root/doc/html/philosophy.html @ 270

Revision 270, 6.8 kB (checked in by smidl, 16 years ago)

Changes in the very root classes!
* rv and rvc are no longer compulsory,
* samplecond does not return ll
* BM has drv

Line 
1<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
2<html><head><meta http-equiv="Content-Type" content="text/html;charset=UTF-8">
3<title>mixpp: Introduction to Bayesian Decision Making Toolbox BDM</title>
4<link href="doxygen.css" rel="stylesheet" type="text/css">
5<link href="tabs.css" rel="stylesheet" type="text/css">
6</head><body>
7<!-- Generated by Doxygen 1.5.6 -->
8<div class="navigation" id="top">
9  <div class="tabs">
10    <ul>
11      <li><a href="index.html"><span>Main&nbsp;Page</span></a></li>
12      <li><a href="pages.html"><span>Related&nbsp;Pages</span></a></li>
13      <li><a href="modules.html"><span>Modules</span></a></li>
14      <li><a href="namespaces.html"><span>Namespaces</span></a></li>
15      <li><a href="classes.html"><span>Classes</span></a></li>
16      <li><a href="files.html"><span>Files</span></a></li>
17    </ul>
18  </div>
19</div>
20<div class="contents">
21<h1><a class="anchor" name="philosophy">Introduction to Bayesian Decision Making Toolbox BDM </a></h1>This is a brief introduction into elements used in the BDM. The toolbox was designed for two principle tasks:<p>
22<ul>
23<li>
24Design of Bayesian decisions-making startegies,  </li>
25<li>
26Bayesian system identification for on-line and off-line scenarios.  </li>
27</ul>
28Theoretically, the latter is a special case of the former, however we list it separately to highlight its importance in practical applications.<p>
29Here, we describe basic objects that are required for implementation of the Bayesian parameter estimation.<p>
30Key objects are: <dl>
31<dt>Bayesian Model: class <code>BM</code>  </dt>
32<dd>which is an encapsulation of the likelihood function, the prior and methodology of evaluation of the Bayes rule. This methodology may be either exact or approximate. </dd>
33<dt>Posterior density of the parameter: class <code>epdf</code>  </dt>
34<dd>representing posterior density of the parameter. Methods defined on this class allow any manipulation of the posterior, such as moment evaluation, marginalization and conditioning.  </dd>
35</dl>
36<h2><a class="anchor" name="bm">
37Class BM</a></h2>
38The class BM is designed for both on-line and off-line estimation. We make the following assumptions about data: <ul>
39<li>
40an individual data record is stored in a vector, <code>vec</code> <code>dt</code>, </li>
41<li>
42a set of data records is stored in a matrix,<code>mat</code> <code>D</code>, where each column represent one individual data record  </li>
43</ul>
44<p>
45On-line estimation is implemented by method <div class="fragment"><pre class="fragment"> <span class="keywordtype">void</span> bayes(vec dt)
46</pre></div> Off-line estimation is implemented by method <div class="fragment"><pre class="fragment"> <span class="keywordtype">void</span> bayesB(mat D)
47</pre></div><p>
48As an intermediate product, the bayes rule computes marginal likelihood of the data records <img class="formulaInl" alt="$ f(D) $" src="form_86.png">. Numerical value of this quantity which is important e.g. for model selection can be obtained by calling method <code>_ll()</code>.<h2><a class="anchor" name="epdf">
49Getting results from BM</a></h2>
50Class <code>BM</code> offers several ways how to obtain results: <ul>
51<li>
52generation of posterior or predictive pdfs, methods <code>_epdf()</code> and <code>predictor()</code>  </li>
53<li>
54direct evaluation of predictive likelihood, method <code>logpred()</code>  </li>
55</ul>
56Underscore in the name of method <code>_epdf()</code> indicate that the method returns a pointer to the internal posterior density of the model. On the other hand, <code>predictor</code> creates a new structure of type <code>epdf()</code>.<p>
57Direct evaluation of predictive pdfs via logpred offers a shortcut for more efficient implementation.<h2><a class="anchor" name="epdf">
58Getting results from BM</a></h2>
59As introduced above, the results of parameter estimation are in the form of probability density function conditioned on numerical values. This type of information is represented by class <code>epdf</code>.<p>
60This class allows such as moment evaluation via methods <code>mean()</code> and <code>variance()</code>, marginalization via method <code>marginal()</code>, and conditioning via method <code>condition()</code>.<p>
61Also, it allows generation of a sample via <code>sample()</code> and evaluation of one value of the posterior parameter likelihood via <code>evallog()</code>. Multivariate versions of these operations are also available by adding suffix <code>_m</code>, i.e. <code>sample_m()</code> and <code>evallog_m()</code>. These methods providen multiple samples and evaluation of likelihood in multiple points respectively.<h2><a class="anchor" name="pc">
62Classes for probability calculus</a></h2>
63When a more demanding task then generation of point estimate of the parameter is required, the power of general probability claculus can be used. The following classes (together with <code>epdf</code> introduced above) form the basis of the calculus: <ul>
64<li>
65<code>mpdf</code> a pdf conditioned on another symbolic variable, </li>
66</ul>
67<p>
68<code>RV</code> a symbolic variable on which pdfs are defined.  The former class is an extension of mpdf that allows conditioning on a symbolic variable. Hence, when numerical results - such as samples - are required, numericla values of the condition must be provided. The names of methods of the <code>epdf</code> are used extended by suffix <code>cond</code>, i.e. <code>samplecond()</code>, <code>evallogcond()</code>, where <code>cond</code> precedes matrix estension, i.e. <code>samplecond_m()</code> and <code>evallogcond_m()</code>.<p>
69The latter class is used to identify how symbolic variables are to be combined together. For example, consider the task of composition of pdfs via the chain rule: <p class="formulaDsp">
70<img class="formulaDsp" alt="\[ f(a,b,c) = f(a|b,c) f(b) f(c) \]" src="form_89.png">
71<p>
72 In our setup, <img class="formulaInl" alt="$ f(a|b,c) $" src="form_90.png"> is represented by an <code>mpdf</code> while <img class="formulaInl" alt="$ f(b) $" src="form_91.png"> and <img class="formulaInl" alt="$ f(c) $" src="form_92.png"> by two <code>epdfs</code>. We need to distinguish the latter two from each other and to deside in which order they should be added to the mpdf. This distinction is facilitated by the class <code>RV</code> which uniquely identify a random varibale.<p>
73Therefore, each pdf keeps record on which RVs it represents; <code>epdf</code> needs to know only one <code>RV</code> stored in the attribute <code>rv</code>; <code>mpdf</code> needs to keep two <code>RVs</code>, one for variable on which it is defined (<code>rv</code>) and one for variable incondition which is stored in attribute <code>rvc</code>. </div>
74<hr size="1"><address style="text-align: right;"><small>Generated on Wed Feb 11 23:33:56 2009 for mixpp by&nbsp;
75<a href="http://www.doxygen.org/index.html">
76<img src="doxygen.png" alt="doxygen" align="middle" border="0"></a> 1.5.6 </small></address>
77</body>
78</html>
Note: See TracBrowser for help on using the browser.