71d9ebe6cd58d3c342eb1dc8" title="Identified of the random variable.">rv</a>.<a class="code" href="classbdm_1_1RV.html#2174751a00ce19f941edd2c1a861be67" title="Return number of scalars in the RV.">count</a>(),smp ); |
---|
290 | <a name="l00414"></a>00414 <span class="keywordflow">return</span> <a class="code" href="classbdm_1_1euni.html#ff7ce6a2ef5ef0015bbd1398bed12f32" title="lower bound on support">low</a>+elem_mult ( <a class="code" href="classbdm_1_1euni.html#d3c27e331f90c754d80228108de8ed4c" title="internal">distance</a>,smp ); |
---|
291 | <a name="l00415"></a>00415 } |
---|
292 | <a name="l00417"></a><a class="code" href="classbdm_1_1euni.html#8e130b323c62b42f1699537f99af6f09">00417</a> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1euni.html#8e130b323c62b42f1699537f99af6f09" title="set values of low and high ">set_parameters</a> ( <span class="keyword">const</span> vec &low0, <span class="keyword">const</span> vec &high0 ) { |
---|
293 | <a name="l00418"></a>00418 <a class="code" href="classbdm_1_1euni.html#d3c27e331f90c754d80228108de8ed4c" title="internal">distance</a> = high0-low0; |
---|
294 | <a name="l00419"></a>00419 it_assert_debug ( min ( <a class="code" href="classbdm_1_1euni.html#d3c27e331f90c754d80228108de8ed4c" title="internal">distance</a> ) >0.0,<span class="stringliteral">"bad support"</span> ); |
---|
295 | <a name="l00420"></a>00420 <a class="code" href="classbdm_1_1euni.html#ff7ce6a2ef5ef0015bbd1398bed12f32" title="lower bound on support">low</a> = low0; |
---|
296 | <a name="l00421"></a>00421 <a class="code" href="classbdm_1_1euni.html#cfad2dea4a62db6872bda8abd75f0de1" title="upper bound on support">high</a> = high0; |
---|
297 | <a name="l00422"></a>00422 <a class="code" href="classbdm_1_1euni.html#31bb13e8449a8eff35246d46dae35c20" title="normalizing coefficients">nk</a> = prod ( 1.0/<a class="code" href="classbdm_1_1euni.html#d3c27e331f90c754d80228108de8ed4c" title="internal">distance</a> ); |
---|
298 | <a name="l00423"></a>00423 <a class="code" href="classbdm_1_1euni.html#3e63be48dd58659663ca60cd18700476" title="cache of log( nk )">lnk</a> = log ( <a class="code" href="classbdm_1_1euni.html#31bb13e8449a8eff35246d46dae35c20" title="normalizing coefficients">nk</a> ); |
---|
299 | <a name="l00424"></a>00424 } |
---|
300 | <a name="l00425"></a><a class="code" href="classbdm_1_1euni.html#46caa8c13aba2e6228f964208918b226">00425</a> vec <a class="code" href="classbdm_1_1euni.html#46caa8c13aba2e6228f964208918b226" title="return expected value">mean</a>()<span class="keyword"> const </span>{<span class="keywordflow">return</span> (<a class="code" href="classbdm_1_1euni.html#cfad2dea4a62db6872bda8abd75f0de1" title="upper bound on support">high</a>-<a class="code" href="classbdm_1_1euni.html#ff7ce6a2ef5ef0015bbd1398bed12f32" title="lower bound on support">low</a>)/2.0;} |
---|
301 | <a name="l00426"></a><a class="code" href="classbdm_1_1euni.html#951f932155111f6053c980f672b4c22c">00426</a> vec <a class="code" href="classbdm_1_1euni.html#951f932155111f6053c980f672b4c22c" title="return expected variance (not covariance!)">variance</a>()<span class="keyword"> const </span>{<span class="keywordflow">return</span> (pow(<a class="code" href="classbdm_1_1euni.html#cfad2dea4a62db6872bda8abd75f0de1" title="upper bound on support">high</a>,2)+pow(<a class="code" href="classbdm_1_1euni.html#ff7ce6a2ef5ef0015bbd1398bed12f32" title="lower bound on support">low</a>,2)+elem_mult(<a class="code" href="classbdm_1_1euni.html#cfad2dea4a62db6872bda8abd75f0de1" title="upper bound on support">high</a>,<a class="code" href="classbdm_1_1euni.html#ff7ce6a2ef5ef0015bbd1398bed12f32" title="lower bound on support">low</a>))/3.0;} |
---|
302 | <a name="l00427"></a>00427 }; |
---|
303 | <a name="l00428"></a>00428 |
---|
304 | <a name="l00429"></a>00429 |
---|
305 | <a name="l00435"></a>00435 <span class="keyword">template</span><<span class="keyword">class</span> sq_T> |
---|
306 | <a name="l00436"></a><a class="code" href="classbdm_1_1mlnorm.html">00436</a> <span class="keyword">class </span><a class="code" href="classbdm_1_1mlnorm.html" title="Normal distributed linear function with linear function of mean value;.">mlnorm</a> : <span class="keyword">public</span> <a class="code" href="classbdm_1_1mEF.html" title="Exponential family model.">mEF</a> { |
---|
307 | <a name="l00437"></a>00437 <span class="keyword">protected</span>: |
---|
308 | <a name="l00439"></a><a class="code" href="classbdm_1_1mlnorm.html#150ad6acb223b0a0abeaf92346686dcd">00439</a> <a class="code" href="classbdm_1_1enorm.html" title="Gaussian density with positive definite (decomposed) covariance matrix.">enorm<sq_T></a> <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>; |
---|
309 | <a name="l00440"></a>00440 mat A; |
---|
310 | <a name="l00441"></a>00441 vec mu_const; |
---|
311 | <a name="l00442"></a>00442 vec& _mu; <span class="comment">//cached epdf.mu;</span> |
---|
312 | <a name="l00443"></a>00443 <span class="keyword">public</span>: |
---|
313 | <a name="l00445"></a>00445 <a class="code" href="classbdm_1_1mlnorm.html#64d965df6811ff65b94718c427048f4a" title="Constructor.">mlnorm</a> ( <span class="keyword">const</span> <a class="code" href="classbdm_1_1RV.html" title="Class representing variables, most often random variables.">RV</a> &<a class="code" href="classbdm_1_1mpdf.html#9bcfb45435d30983f436d41c298cbb51" title="modeled random variable">rv</a>, <span class="keyword">const</span> <a class="code" href="classbdm_1_1RV.html" title="Class representing variables, most often random variables.">RV</a> &<a class="code" href="classbdm_1_1mpdf.html#5a5f08950daa08b85b01ddf4e1c36288" title="random variable in condition">rvc</a> ); |
---|
314 | <a name="l00447"></a>00447 <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1mlnorm.html#5d18dec3167584338a4775c1d165d96f" title="Set A and R.">set_parameters</a> ( <span class="keyword">const</span> mat &A, <span class="keyword">const</span> vec &mu0, <span class="keyword">const</span> sq_T &R ); |
---|
315 | <a name="l00448"></a>00448 <span class="comment">// //!Generate one sample of the posterior</span> |
---|
316 | <a name="l00449"></a>00449 <span class="comment">// vec samplecond (const vec &cond, double &lik );</span> |
---|
317 | <a name="l00450"></a>00450 <span class="comment">// //!Generate matrix of samples of the posterior</span> |
---|
318 | <a name="l00451"></a>00451 <span class="comment">// mat samplecond (const vec &cond, vec &lik, int n );</span> |
---|
319 | <a name="l00453"></a>00453 <span class="comment"></span> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1mlnorm.html#0dafc0196e7e07fd06dc6716e0e18bc2" title="Set value of rvc . Result of this operation is stored in epdf use function _ep to...">condition</a> ( <span class="keyword">const</span> vec &cond ); |
---|
320 | <a name="l00454"></a>00454 |
---|
321 | <a name="l00456"></a><a class="code" href="classbdm_1_1mlnorm.html#56e587952f94fcac6cfc999eae6dbced">00456</a> vec& <a class="code" href="classbdm_1_1mlnorm.html#56e587952f94fcac6cfc999eae6dbced" title="access function">_mu_const</a>() {<span class="keywordflow">return</span> mu_const;} |
---|
322 | <a name="l00458"></a><a class="code" href="classbdm_1_1mlnorm.html#262a2a486bff585f34bb6a5005b02614">00458</a> mat& <a class="code" href="classbdm_1_1mlnorm.html#262a2a486bff585f34bb6a5005b02614" title="access function">_A</a>() {<span class="keywordflow">return</span> A;} |
---|
323 | <a name="l00460"></a><a class="code" href="classbdm_1_1mlnorm.html#78120ecd1c2b1d7e80124b4603504604">00460</a> mat <a class="code" href="classbdm_1_1mlnorm.html#78120ecd1c2b1d7e80124b4603504604" title="access function">_R</a>() {<span class="keywordflow">return</span> <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>._R().to_mat();} |
---|
324 | <a name="l00461"></a>00461 |
---|
325 | <a name="l00462"></a>00462 <span class="keyword">template</span><<span class="keyword">class</span> sq_M> |
---|
326 | <a name="l00463"></a>00463 <span class="keyword">friend</span> std::ostream &operator<< ( std::ostream &os, mlnorm<sq_M> &ml ); |
---|
327 | <a name="l00464"></a>00464 }; |
---|
328 | <a name="l00465"></a>00465 |
---|
329 | <a name="l00473"></a><a class="code" href="classbdm_1_1mlstudent.html">00473</a> <span class="keyword">class </span><a class="code" href="classbdm_1_1mlstudent.html">mlstudent</a> : <span class="keyword">public</span> <a class="code" href="classbdm_1_1mlnorm.html" title="Normal distributed linear function with linear function of mean value;.">mlnorm</a><ldmat> { |
---|
330 | <a name="l00474"></a>00474 <span class="keyword">protected</span>: |
---|
331 | <a name="l00475"></a>00475 <a class="code" href="classldmat.html" title="Matrix stored in LD form, (commonly known as UD).">ldmat</a> Lambda; |
---|
332 | <a name="l00476"></a>00476 <a class="code" href="classldmat.html" title="Matrix stored in LD form, (commonly known as UD).">ldmat</a> &<a class="code" href="classbdm_1_1mlnorm.html#78120ecd1c2b1d7e80124b4603504604" title="access function">_R</a>; |
---|
333 | <a name="l00477"></a>00477 <a class="code" href="classldmat.html" title="Matrix stored in LD form, (commonly known as UD).">ldmat</a> Re; |
---|
334 | <a name="l00478"></a>00478 <span class="keyword">public</span>: |
---|
335 | <a name="l00479"></a>00479 <a class="code" href="classbdm_1_1mlstudent.html">mlstudent</a> ( <span class="keyword">const</span> <a class="code" href="classbdm_1_1RV.html" title="Class representing variables, most often random variables.">RV</a> &rv0, <span class="keyword">const</span> <a class="code" href="classbdm_1_1RV.html" title="Class representing variables, most often random variables.">RV</a> &rvc0 ) :<a class="code" href="classbdm_1_1mlnorm.html" title="Normal distributed linear function with linear function of mean value;.">mlnorm<ldmat></a> ( rv0,rvc0 ), |
---|
336 | <a name="l00480"></a>00480 Lambda ( rv0.<a class="code" href="classbdm_1_1RV.html#2174751a00ce19f941edd2c1a861be67" title="Return number of scalars in the RV.">count</a>() ), |
---|
337 | <a name="l00481"></a>00481 <a class="code" href="classbdm_1_1mlnorm.html#78120ecd1c2b1d7e80124b4603504604" title="access function">_R</a> ( <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>._R() ) {} |
---|
338 | <a name="l00482"></a>00482 <span class="keywordtype">void</span> set_parameters ( <span class="keyword">const</span> mat &A0, <span class="keyword">const</span> vec &mu0, <span class="keyword">const</span> <a class="code" href="classldmat.html" title="Matrix stored in LD form, (commonly known as UD).">ldmat</a> &R0, <span class="keyword">const</span> <a class="code" href="classldmat.html" title="Matrix stored in LD form, (commonly known as UD).">ldmat</a>& Lambda0) { |
---|
339 | <a name="l00483"></a>00483 <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>.set_parameters ( zeros ( <a class="code" href="classbdm_1_1mpdf.html#9bcfb45435d30983f436d41c298cbb51" title="modeled random variable">rv</a>.<a class="code" href="classbdm_1_1RV.html#2174751a00ce19f941edd2c1a861be67" title="Return number of scalars in the RV.">count</a>() ),Lambda ); |
---|
340 | <a name="l00484"></a>00484 A = A0; |
---|
341 | <a name="l00485"></a>00485 mu_const = mu0; |
---|
342 | <a name="l00486"></a>00486 Re=R0; |
---|
343 | <a name="l00487"></a>00487 Lambda = Lambda0; |
---|
344 | <a name="l00488"></a>00488 } |
---|
345 | <a name="l00489"></a><a class="code" href="classbdm_1_1mlstudent.html#efd37560585c8613897f30d3c2f58d0d">00489</a> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1mlstudent.html#efd37560585c8613897f30d3c2f58d0d" title="Set value of rvc . Result of this operation is stored in epdf use function _ep to...">condition</a> ( <span class="keyword">const</span> vec &cond ) { |
---|
346 | <a name="l00490"></a>00490 _mu = A*cond + mu_const; |
---|
347 | <a name="l00491"></a>00491 <span class="keywordtype">double</span> zeta; |
---|
348 | <a name="l00492"></a>00492 <span class="comment">//ugly hack!</span> |
---|
349 | <a name="l00493"></a>00493 <span class="keywordflow">if</span> ((cond.length()+1)==Lambda.<a class="code" href="group__math.html#g96dfb21865db4f5bd36fa70f9b0b1163" title="access function">rows</a>()){ |
---|
350 | <a name="l00494"></a>00494 zeta = Lambda.<a class="code" href="classldmat.html#d876c5f83e02b3e809b35c9de5068f14" title="Evaluates quadratic form ;.">invqform</a> ( <a class="code" href="namespacebdm.html#b9016687c0e874ca5cdcf75ae28811aa" title="Concat two random variables.">concat</a>(cond, vec_1(1.0)) ); |
---|
351 | <a name="l00495"></a>00495 } <span class="keywordflow">else</span> { |
---|
352 | <a name="l00496"></a>00496 zeta = Lambda.<a class="code" href="classldmat.html#d876c5f83e02b3e809b35c9de5068f14" title="Evaluates quadratic form ;.">invqform</a> ( cond ); |
---|
353 | <a name="l00497"></a>00497 } |
---|
354 | <a name="l00498"></a>00498 <a class="code" href="classbdm_1_1mlnorm.html#78120ecd1c2b1d7e80124b4603504604" title="access function">_R</a> = Re; |
---|
355 | <a name="l00499"></a>00499 <a class="code" href="classbdm_1_1mlnorm.html#78120ecd1c2b1d7e80124b4603504604" title="access function">_R</a>*=( 1+zeta );<span class="comment">// / ( nu ); << nu is in Re!!!!!!</span> |
---|
356 | <a name="l00500"></a>00500 }; |
---|
357 | <a name="l00501"></a>00501 |
---|
358 | <a name="l00502"></a>00502 }; |
---|
359 | <a name="l00512"></a><a class="code" href="classbdm_1_1mgamma.html">00512</a> <span class="keyword">class </span><a class="code" href="classbdm_1_1mgamma.html" title="Gamma random walk.">mgamma</a> : <span class="keyword">public</span> <a class="code" href="classbdm_1_1mEF.html" title="Exponential family model.">mEF</a> { |
---|
360 | <a name="l00513"></a>00513 <span class="keyword">protected</span>: |
---|
361 | <a name="l00515"></a><a class="code" href="classbdm_1_1mgamma.html#bdc9f1e9e03c09e91103fee269864438">00515</a> <a class="code" href="classbdm_1_1egamma.html" title="Gamma posterior density.">egamma</a> <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>; |
---|
362 | <a name="l00517"></a><a class="code" href="classbdm_1_1mgamma.html#b20cf88cca1fe9b0b8f2a412608bfd09">00517</a> <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1mgamma.html#b20cf88cca1fe9b0b8f2a412608bfd09" title="Constant .">k</a>; |
---|
363 | <a name="l00519"></a><a class="code" href="classbdm_1_1mgamma.html#f6a652ce70fa2eb4d2c7ba6d5a6ae343">00519</a> vec* <a class="code" href="classbdm_1_1mgamma.html#f6a652ce70fa2eb4d2c7ba6d5a6ae343" title="cache of epdf.beta">_beta</a>; |
---|
364 | <a name="l00520"></a>00520 |
---|
365 | <a name="l00521"></a>00521 <span class="keyword">public</span>: |
---|
366 | <a name="l00523"></a><a class="code" href="classbdm_1_1mgamma.html#2f6425cd966191b0be4c6ea91a40b6d9">00523</a> <a class="code" href="classbdm_1_1mgamma.html#2f6425cd966191b0be4c6ea91a40b6d9" title="Constructor.">mgamma</a> ( <span class="keyword">const</span> <a class="code" href="classbdm_1_1RV.html" title="Class representing variables, most often random variables.">RV</a> &<a class="code" href="classbdm_1_1mpdf.html#9bcfb45435d30983f436d41c298cbb51" title="modeled random variable">rv</a>,<span class="keyword">const</span> <a class="code" href="classbdm_1_1RV.html" title="Class representing variables, most often random variables.">RV</a> &<a class="code" href="classbdm_1_1mpdf.html#5a5f08950daa08b85b01ddf4e1c36288" title="random variable in condition">rvc</a> ): <a class="code" href="classbdm_1_1mEF.html" title="Exponential family model.">mEF</a> ( rv,rvc ), <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a> ( rv ) {vec* tmp; <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>._param ( tmp,<a class="code" href="classbdm_1_1mgamma.html#f6a652ce70fa2eb4d2c7ba6d5a6ae343" title="cache of epdf.beta">_beta</a> );<a class="code" href="classbdm_1_1mpdf.html#5eea43c56d38e4441bfb30270db949c0" title="pointer to internal epdf">ep</a>=&<a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>;}; |
---|
367 | <a name="l00525"></a>00525 <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1mgamma.html#0b486f7e52a3d8a39adbcbd325461c0d" title="Set value of k.">set_parameters</a> ( <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1mgamma.html#b20cf88cca1fe9b0b8f2a412608bfd09" title="Constant .">k</a> ); |
---|
368 | <a name="l00526"></a><a class="code" href="classbdm_1_1mgamma.html#8996500f1885e39cde30221b20900bff">00526</a> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1mgamma.html#8996500f1885e39cde30221b20900bff" title="Update ep so that it represents this mpdf conditioned on rvc = cond.">condition</a> ( <span class="keyword">const</span> vec &val ) {*<a class="code" href="classbdm_1_1mgamma.html#f6a652ce70fa2eb4d2c7ba6d5a6ae343" title="cache of epdf.beta">_beta</a>=<a class="code" href="classbdm_1_1mgamma.html#b20cf88cca1fe9b0b8f2a412608bfd09" title="Constant .">k</a>/val;}; |
---|
369 | <a name="l00527"></a>00527 }; |
---|
370 | <a name="l00528"></a>00528 |
---|
371 | <a name="l00538"></a><a class="code" href="classbdm_1_1migamma.html">00538</a> <span class="keyword">class </span><a class="code" href="classbdm_1_1migamma.html" title="Inverse-Gamma random walk.">migamma</a> : <span class="keyword">public</span> <a class="code" href="classbdm_1_1mEF.html" title="Exponential family model.">mEF</a> { |
---|
372 | <a name="l00539"></a>00539 <span class="keyword">protected</span>: |
---|
373 | <a name="l00541"></a><a class="code" href="classbdm_1_1migamma.html#a31b39d4179551b593c9e0d7d756783a">00541</a> <a class="code" href="classbdm_1_1eigamma.html" title="Inverse-Gamma posterior density.">eigamma</a> <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>; |
---|
374 | <a name="l00543"></a><a class="code" href="classbdm_1_1migamma.html#dc56bc9da542e0103ec16b9be8e5e38c">00543</a> <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1migamma.html#dc56bc9da542e0103ec16b9be8e5e38c" title="Constant .">k</a>; |
---|
375 | <a name="l00545"></a><a class="code" href="classbdm_1_1migamma.html#4825c0ef11a148bad9b802a496f56f96">00545</a> vec* <a class="code" href="classbdm_1_1migamma.html#4825c0ef11a148bad9b802a496f56f96" title="cache of epdf.beta">_beta</a>; |
---|
376 | <a name="l00547"></a><a class="code" href="classbdm_1_1migamma.html#b6c265b132ff79963bf51dff4c3ef252">00547</a> vec* <a class="code" href="classbdm_1_1migamma.html#b6c265b132ff79963bf51dff4c3ef252" title="chaceh of epdf.alpha">_alpha</a>; |
---|
377 | <a name="l00548"></a>00548 |
---|
378 | <a name="l00549"></a>00549 <span class="keyword">public</span>: |
---|
379 | <a name="l00551"></a><a class="code" href="classbdm_1_1migamma.html#07c5970da0e578ce8a428f1ebf46a459">00551</a> <a class="code" href="classbdm_1_1migamma.html#07c5970da0e578ce8a428f1ebf46a459" title="Constructor.">migamma</a> ( <span class="keyword">const</span> <a class="code" href="classbdm_1_1RV.html" title="Class representing variables, most often random variables.">RV</a> &<a class="code" href="classbdm_1_1mpdf.html#9bcfb45435d30983f436d41c298cbb51" title="modeled random variable">rv</a>,<span class="keyword">const</span> <a class="code" href="classbdm_1_1RV.html" title="Class representing variables, most often random variables.">RV</a> &<a class="code" href="classbdm_1_1mpdf.html#5a5f08950daa08b85b01ddf4e1c36288" title="random variable in condition">rvc</a> ): <a class="code" href="classbdm_1_1mEF.html" title="Exponential family model.">mEF</a> ( rv,rvc ), <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a> ( rv ) {<a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>._param ( <a class="code" href="classbdm_1_1migamma.html#b6c265b132ff79963bf51dff4c3ef252" title="chaceh of epdf.alpha">_alpha</a>,<a class="code" href="classbdm_1_1migamma.html#4825c0ef11a148bad9b802a496f56f96" title="cache of epdf.beta">_beta</a> );<a class="code" href="classbdm_1_1mpdf.html#5eea43c56d38e4441bfb30270db949c0" title="pointer to internal epdf">ep</a>=&<a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>;}; |
---|
380 | <a name="l00553"></a><a class="code" href="classbdm_1_1migamma.html#1d7023b1565551d0260eb1ba832bebaf">00553</a> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1migamma.html#1d7023b1565551d0260eb1ba832bebaf" title="Set value of k.">set_parameters</a> ( <span class="keywordtype">double</span> k0 ){<a class="code" href="classbdm_1_1migamma.html#dc56bc9da542e0103ec16b9be8e5e38c" title="Constant .">k</a>=k0;*<a class="code" href="classbdm_1_1migamma.html#b6c265b132ff79963bf51dff4c3ef252" title="chaceh of epdf.alpha">_alpha</a>=1.0/(<a class="code" href="classbdm_1_1migamma.html#dc56bc9da542e0103ec16b9be8e5e38c" title="Constant .">k</a>*<a class="code" href="classbdm_1_1migamma.html#dc56bc9da542e0103ec16b9be8e5e38c" title="Constant .">k</a>)+2;}; |
---|
381 | <a name="l00554"></a><a class="code" href="classbdm_1_1migamma.html#7a34b1e2e3aa2250d7c0ed7df1665b8c">00554</a> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1migamma.html#7a34b1e2e3aa2250d7c0ed7df1665b8c" title="Update ep so that it represents this mpdf conditioned on rvc = cond.">condition</a> ( <span class="keyword">const</span> vec &val ) { |
---|
382 | <a name="l00555"></a>00555 *<a class="code" href="classbdm_1_1migamma.html#4825c0ef11a148bad9b802a496f56f96" title="cache of epdf.beta">_beta</a>=elem_mult(val,(*<a class="code" href="classbdm_1_1migamma.html#b6c265b132ff79963bf51dff4c3ef252" title="chaceh of epdf.alpha">_alpha</a>-1)); |
---|
383 | <a name="l00556"></a>00556 }; |
---|
384 | <a name="l00557"></a>00557 }; |
---|
385 | <a name="l00558"></a>00558 |
---|
386 | <a name="l00570"></a><a class="code" href="classbdm_1_1mgamma__fix.html">00570</a> <span class="keyword">class </span><a class="code" href="classbdm_1_1mgamma__fix.html" title="Gamma random walk around a fixed point.">mgamma_fix</a> : <span class="keyword">public</span> <a class="code" href="classbdm_1_1mgamma.html" title="Gamma random walk.">mgamma</a> { |
---|
387 | <a name="l00571"></a>00571 <span class="keyword">protected</span>: |
---|
388 | <a name="l00573"></a><a class="code" href="classbdm_1_1mgamma__fix.html#1eb701506aabb2e6af007e487212d6fa">00573</a> <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1mgamma__fix.html#1eb701506aabb2e6af007e487212d6fa" title="parameter l">l</a>; |
---|
389 | <a name="l00575"></a><a class="code" href="classbdm_1_1mgamma__fix.html#018c6f901a04e419455308a07eb3b0b2">00575</a> vec <a class="code" href="classbdm_1_1mgamma__fix.html#018c6f901a04e419455308a07eb3b0b2" title="reference vector">refl</a>; |
---|
390 | <a name="l00576"></a>00576 <span class="keyword">public</span>: |
---|
391 | <a name="l00578"></a><a class="code" href="classbdm_1_1mgamma__fix.html#c73571f45ab2926e5a7fb9c3791b5614">00578</a> <a class="code" href="classbdm_1_1mgamma__fix.html#c73571f45ab2926e5a7fb9c3791b5614" title="Constructor.">mgamma_fix</a> ( <span class="keyword">const</span> <a class="code" href="classbdm_1_1RV.html" title="Class representing variables, most often random variables.">RV</a> &<a class="code" href="classbdm_1_1mpdf.html#9bcfb45435d30983f436d41c298cbb51" title="modeled random variable">rv</a>,<span class="keyword">const</span> <a class="code" href="classbdm_1_1RV.html" title="Class representing variables, most often random variables.">RV</a> &<a class="code" href="classbdm_1_1mpdf.html#5a5f08950daa08b85b01ddf4e1c36288" title="random variable in condition">rvc</a> ) : <a class="code" href="classbdm_1_1mgamma.html" title="Gamma random walk.">mgamma</a> ( rv,rvc ),<a class="code" href="classbdm_1_1mgamma__fix.html#018c6f901a04e419455308a07eb3b0b2" title="reference vector">refl</a> ( rv.count() ) {}; |
---|
392 | <a name="l00580"></a><a class="code" href="classbdm_1_1mgamma__fix.html#1bfd30e90db9dc1fbda4a9fbb0b716b2">00580</a> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1mgamma__fix.html#1bfd30e90db9dc1fbda4a9fbb0b716b2" title="Set value of k.">set_parameters</a> ( <span class="keywordtype">double</span> k0 , vec ref0, <span class="keywordtype">double</span> l0 ) { |
---|
393 | <a name="l00581"></a>00581 <a class="code" href="classbdm_1_1mgamma.html#0b486f7e52a3d8a39adbcbd325461c0d" title="Set value of k.">mgamma::set_parameters</a> ( k0 ); |
---|
394 | <a name="l00582"></a>00582 <a class="code" href="classbdm_1_1mgamma__fix.html#018c6f901a04e419455308a07eb3b0b2" title="reference vector">refl</a>=pow ( ref0,1.0-l0 );<a class="code" href="classbdm_1_1mgamma__fix.html#1eb701506aabb2e6af007e487212d6fa" title="parameter l">l</a>=l0; |
---|
395 | <a name="l00583"></a>00583 }; |
---|
396 | <a name="l00584"></a>00584 |
---|
397 | <a name="l00585"></a><a class="code" href="classbdm_1_1mgamma__fix.html#1d539591deb7a38bb3403c2b396c8ff7">00585</a> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1mgamma__fix.html#1d539591deb7a38bb3403c2b396c8ff7" title="Update ep so that it represents this mpdf conditioned on rvc = cond.">condition</a> ( <span class="keyword">const</span> vec &val ) {vec mean=elem_mult ( <a class="code" href="classbdm_1_1mgamma__fix.html#018c6f901a04e419455308a07eb3b0b2" title="reference vector">refl</a>,pow ( val,<a class="code" href="classbdm_1_1mgamma__fix.html#1eb701506aabb2e6af007e487212d6fa" title="parameter l">l</a> ) ); *<a class="code" href="classbdm_1_1mgamma.html#f6a652ce70fa2eb4d2c7ba6d5a6ae343" title="cache of epdf.beta">_beta</a>=<a class="code" href="classbdm_1_1mgamma.html#b20cf88cca1fe9b0b8f2a412608bfd09" title="Constant .">k</a>/mean;}; |
---|
398 | <a name="l00586"></a>00586 }; |
---|
399 | <a name="l00587"></a>00587 |
---|
400 | <a name="l00588"></a>00588 |
---|
401 | <a name="l00601"></a><a class="code" href="classbdm_1_1migamma__fix.html">00601</a> <span class="keyword">class </span><a class="code" href="classbdm_1_1migamma__fix.html" title="Inverse-Gamma random walk around a fixed point.">migamma_fix</a> : <span class="keyword">public</span> <a class="code" href="classbdm_1_1migamma.html" title="Inverse-Gamma random walk.">migamma</a> { |
---|
402 | <a name="l00602"></a>00602 <span class="keyword">protected</span>: |
---|
403 | <a name="l00604"></a><a class="code" href="classbdm_1_1migamma__fix.html#e1c344accac36d7ccc3ffa502e8d2f4e">00604</a> <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1migamma__fix.html#e1c344accac36d7ccc3ffa502e8d2f4e" title="parameter l">l</a>; |
---|
404 | <a name="l00606"></a><a class="code" href="classbdm_1_1migamma__fix.html#5d453e5a2bdfc9a16c8acb8842dc9780">00606</a> vec <a class="code" href="classbdm_1_1migamma__fix.html#5d453e5a2bdfc9a16c8acb8842dc9780" title="reference vector">refl</a>; |
---|
405 | <a name="l00607"></a>00607 <span class="keyword">public</span>: |
---|
406 | <a name="l00609"></a><a class="code" href="classbdm_1_1migamma__fix.html#3c6aacebccbe6d73f8d442e82d3cb53a">00609</a> <a class="code" href="classbdm_1_1migamma__fix.html#3c6aacebccbe6d73f8d442e82d3cb53a" title="Constructor.">migamma_fix</a> ( <span class="keyword">const</span> <a class="code" href="classbdm_1_1RV.html" title="Class representing variables, most often random variables.">RV</a> &<a class="code" href="classbdm_1_1mpdf.html#9bcfb45435d30983f436d41c298cbb51" title="modeled random variable">rv</a>,<span class="keyword">const</span> <a class="code" href="classbdm_1_1RV.html" title="Class representing variables, most often random variables.">RV</a> &<a class="code" href="classbdm_1_1mpdf.html#5a5f08950daa08b85b01ddf4e1c36288" title="random variable in condition">rvc</a> ) : <a class="code" href="classbdm_1_1migamma.html" title="Inverse-Gamma random walk.">migamma</a> ( rv,rvc ),<a class="code" href="classbdm_1_1migamma__fix.html#5d453e5a2bdfc9a16c8acb8842dc9780" title="reference vector">refl</a> ( rv.count() ) {}; |
---|
407 | <a name="l00611"></a><a class="code" href="classbdm_1_1migamma__fix.html#17f9ce1068660a4e8c05173bef7d7440">00611</a> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1migamma__fix.html#17f9ce1068660a4e8c05173bef7d7440" title="Set value of k.">set_parameters</a> ( <span class="keywordtype">double</span> k0 , vec ref0, <span class="keywordtype">double</span> l0 ) { |
---|
408 | <a name="l00612"></a>00612 <a class="code" href="classbdm_1_1migamma.html#1d7023b1565551d0260eb1ba832bebaf" title="Set value of k.">migamma::set_parameters</a> ( k0 ); |
---|
409 | <a name="l00613"></a>00613 <a class="code" href="classbdm_1_1migamma__fix.html#5d453e5a2bdfc9a16c8acb8842dc9780" title="reference vector">refl</a>=pow ( ref0,1.0-l0 );<a class="code" href="classbdm_1_1migamma__fix.html#e1c344accac36d7ccc3ffa502e8d2f4e" title="parameter l">l</a>=l0; |
---|
410 | <a name="l00614"></a>00614 }; |
---|
411 | <a name="l00615"></a>00615 |
---|
412 | <a name="l00616"></a><a class="code" href="classbdm_1_1migamma__fix.html#cfbabd293795d44aae1b7c874e57c4b8">00616</a> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1migamma__fix.html#cfbabd293795d44aae1b7c874e57c4b8" title="Update ep so that it represents this mpdf conditioned on rvc = cond.">condition</a> ( <span class="keyword">const</span> vec &val ) {vec mean=elem_mult ( <a class="code" href="classbdm_1_1migamma__fix.html#5d453e5a2bdfc9a16c8acb8842dc9780" title="reference vector">refl</a>,pow ( val,<a class="code" href="classbdm_1_1migamma__fix.html#e1c344accac36d7ccc3ffa502e8d2f4e" title="parameter l">l</a> ) ); <a class="code" href="classbdm_1_1migamma.html#7a34b1e2e3aa2250d7c0ed7df1665b8c" title="Update ep so that it represents this mpdf conditioned on rvc = cond.">migamma::condition</a>(mean);}; |
---|
413 | <a name="l00617"></a>00617 }; |
---|
414 | <a name="l00619"></a><a class="code" href="namespacebdm.html#33aac0be76ded31d2e3081c5a3f6c418">00619</a> <span class="keyword">enum</span> <a class="code" href="namespacebdm.html#33aac0be76ded31d2e3081c5a3f6c418" title="Switch between various resampling methods.">RESAMPLING_METHOD</a> { MULTINOMIAL = 0, STRATIFIED = 1, SYSTEMATIC = 3 }; |
---|
415 | <a name="l00625"></a><a class="code" href="classbdm_1_1eEmp.html">00625</a> <span class="keyword">class </span><a class="code" href="classbdm_1_1eEmp.html" title="Weighted empirical density.">eEmp</a>: <span class="keyword">public</span> <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a> { |
---|
416 | <a name="l00626"></a>00626 <span class="keyword">protected</span> : |
---|
417 | <a name="l00628"></a><a class="code" href="classbdm_1_1eEmp.html#9798006271ca77629855113f1283a031">00628</a> <span class="keywordtype">int</span> <a class="code" href="classbdm_1_1eEmp.html#9798006271ca77629855113f1283a031" title="Number of particles.">n</a>; |
---|
418 | <a name="l00630"></a><a class="code" href="classbdm_1_1eEmp.html#9d39241aab7c4bbeb07c6d516421c67d">00630</a> vec <a class="code" href="classbdm_1_1eEmp.html#9d39241aab7c4bbeb07c6d516421c67d" title="Sample weights .">w</a>; |
---|
419 | <a name="l00632"></a><a class="code" href="classbdm_1_1eEmp.html#73d819553a0f268b055a087d2d4486f3">00632</a> Array<vec> <a class="code" href="classbdm_1_1eEmp.html#73d819553a0f268b055a087d2d4486f3" title="Samples .">samples</a>; |
---|
420 | <a name="l00633"></a>00633 <span class="keyword">public</span>: |
---|
421 | <a name="l00635"></a><a class="code" href="classbdm_1_1eEmp.html#47ee4feee19b3f3e2d371f8fc9f9a863">00635</a> <a class="code" href="classbdm_1_1eEmp.html#47ee4feee19b3f3e2d371f8fc9f9a863" title="Default constructor.">eEmp</a> ( <span class="keyword">const</span> <a class="code" href="classbdm_1_1RV.html" title="Class representing variables, most often random variables.">RV</a> &rv0 ,<span class="keywordtype">int</span> n0 ) :<a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a> ( rv0 ),<a class="code" href="classbdm_1_1eEmp.html#9798006271ca77629855113f1283a031" title="Number of particles.">n</a> ( n0 ),<a class="code" href="classbdm_1_1eEmp.html#9d39241aab7c4bbeb07c6d516421c67d" title="Sample weights .">w</a> ( <a class="code" href="classbdm_1_1eEmp.html#9798006271ca77629855113f1283a031" title="Number of particles.">n</a> ),<a class="code" href="classbdm_1_1eEmp.html#73d819553a0f268b055a087d2d4486f3" title="Samples .">samples</a> ( <a class="code" href="classbdm_1_1eEmp.html#9798006271ca77629855113f1283a031" title="Number of particles.">n</a> ) {}; |
---|
422 | <a name="l00637"></a>00637 <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1eEmp.html#82320074a9b0ad7e1bb33a6e885b65d7" title="Set samples and weights.">set_parameters</a> ( <span class="keyword">const</span> vec &w0, <span class="keyword">const</span> <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>* pdf0 ); |
---|
423 | <a name="l00639"></a>00639 <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1eEmp.html#b62d802b8ef39f7c4dcbeb366c90951a" title="Set sample.">set_samples</a> ( <span class="keyword">const</span> <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>* pdf0 ); |
---|
424 | <a name="l00641"></a><a class="code" href="classbdm_1_1eEmp.html#dccd02eaa4c45e858a6351723686ac85">00641</a> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1eEmp.html#dccd02eaa4c45e858a6351723686ac85" title="Set sample.">set_n</a> ( <span class="keywordtype">int</span> n0, <span class="keywordtype">bool</span> copy=<span class="keyword">true</span> ){<a class="code" href="classbdm_1_1eEmp.html#9d39241aab7c4bbeb07c6d516421c67d" title="Sample weights .">w</a>.set_size(n0,copy);<a class="code" href="classbdm_1_1eEmp.html#73d819553a0f268b055a087d2d4486f3" title="Samples .">samples</a>.set_size(n0,copy);}; |
---|
425 | <a name="l00643"></a><a class="code" href="classbdm_1_1eEmp.html#d7f83cc0415cd44ae7cc8b4bdad93aef">00643</a> vec& <a class="code" href="classbdm_1_1eEmp.html#d7f83cc0415cd44ae7cc8b4bdad93aef" title="Potentially dangerous, use with care.">_w</a>() {<span class="keywordflow">return</span> <a class="code" href="classbdm_1_1eEmp.html#9d39241aab7c4bbeb07c6d516421c67d" title="Sample weights .">w</a>;}; |
---|
426 | <a name="l00645"></a><a class="code" href="classbdm_1_1eEmp.html#b7d7106f486e3fad38590914a693d714">00645</a> <span class="keyword">const</span> vec& <a class="code" href="classbdm_1_1eEmp.html#d7f83cc0415cd44ae7cc8b4bdad93aef" title="Potentially dangerous, use with care.">_w</a>()<span class="keyword"> const </span>{<span class="keywordflow">return</span> <a class="code" href="classbdm_1_1eEmp.html#9d39241aab7c4bbeb07c6d516421c67d" title="Sample weights .">w</a>;}; |
---|
427 | <a name="l00647"></a><a class="code" href="classbdm_1_1eEmp.html#c24966b0aaeb767bc8a6b4fd60931be2">00647</a> Array<vec>& <a class="code" href="classbdm_1_1eEmp.html#c24966b0aaeb767bc8a6b4fd60931be2" title="access function">_samples</a>() {<span class="keywordflow">return</span> <a class="code" href="classbdm_1_1eEmp.html#73d819553a0f268b055a087d2d4486f3" title="Samples .">samples</a>;}; |
---|
428 | <a name="l00649"></a><a class="code" href="classbdm_1_1eEmp.html#b59af0efdb009d98ea8ebfa965e74ae2">00649</a> <span class="keyword">const</span> Array<vec>& <a class="code" href="classbdm_1_1eEmp.html#c24966b0aaeb767bc8a6b4fd60931be2" title="access function">_samples</a>()<span class="keyword"> const </span>{<span class="keywordflow">return</span> <a class="code" href="classbdm_1_1eEmp.html#73d819553a0f268b055a087d2d4486f3" title="Samples .">samples</a>;}; |
---|
429 | <a name="l00651"></a>00651 ivec <a class="code" href="classbdm_1_1eEmp.html#f06ce255de5dbb2313f52ee51f82ba3d" title="Function performs resampling, i.e. removal of low-weight samples and duplication...">resample</a> ( <a class="code" href="namespacebdm.html#33aac0be76ded31d2e3081c5a3f6c418" title="Switch between various resampling methods.">RESAMPLING_METHOD</a> method = SYSTEMATIC ); |
---|
430 | <a name="l00653"></a><a class="code" href="classbdm_1_1eEmp.html#97f1e07b5ae6eebc91c7365f0f88d270">00653</a> vec <a class="code" href="classbdm_1_1eEmp.html#97f1e07b5ae6eebc91c7365f0f88d270" title="inherited operation : NOT implemneted">sample</a>()<span class="keyword"> const </span>{it_error ( <span class="stringliteral">"Not implemented"</span> );<span class="keywordflow">return</span> 0;} |
---|
431 | <a name="l00655"></a><a class="code" href="classbdm_1_1eEmp.html#01654c014d3aa068f8d4ecba4be86d09">00655</a> <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1eEmp.html#01654c014d3aa068f8d4ecba4be86d09" title="inherited operation : NOT implemneted">evallog</a> ( <span class="keyword">const</span> vec &val )<span class="keyword"> const </span>{it_error ( <span class="stringliteral">"Not implemented"</span> );<span class="keywordflow">return</span> 0.0;} |
---|
432 | <a name="l00656"></a><a class="code" href="classbdm_1_1eEmp.html#bbfcb4f868c7381298c281a256d8c4b9">00656</a> vec <a class="code" href="classbdm_1_1eEmp.html#bbfcb4f868c7381298c281a256d8c4b9" title="return expected value">mean</a>()<span class="keyword"> const </span>{ |
---|
433 | <a name="l00657"></a>00657 vec pom=zeros ( <a class="code" href="classbdm_1_1epdf.html#62c5b8ff71d9ebe6cd58d3c342eb1dc8" title="Identified of the random variable.">rv</a>.<a class="code" href="classbdm_1_1RV.html#2174751a00ce19f941edd2c1a861be67" title="Return number of scalars in the RV.">count</a>() ); |
---|
434 | <a name="l00658"></a>00658 <span class="keywordflow">for</span> ( <span class="keywordtype">int</span> i=0;i<<a class="code" href="classbdm_1_1eEmp.html#9798006271ca77629855113f1283a031" title="Number of particles.">n</a>;i++ ) {pom+=<a class="code" href="classbdm_1_1eEmp.html#73d819553a0f268b055a087d2d4486f3" title="Samples .">samples</a> ( i ) *<a class="code" href="classbdm_1_1eEmp.html#9d39241aab7c4bbeb07c6d516421c67d" title="Sample weights .">w</a> ( i );} |
---|
435 | <a name="l00659"></a>00659 <span class="keywordflow">return</span> pom; |
---|
436 | <a name="l00660"></a>00660 } |
---|
437 | <a name="l00661"></a><a class="code" href="classbdm_1_1eEmp.html#05e9ebf467ede737cb6a3621d7fd3c87">00661</a> vec <a class="code" href="classbdm_1_1eEmp.html#05e9ebf467ede737cb6a3621d7fd3c87" title="return expected variance (not covariance!)">variance</a>()<span class="keyword"> const </span>{ |
---|
438 | <a name="l00662"></a>00662 vec pom=zeros ( <a class="code" href="classbdm_1_1epdf.html#62c5b8ff71d9ebe6cd58d3c342eb1dc8" title="Identified of the random variable.">rv</a>.<a class="code" href="classbdm_1_1RV.html#2174751a00ce19f941edd2c1a861be67" title="Return number of scalars in the RV.">count</a>() ); |
---|
439 | <a name="l00663"></a>00663 <span class="keywordflow">for</span> ( <span class="keywordtype">int</span> i=0;i<<a class="code" href="classbdm_1_1eEmp.html#9798006271ca77629855113f1283a031" title="Number of particles.">n</a>;i++ ) {pom+=pow(<a class="code" href="classbdm_1_1eEmp.html#73d819553a0f268b055a087d2d4486f3" title="Samples .">samples</a> ( i ),2) *<a class="code" href="classbdm_1_1eEmp.html#9d39241aab7c4bbeb07c6d516421c67d" title="Sample weights .">w</a> ( i );} |
---|
440 | <a name="l00664"></a>00664 <span class="keywordflow">return</span> pom-pow(<a class="code" href="classbdm_1_1eEmp.html#bbfcb4f868c7381298c281a256d8c4b9" title="return expected value">mean</a>(),2); |
---|
441 | <a name="l00665"></a>00665 } |
---|
442 | <a name="l00666"></a>00666 }; |
---|
443 | <a name="l00667"></a>00667 |
---|
444 | <a name="l00668"></a>00668 |
---|
445 | <a name="l00670"></a>00670 |
---|
446 | <a name="l00671"></a>00671 <span class="keyword">template</span><<span class="keyword">class</span> sq_T> |
---|
447 | <a name="l00672"></a><a class="code" href="classbdm_1_1enorm.html#7d433390d6bbad337986945b63d7fbe9">00672</a> <a class="code" href="classbdm_1_1enorm.html" title="Gaussian density with positive definite (decomposed) covariance matrix.">enorm<sq_T>::enorm</a> ( <span class="keyword">const</span> <a class="code" href="classbdm_1_1RV.html" title="Class representing variables, most often random variables.">RV</a> &rv ) :<a class="code" href="classbdm_1_1eEF.html" title="General conjugate exponential family posterior density.">eEF</a> ( rv ), mu ( rv.count() ),R ( rv.count() ),dim ( rv.count() ) {}; |
---|
448 | <a name="l00673"></a>00673 |
---|
449 | <a name="l00674"></a>00674 <span class="keyword">template</span><<span class="keyword">class</span> sq_T> |
---|
450 | <a name="l00675"></a><a class="code" href="classbdm_1_1enorm.html#b8322f2c11560871dd922c660f4771bb">00675</a> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1enorm.html" title="Gaussian density with positive definite (decomposed) covariance matrix.">enorm<sq_T>::set_parameters</a> ( <span class="keyword">const</span> vec &mu0, <span class="keyword">const</span> sq_T &R0 ) { |
---|
451 | <a name="l00676"></a>00676 <span class="comment">//Fixme test dimensions of mu0 and R0;</span> |
---|
452 | <a name="l00677"></a>00677 <a class="code" href="classbdm_1_1enorm.html#c702a194720853570d08b65482f842c7" title="mean value">mu</a> = mu0; |
---|
453 | <a name="l00678"></a>00678 <a class="code" href="classbdm_1_1enorm.html#2d92dde696b2a7a5b10ddef5d22ba2c2" title="Covariance matrix in decomposed form.">R</a> = R0; |
---|
454 | <a name="l00679"></a>00679 }; |
---|
455 | <a name="l00680"></a>00680 |
---|
456 | <a name="l00681"></a>00681 <span class="keyword">template</span><<span class="keyword">class</span> sq_T> |
---|
457 | <a name="l00682"></a><a class="code" href="classbdm_1_1enorm.html#d2e0d3a1e30ab3ab04df2d0c43ae74a2">00682</a> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1enorm.html" title="Gaussian density with positive definite (decomposed) covariance matrix.">enorm<sq_T>::dupdate</a> ( mat &v, <span class="keywordtype">double</span> nu ) { |
---|
458 | <a name="l00683"></a>00683 <span class="comment">//</span> |
---|
459 | <a name="l00684"></a>00684 }; |
---|
460 | <a name="l00685"></a>00685 |
---|
461 | <a name="l00686"></a>00686 <span class="comment">// template<class sq_T></span> |
---|
462 | <a name="l00687"></a>00687 <span class="comment">// void enorm<sq_T>::tupdate ( double phi, mat &vbar, double nubar ) {</span> |
---|
463 | <a name="l00688"></a>00688 <span class="comment">// //</span> |
---|
464 | <a name="l00689"></a>00689 <span class="comment">// };</span> |
---|
465 | <a name="l00690"></a>00690 |
---|
466 | <a name="l00691"></a>00691 <span class="keyword">template</span><<span class="keyword">class</span> sq_T> |
---|
467 | <a name="l00692"></a><a class="code" href="classbdm_1_1enorm.html#e1a48f52351ec3a349bd443b713b1766">00692</a> vec <a class="code" href="classbdm_1_1enorm.html" title="Gaussian density with positive definite (decomposed) covariance matrix.">enorm<sq_T>::sample</a>()<span class="keyword"> const </span>{ |
---|
468 | <a name="l00693"></a>00693 vec x ( <a class="code" href="classbdm_1_1enorm.html#91a2d4a91364b0144e1523cad4d1135b" title="dimension (redundant from rv.count() for easier coding )">dim</a> ); |
---|
469 | <a name="l00694"></a>00694 <span class="preprocessor"> #pragma omp critical </span> |
---|
470 | <a name="l00695"></a>00695 <span class="preprocessor"></span> <a class="code" href="namespacebdm.html#c959a7382efbcc31af4b58cf0f0f951a" title="Global Normal_RNG.">NorRNG</a>.sample_vector ( <a class="code" href="classbdm_1_1enorm.html#91a2d4a91364b0144e1523cad4d1135b" title="dimension (redundant from rv.count() for easier coding )">dim</a>,x ); |
---|
471 | <a name="l00696"></a>00696 vec smp = <a class="code" href="classbdm_1_1enorm.html#2d92dde696b2a7a5b10ddef5d22ba2c2" title="Covariance matrix in decomposed form.">R</a>.sqrt_mult ( x ); |
---|
472 | <a name="l00697"></a>00697 |
---|
473 | <a name="l00698"></a>00698 smp += <a class="code" href="classbdm_1_1enorm.html#c702a194720853570d08b65482f842c7" title="mean value">mu</a>; |
---|
474 | <a name="l00699"></a>00699 <span class="keywordflow">return</span> smp; |
---|
475 | <a name="l00700"></a>00700 }; |
---|
476 | <a name="l00701"></a>00701 |
---|
477 | <a name="l00702"></a>00702 <span class="keyword">template</span><<span class="keyword">class</span> sq_T> |
---|
478 | <a name="l00703"></a><a class="code" href="classbdm_1_1enorm.html#ebd96125aed74f9504033bb3605849db">00703</a> mat <a class="code" href="classbdm_1_1enorm.html" title="Gaussian density with positive definite (decomposed) covariance matrix.">enorm<sq_T>::sample</a> ( <span class="keywordtype">int</span> N )<span class="keyword"> const </span>{ |
---|
479 | <a name="l00704"></a>00704 mat X ( <a class="code" href="classbdm_1_1enorm.html#91a2d4a91364b0144e1523cad4d1135b" title="dimension (redundant from rv.count() for easier coding )">dim</a>,N ); |
---|
480 | <a name="l00705"></a>00705 vec x ( <a class="code" href="classbdm_1_1enorm.html#91a2d4a91364b0144e1523cad4d1135b" title="dimension (redundant from rv.count() for easier coding )">dim</a> ); |
---|
481 | <a name="l00706"></a>00706 vec pom; |
---|
482 | <a name="l00707"></a>00707 <span class="keywordtype">int</span> i; |
---|
483 | <a name="l00708"></a>00708 |
---|
484 | <a name="l00709"></a>00709 <span class="keywordflow">for</span> ( i=0;i<N;i++ ) { |
---|
485 | <a name="l00710"></a>00710 <span class="preprocessor"> #pragma omp critical </span> |
---|
486 | <a name="l00711"></a>00711 <span class="preprocessor"></span> <a class="code" href="namespacebdm.html#c959a7382efbcc31af4b58cf0f0f951a" title="Global Normal_RNG.">NorRNG</a>.sample_vector ( <a class="code" href="classbdm_1_1enorm.html#91a2d4a91364b0144e1523cad4d1135b" title="dimension (redundant from rv.count() for easier coding )">dim</a>,x ); |
---|
487 | <a name="l00712"></a>00712 pom = <a class="code" href="classbdm_1_1enorm.html#2d92dde696b2a7a5b10ddef5d22ba2c2" title="Covariance matrix in decomposed form.">R</a>.sqrt_mult ( x ); |
---|
488 | <a name="l00713"></a>00713 pom +=<a class="code" href="classbdm_1_1enorm.html#c702a194720853570d08b65482f842c7" title="mean value">mu</a>; |
---|
489 | <a name="l00714"></a>00714 X.set_col ( i, pom ); |
---|
490 | <a name="l00715"></a>00715 } |
---|
491 | <a name="l00716"></a>00716 |
---|
492 | <a name="l00717"></a>00717 <span class="keywordflow">return</span> X; |
---|
493 | <a name="l00718"></a>00718 }; |
---|
494 | <a name="l00719"></a>00719 |
---|
495 | <a name="l00720"></a>00720 <span class="comment">// template<class sq_T></span> |
---|
496 | <a name="l00721"></a>00721 <span class="comment">// double enorm<sq_T>::eval ( const vec &val ) const {</span> |
---|
497 | <a name="l00722"></a>00722 <span class="comment">// double pdfl,e;</span> |
---|
498 | <a name="l00723"></a>00723 <span class="comment">// pdfl = evallog ( val );</span> |
---|
499 | <a name="l00724"></a>00724 <span class="comment">// e = exp ( pdfl );</span> |
---|
500 | <a name="l00725"></a>00725 <span class="comment">// return e;</span> |
---|
501 | <a name="l00726"></a>00726 <span class="comment">// };</span> |
---|
502 | <a name="l00727"></a>00727 |
---|
503 | <a name="l00728"></a>00728 <span class="keyword">template</span><<span class="keyword">class</span> sq_T> |
---|
504 | <a name="l00729"></a><a class="code" href="classbdm_1_1enorm.html#e13aeed5b543b2179bacdc4fa2ae47a3">00729</a> <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1enorm.html" title="Gaussian density with positive definite (decomposed) covariance matrix.">enorm<sq_T>::evallog_nn</a> ( <span class="keyword">const</span> vec &val )<span class="keyword"> const </span>{ |
---|
505 | <a name="l00730"></a>00730 <span class="comment">// 1.83787706640935 = log(2pi)</span> |
---|
506 | <a name="l00731"></a>00731 <span class="keywordtype">double</span> tmp=-0.5* ( <a class="code" href="classbdm_1_1enorm.html#2d92dde696b2a7a5b10ddef5d22ba2c2" title="Covariance matrix in decomposed form.">R</a>.invqform ( <a class="code" href="classbdm_1_1enorm.html#c702a194720853570d08b65482f842c7" title="mean value">mu</a>-val ) );<span class="comment">// - lognc();</span> |
---|
507 | <a name="l00732"></a>00732 <span class="keywordflow">return</span> tmp; |
---|
508 | <a name="l00733"></a>00733 }; |
---|
509 | <a name="l00734"></a>00734 |
---|
510 | <a name="l00735"></a>00735 <span class="keyword">template</span><<span class="keyword">class</span> sq_T> |
---|
511 | <a name="l00736"></a><a class="code" href="classbdm_1_1enorm.html#25785343aff102cc5df1cab08ba16d32">00736</a> <span class="keyword">inline</span> <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1enorm.html" title="Gaussian density with positive definite (decomposed) covariance matrix.">enorm<sq_T>::lognc</a> ()<span class="keyword"> const </span>{ |
---|
512 | <a name="l00737"></a>00737 <span class="comment">// 1.83787706640935 = log(2pi)</span> |
---|
513 | <a name="l00738"></a>00738 <span class="keywordtype">double</span> tmp=0.5* ( <a class="code" href="classbdm_1_1enorm.html#2d92dde696b2a7a5b10ddef5d22ba2c2" title="Covariance matrix in decomposed form.">R</a>.cols() * 1.83787706640935 +<a class="code" href="classbdm_1_1enorm.html#2d92dde696b2a7a5b10ddef5d22ba2c2" title="Covariance matrix in decomposed form.">R</a>.logdet() ); |
---|
514 | <a name="l00739"></a>00739 <span class="keywordflow">return</span> tmp; |
---|
515 | <a name="l00740"></a>00740 }; |
---|
516 | <a name="l00741"></a>00741 |
---|
517 | <a name="l00742"></a>00742 <span class="keyword">template</span><<span class="keyword">class</span> sq_T> |
---|
518 | <a name="l00743"></a><a class="code" href="classbdm_1_1mlnorm.html#64d965df6811ff65b94718c427048f4a">00743</a> <a class="code" href="classbdm_1_1mlnorm.html" title="Normal distributed linear function with linear function of mean value;.">mlnorm<sq_T>::mlnorm</a> ( <span class="keyword">const</span> <a class="code" href="classbdm_1_1RV.html" title="Class representing variables, most often random variables.">RV</a> &rv0, <span class="keyword">const</span> <a class="code" href="classbdm_1_1RV.html" title="Class representing variables, most often random variables.">RV</a> &rvc0 ) :<a class="code" href="classbdm_1_1mEF.html" title="Exponential family model.">mEF</a> ( rv0,rvc0 ),<a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a> ( rv0 ),A ( rv0.count(),rv0.count() ),<a class="code" href="classbdm_1_1enorm.html#766127847e9482aea9226ea157295ea2" title="returns a pointer to the internal mean value. Use with Care!">_mu</a> ( <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>.<a class="code" href="classbdm_1_1enorm.html#766127847e9482aea9226ea157295ea2" title="returns a pointer to the internal mean value. Use with Care!">_mu</a>() ) { |
---|
519 | <a name="l00744"></a>00744 <a class="code" href="classbdm_1_1mpdf.html#5eea43c56d38e4441bfb30270db949c0" title="pointer to internal epdf">ep</a> =&<a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>; |
---|
520 | <a name="l00745"></a>00745 } |
---|
521 | <a name="l00746"></a>00746 |
---|
522 | <a name="l00747"></a>00747 <span class="keyword">template</span><<span class="keyword">class</span> sq_T> |
---|
523 | <a name="l00748"></a><a class="code" href="classbdm_1_1mlnorm.html#5d18dec3167584338a4775c1d165d96f">00748</a> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1mlnorm.html" title="Normal distributed linear function with linear function of mean value;.">mlnorm<sq_T>::set_parameters</a> ( <span class="keyword">const</span> mat &A0, <span class="keyword">const</span> vec &mu0, <span class="keyword">const</span> sq_T &R0 ) { |
---|
524 | <a name="l00749"></a>00749 <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>.set_parameters ( zeros ( <a class="code" href="classbdm_1_1mpdf.html#9bcfb45435d30983f436d41c298cbb51" title="modeled random variable">rv</a>.<a class="code" href="classbdm_1_1RV.html#2174751a00ce19f941edd2c1a861be67" title="Return number of scalars in the RV.">count</a>() ),R0 ); |
---|
525 | <a name="l00750"></a>00750 A = A0; |
---|
526 | <a name="l00751"></a>00751 mu_const = mu0; |
---|
527 | <a name="l00752"></a>00752 } |
---|
528 | <a name="l00753"></a>00753 |
---|
529 | <a name="l00754"></a>00754 <span class="comment">// template<class sq_T></span> |
---|
530 | <a name="l00755"></a>00755 <span class="comment">// vec mlnorm<sq_T>::samplecond (const vec &cond, double &lik ) {</span> |
---|
531 | <a name="l00756"></a>00756 <span class="comment">// this->condition ( cond );</span> |
---|
532 | <a name="l00757"></a>00757 <span class="comment">// vec smp = epdf.sample();</span> |
---|
533 | <a name="l00758"></a>00758 <span class="comment">// lik = epdf.eval ( smp );</span> |
---|
534 | <a name="l00759"></a>00759 <span class="comment">// return smp;</span> |
---|
535 | <a name="l00760"></a>00760 <span class="comment">// }</span> |
---|
536 | <a name="l00761"></a>00761 |
---|
537 | <a name="l00762"></a>00762 <span class="comment">// template<class sq_T></span> |
---|
538 | <a name="l00763"></a>00763 <span class="comment">// mat mlnorm<sq_T>::samplecond (const vec &cond, vec &lik, int n ) {</span> |
---|
539 | <a name="l00764"></a>00764 <span class="comment">// int i;</span> |
---|
540 | <a name="l00765"></a>00765 <span class="comment">// int dim = rv.count();</span> |
---|
541 | <a name="l00766"></a>00766 <span class="comment">// mat Smp ( dim,n );</span> |
---|
542 | <a name="l00767"></a>00767 <span class="comment">// vec smp ( dim );</span> |
---|
543 | <a name="l00768"></a>00768 <span class="comment">// this->condition ( cond );</span> |
---|
544 | <a name="l00769"></a>00769 <span class="comment">//</span> |
---|
545 | <a name="l00770"></a>00770 <span class="comment">// for ( i=0; i<n; i++ ) {</span> |
---|
546 | <a name="l00771"></a>00771 <span class="comment">// smp = epdf.sample();</span> |
---|
547 | <a name="l00772"></a>00772 <span class="comment">// lik ( i ) = epdf.eval ( smp );</span> |
---|
548 | <a name="l00773"></a>00773 <span class="comment">// Smp.set_col ( i ,smp );</span> |
---|
549 | <a name="l00774"></a>00774 <span class="comment">// }</span> |
---|
550 | <a name="l00775"></a>00775 <span class="comment">//</span> |
---|
551 | <a name="l00776"></a>00776 <span class="comment">// return Smp;</span> |
---|
552 | <a name="l00777"></a>00777 <span class="comment">// }</span> |
---|
553 | <a name="l00778"></a>00778 |
---|
554 | <a name="l00779"></a>00779 <span class="keyword">template</span><<span class="keyword">class</span> sq_T> |
---|
555 | <a name="l00780"></a><a class="code" href="classbdm_1_1mlnorm.html#0dafc0196e7e07fd06dc6716e0e18bc2">00780</a> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1mlnorm.html" title="Normal distributed linear function with linear function of mean value;.">mlnorm<sq_T>::condition</a> ( <span class="keyword">const</span> vec &cond ) { |
---|
556 | <a name="l00781"></a>00781 _mu = A*cond + mu_const; |
---|
557 | <a name="l00782"></a>00782 <span class="comment">//R is already assigned;</span> |
---|
558 | <a name="l00783"></a>00783 } |
---|
559 | <a name="l00784"></a>00784 |
---|
560 | <a name="l00785"></a>00785 <span class="keyword">template</span><<span class="keyword">class</span> sq_T> |
---|
561 | <a name="l00786"></a><a class="code" href="classbdm_1_1enorm.html#cd02d76e9d4f96bdd3fa6b604e273039">00786</a> <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>* <a class="code" href="classbdm_1_1enorm.html" title="Gaussian density with positive definite (decomposed) covariance matrix.">enorm<sq_T>::marginal</a> ( <span class="keyword">const</span> <a class="code" href="classbdm_1_1RV.html" title="Class representing variables, most often random variables.">RV</a> &rvn )<span class="keyword"> const </span>{ |
---|
562 | <a name="l00787"></a>00787 ivec irvn = rvn.<a class="code" href="classbdm_1_1RV.html#cbebdb5e0d30101a6eb63550ef701c55">dataind</a> ( <a class="code" href="classbdm_1_1epdf.html#62c5b8ff71d9ebe6cd58d3c342eb1dc8" title="Identified of the random variable.">rv</a> ); |
---|
563 | <a name="l00788"></a>00788 |
---|
564 | <a name="l00789"></a>00789 sq_T Rn ( <a class="code" href="classbdm_1_1enorm.html#2d92dde696b2a7a5b10ddef5d22ba2c2" title="Covariance matrix in decomposed form.">R</a>,irvn ); |
---|
565 | <a name="l00790"></a>00790 <a class="code" href="classbdm_1_1enorm.html" title="Gaussian density with positive definite (decomposed) covariance matrix.">enorm<sq_T></a>* tmp = <span class="keyword">new</span> <a class="code" href="classbdm_1_1enorm.html" title="Gaussian density with positive definite (decomposed) covariance matrix.">enorm<sq_T></a> ( rvn ); |
---|
566 | <a name="l00791"></a>00791 tmp-><a class="code" href="classbdm_1_1enorm.html#b8322f2c11560871dd922c660f4771bb" title="Set mean value mu and covariance R.">set_parameters</a> ( <a class="code" href="classbdm_1_1enorm.html#c702a194720853570d08b65482f842c7" title="mean value">mu</a> ( irvn ), Rn ); |
---|
567 | <a name="l00792"></a>00792 <span class="keywordflow">return</span> tmp; |
---|
568 | <a name="l00793"></a>00793 } |
---|
569 | <a name="l00794"></a>00794 |
---|
570 | <a name="l00795"></a>00795 <span class="keyword">template</span><<span class="keyword">class</span> sq_T> |
---|
571 | <a name="l00796"></a><a class="code" href="classbdm_1_1enorm.html#baea4d49c657342b58297d68cda16d26">00796</a> <a class="code" href="classbdm_1_1mpdf.html" title="Conditional probability density, e.g. modeling some dependencies.">mpdf</a>* <a class="code" href="classbdm_1_1enorm.html" title="Gaussian density with positive definite (decomposed) covariance matrix.">enorm<sq_T>::condition</a> ( <span class="keyword">const</span> <a class="code" href="classbdm_1_1RV.html" title="Class representing variables, most often random variables.">RV</a> &rvn )<span class="keyword"> const </span>{ |
---|
572 | <a name="l00797"></a>00797 |
---|
573 | <a name="l00798"></a>00798 <a class="code" href="classbdm_1_1RV.html" title="Class representing variables, most often random variables.">RV</a> rvc = <a class="code" href="classbdm_1_1epdf.html#62c5b8ff71d9ebe6cd58d3c342eb1dc8" title="Identified of the random variable.">rv</a>.<a class="code" href="classbdm_1_1RV.html#aec44dabdf0a6d90fbae95e1356eda39" title="Subtract another variable from the current one.">subt</a> ( rvn ); |
---|
574 | <a name="l00799"></a>00799 it_assert_debug ( ( rvc.<a class="code" href="classbdm_1_1RV.html#2174751a00ce19f941edd2c1a861be67" title="Return number of scalars in the RV.">count</a>() +rvn.<a class="code" href="classbdm_1_1RV.html#2174751a00ce19f941edd2c1a861be67" title="Return number of scalars in the RV.">count</a>() ==<a class="code" href="classbdm_1_1epdf.html#62c5b8ff71d9ebe6cd58d3c342eb1dc8" title="Identified of the random variable.">rv</a>.<a class="code" href="classbdm_1_1RV.html#2174751a00ce19f941edd2c1a861be67" title="Return number of scalars in the RV.">count</a>() ),<span class="stringliteral">"wrong rvn"</span> ); |
---|
575 | <a name="l00800"></a>00800 <span class="comment">//Permutation vector of the new R</span> |
---|
576 | <a name="l00801"></a>00801 ivec irvn = rvn.<a class="code" href="classbdm_1_1RV.html#cbebdb5e0d30101a6eb63550ef701c55">dataind</a> ( <a class="code" href="classbdm_1_1epdf.html#62c5b8ff71d9ebe6cd58d3c342eb1dc8" title="Identified of the random variable.">rv</a> ); |
---|
577 | <a name="l00802"></a>00802 ivec irvc = rvc.<a class="code" href="classbdm_1_1RV.html#cbebdb5e0d30101a6eb63550ef701c55">dataind</a> ( <a class="code" href="classbdm_1_1epdf.html#62c5b8ff71d9ebe6cd58d3c342eb1dc8" title="Identified of the random variable.">rv</a> ); |
---|
578 | <a name="l00803"></a>00803 ivec perm=<a class="code" href="namespacebdm.html#b9016687c0e874ca5cdcf75ae28811aa" title="Concat two random variables.">concat</a> ( irvn , irvc ); |
---|
579 | <a name="l00804"></a>00804 sq_T Rn ( <a class="code" href="classbdm_1_1enorm.html#2d92dde696b2a7a5b10ddef5d22ba2c2" title="Covariance matrix in decomposed form.">R</a>,perm ); |
---|
580 | <a name="l00805"></a>00805 |
---|
581 | <a name="l00806"></a>00806 <span class="comment">//fixme - could this be done in general for all sq_T?</span> |
---|
582 | <a name="l00807"></a>00807 mat S=Rn.to_mat(); |
---|
583 | <a name="l00808"></a>00808 <span class="comment">//fixme</span> |
---|
584 | <a name="l00809"></a>00809 <span class="keywordtype">int</span> n=rvn.<a class="code" href="classbdm_1_1RV.html#2174751a00ce19f941edd2c1a861be67" title="Return number of scalars in the RV.">count</a>()-1; |
---|
585 | <a name="l00810"></a>00810 <span class="keywordtype">int</span> end=<a class="code" href="classbdm_1_1enorm.html#2d92dde696b2a7a5b10ddef5d22ba2c2" title="Covariance matrix in decomposed form.">R</a>.rows()-1; |
---|
586 | <a name="l00811"></a>00811 mat S11 = S.get ( 0,n, 0, n ); |
---|
587 | <a name="l00812"></a>00812 mat S12 = S.get ( 0, n , rvn.<a class="code" href="classbdm_1_1RV.html#2174751a00ce19f941edd2c1a861be67" title="Return number of scalars in the RV.">count</a>(), end ); |
---|
588 | <a name="l00813"></a>00813 mat S22 = S.get ( rvn.<a class="code" href="classbdm_1_1RV.html#2174751a00ce19f941edd2c1a861be67" title="Return number of scalars in the RV.">count</a>(), end, rvn.<a class="code" href="classbdm_1_1RV.html#2174751a00ce19f941edd2c1a861be67" title="Return number of scalars in the RV.">count</a>(), end ); |
---|
589 | <a name="l00814"></a>00814 |
---|
590 | <a name="l00815"></a>00815 vec mu1 = <a class="code" href="classbdm_1_1enorm.html#c702a194720853570d08b65482f842c7" title="mean value">mu</a> ( irvn ); |
---|
591 | <a name="l00816"></a>00816 vec mu2 = <a class="code" href="classbdm_1_1enorm.html#c702a194720853570d08b65482f842c7" title="mean value">mu</a> ( irvc ); |
---|
592 | <a name="l00817"></a>00817 mat A=S12*inv ( S22 ); |
---|
593 | <a name="l00818"></a>00818 sq_T R_n ( S11 - A *S12.T() ); |
---|
594 | <a name="l00819"></a>00819 |
---|
595 | <a name="l00820"></a>00820 <a class="code" href="classbdm_1_1mlnorm.html" title="Normal distributed linear function with linear function of mean value;.">mlnorm<sq_T></a>* tmp=<span class="keyword">new</span> <a class="code" href="classbdm_1_1mlnorm.html" title="Normal distributed linear function with linear function of mean value;.">mlnorm<sq_T></a> ( rvn,rvc ); |
---|
596 | <a name="l00821"></a>00821 |
---|
597 | <a name="l00822"></a>00822 tmp->set_parameters ( A,mu1-A*mu2,R_n ); |
---|
598 | <a name="l00823"></a>00823 <span class="keywordflow">return</span> tmp; |
---|
599 | <a name="l00824"></a>00824 } |
---|
600 | <a name="l00825"></a>00825 |
---|
601 | <a name="l00827"></a>00827 |
---|
602 | <a name="l00828"></a>00828 <span class="keyword">template</span><<span class="keyword">class</span> sq_T> |
---|
603 | <a name="l00829"></a>00829 std::ostream &operator<< ( std::ostream &os, mlnorm<sq_T> &ml ) { |
---|
604 | <a name="l00830"></a>00830 os << <span class="stringliteral">"A:"</span><< ml.A<<endl; |
---|
605 | <a name="l00831"></a>00831 os << <span class="stringliteral">"mu:"</span><< ml.mu_const<<endl; |
---|
606 | <a name="l00832"></a>00832 os << <span class="stringliteral">"R:"</span> << ml.epdf._R().to_mat() <<endl; |
---|
607 | <a name="l00833"></a>00833 <span class="keywordflow">return</span> os; |
---|
608 | <a name="l00834"></a>00834 }; |
---|
609 | <a name="l00835"></a>00835 |
---|
610 | <a name="l00836"></a>00836 } |
---|
611 | <a name="l00837"></a>00837 <span class="preprocessor">#endif //EF_H</span> |
---|
612 | </pre></div></div> |
---|
613 | <hr size="1"><address style="text-align: right;"><small>Generated on Fri Feb 6 15:29:45 2009 for mixpp by |
---|
614 | <a href="http://www.doxygen.org/index.html"> |
---|
615 | <img src="doxygen.png" alt="doxygen" align="middle" border="0"></a> 1.5.6 </small></address> |
---|
616 | </body> |
---|
617 | </html> |
---|