1 | <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"> |
---|
2 | <html><head><meta http-equiv="Content-Type" content="text/html;charset=UTF-8"> |
---|
3 | <title>mixpp: Theory of ARX model estimation</title> |
---|
4 | <link href="tabs.css" rel="stylesheet" type="text/css"> |
---|
5 | <link href="doxygen.css" rel="stylesheet" type="text/css"> |
---|
6 | </head><body> |
---|
7 | <!-- Generated by Doxygen 1.5.8 --> |
---|
8 | <script type="text/javascript"> |
---|
9 | <!-- |
---|
10 | function changeDisplayState (e){ |
---|
11 | var num=this.id.replace(/[^[0-9]/g,''); |
---|
12 | var button=this.firstChild; |
---|
13 | var sectionDiv=document.getElementById('dynsection'+num); |
---|
14 | if (sectionDiv.style.display=='none'||sectionDiv.style.display==''){ |
---|
15 | sectionDiv.style.display='block'; |
---|
16 | button.src='open.gif'; |
---|
17 | }else{ |
---|
18 | sectionDiv.style.display='none'; |
---|
19 | button.src='closed.gif'; |
---|
20 | } |
---|
21 | } |
---|
22 | function initDynSections(){ |
---|
23 | var divs=document.getElementsByTagName('div'); |
---|
24 | var sectionCounter=1; |
---|
25 | for(var i=0;i<divs.length-1;i++){ |
---|
26 | if(divs[i].className=='dynheader'&&divs[i+1].className=='dynsection'){ |
---|
27 | var header=divs[i]; |
---|
28 | var section=divs[i+1]; |
---|
29 | var button=header.firstChild; |
---|
30 | if (button!='IMG'){ |
---|
31 | divs[i].insertBefore(document.createTextNode(' '),divs[i].firstChild); |
---|
32 | button=document.createElement('img'); |
---|
33 | divs[i].insertBefore(button,divs[i].firstChild); |
---|
34 | } |
---|
35 | header.style.cursor='pointer'; |
---|
36 | header.onclick=changeDisplayState; |
---|
37 | header.id='dynheader'+sectionCounter; |
---|
38 | button.src='closed.gif'; |
---|
39 | section.id='dynsection'+sectionCounter; |
---|
40 | section.style.display='none'; |
---|
41 | section.style.marginLeft='14px'; |
---|
42 | sectionCounter++; |
---|
43 | } |
---|
44 | } |
---|
45 | } |
---|
46 | window.onload = initDynSections; |
---|
47 | --> |
---|
48 | </script> |
---|
49 | <div class="navigation" id="top"> |
---|
50 | <div class="tabs"> |
---|
51 | <ul> |
---|
52 | <li><a href="main.html"><span>Main Page</span></a></li> |
---|
53 | <li class="current"><a href="pages.html"><span>Related Pages</span></a></li> |
---|
54 | <li><a href="modules.html"><span>Modules</span></a></li> |
---|
55 | <li><a href="annotated.html"><span>Classes</span></a></li> |
---|
56 | <li><a href="files.html"><span>Files</span></a></li> |
---|
57 | </ul> |
---|
58 | </div> |
---|
59 | <div class="navpath"><a class="el" href="tutorial.html">Tutorial in Bayesian estimation</a> |
---|
60 | </div> |
---|
61 | </div> |
---|
62 | <div class="contents"> |
---|
63 | <h1><a class="anchor" name="tut_arx">Theory of ARX model estimation </a></h1><p> |
---|
64 | The <code>ARX</code> (AutoregRessive with eXogeneous input) model is defined as follows: <p class="formulaDsp"> |
---|
65 | <img class="formulaDsp" alt="\[ y_t = \theta' \psi_t + \rho e_t \]" src="form_99.png"> |
---|
66 | <p> |
---|
67 | where <img class="formulaInl" alt="$y_t$" src="form_100.png"> is the system output, <img class="formulaInl" alt="$[\theta,\rho]$" src="form_101.png"> is vector of unknown parameters, <img class="formulaInl" alt="$\psi_t$" src="form_102.png"> is an vector of data-dependent regressors, and noise <img class="formulaInl" alt="$e_t$" src="form_4.png"> is assumed to be Normal distributed <img class="formulaInl" alt="$\mathcal{N}(0,1)$" src="form_103.png">.<p> |
---|
68 | Special cases include: <ul> |
---|
69 | <li>estimation of unknown mean and variance of a Gaussian density from independent samples.</li> |
---|
70 | </ul> |
---|
71 | <h2><a class="anchor" name="off"> |
---|
72 | Off-line estimation:</a></h2> |
---|
73 | This particular model belongs to the exponential family, hence it has conjugate distribution (i.e. both prior and posterior) of the Gauss-inverse-Wishart form. See [ref]<p> |
---|
74 | Estimation of this family can be achieved by accumulation of sufficient statistics. The sufficient statistics Gauss-inverse-Wishart density is composed of: <dl> |
---|
75 | <dt>Information matrix </dt> |
---|
76 | <dd>which is a sum of outer products <p class="formulaDsp"> |
---|
77 | <img class="formulaDsp" alt="\[ V_t = \sum_{i=0}^{n} \left[\begin{array}{c}y_{t}\\ \psi_{t}\end{array}\right] \begin{array}{c} [y_{t}',\,\psi_{t}']\\ \\\end{array} \]" src="form_104.png"> |
---|
78 | <p> |
---|
79 | </dd> |
---|
80 | <dt>"Degree of freedom" </dt> |
---|
81 | <dd>which is an accumulator of number of data records <p class="formulaDsp"> |
---|
82 | <img class="formulaDsp" alt="\[ \nu_t = \sum_{i=0}^{n} 1 \]" src="form_105.png"> |
---|
83 | <p> |
---|
84 | </dd> |
---|
85 | </dl> |
---|
86 | <h2><a class="anchor" name="on"> |
---|
87 | On-line estimation</a></h2> |
---|
88 | For online estimation with stationary parameters can be easily achieved by collecting the sufficient statistics described above recursively.<p> |
---|
89 | Extension to non-stationaly parameters, <img class="formulaInl" alt="$ \theta_t , r_t $" src="form_106.png"> can be achieved by operation called forgetting. This is an approximation of Bayesian filtering see [Kulhavy]. The resulting algorithm is defined by manipulation of sufficient statistics: <dl> |
---|
90 | <dt>Information matrix </dt> |
---|
91 | <dd>which is a sum of outer products <p class="formulaDsp"> |
---|
92 | <img class="formulaDsp" alt="\[ V_t = \phi V_{t-1} + \left[\begin{array}{c}y_{t}\\ \psi_{t}\end{array}\right] \begin{array}{c} [y_{t}',\,\psi_{t}']\\ \\\end{array} +(1-\phi) V_0 \]" src="form_121.png"> |
---|
93 | <p> |
---|
94 | </dd> |
---|
95 | <dt>"Degree of freedom" </dt> |
---|
96 | <dd>which is an accumulator of number of data records <p class="formulaDsp"> |
---|
97 | <img class="formulaDsp" alt="\[ \nu_t = \phi \nu_{t-1} + 1 + (1-\phi) \nu_0 \]" src="form_122.png"> |
---|
98 | <p> |
---|
99 | </dd> |
---|
100 | </dl> |
---|
101 | where <img class="formulaInl" alt="$ \phi $" src="form_109.png"> is the forgetting factor, typically <img class="formulaInl" alt="$ \phi \in [0,1]$" src="form_110.png"> roughly corresponding to the effective length of the exponential window by relation:<p class="formulaDsp"> |
---|
102 | <img class="formulaDsp" alt="\[ \mathrm{win_length} = \frac{1}{1-\phi}\]" src="form_111.png"> |
---|
103 | <p> |
---|
104 | Hence, <img class="formulaInl" alt="$ \phi=0.9 $" src="form_112.png"> corresponds to estimation on exponential window of effective length 10 samples.<p> |
---|
105 | Statistics <img class="formulaInl" alt="$ V_0 , \nu_0 $" src="form_113.png"> are called alternative statistics, their role is to stabilize estimation. It is easy to show that for zero data, the statistics <img class="formulaInl" alt="$ V_t , \nu_t $" src="form_114.png"> converge to the alternative statistics.<h2><a class="anchor" name="str"> |
---|
106 | Structure estimation</a></h2> |
---|
107 | For this model, structure estimation is a form of model selection procedure. Specifically, we compare hypotheses that the data were generated by the full model with hypotheses that some regressors in vector <img class="formulaInl" alt="$\psi$" src="form_13.png"> are redundant. The number of possible hypotheses is then the number of all possible combinations of all regressors.<p> |
---|
108 | However, due to property known as nesting in exponential family, these hypotheses can be tested using only the posterior statistics. (This property does no hold for forgetting <img class="formulaInl" alt="$ \phi<1 $" src="form_115.png">). Hence, for low dimensional problems, this can be done by a tree search (method <a class="el" href="classbdm_1_1ARX.html#16b02ae03316751664c22d59d90c1e34" title="Brute force structure estimation.">bdm::ARX::structure_est()</a>). Or more sophisticated algorithm [ref Ludvik]<h2><a class="anchor" name="soft"> |
---|
109 | Software Image</a></h2> |
---|
110 | Estimation of the ARX model is implemented in class <a class="el" href="classbdm_1_1ARX.html" title="Linear Autoregressive model with Gaussian noise.">bdm::ARX</a>. <ul> |
---|
111 | <li>models from exponential family share some properties, these are encoded in class <a class="el" href="classbdm_1_1BMEF.html" title="Estimator for Exponential family.">bdm::BMEF</a> which is the parent of ARX </li> |
---|
112 | <li>one of the parameters of <a class="el" href="classbdm_1_1BMEF.html" title="Estimator for Exponential family.">bdm::BMEF</a> is the forgetting factor which is stored in attribute <code>frg</code>, </li> |
---|
113 | <li>posterior density is stored inside the estimator in the form of <a class="el" href="classbdm_1_1egiw.html" title="Gauss-inverse-Wishart density stored in LD form.">bdm::egiw</a> </li> |
---|
114 | <li>references to statistics of the internal <code>egiw</code> class, i.e. attributes <code>V</code> and <code>nu</code> are established for convenience.</li> |
---|
115 | </ul> |
---|
116 | <h2><a class="anchor" name="try"> |
---|
117 | How to try</a></h2> |
---|
118 | The best way to experiment with this object is to run matlab script <code>arx_test.m</code> located in directory <code></code>./library/tutorial. See <a class="el" href="arx_ui.html">Running experiment <code>estimator</code> with ARX data fields</a> for detailed description.<p> |
---|
119 | <ul> |
---|
120 | <li>In default setup, the parameters converge to the true values as expected. </li> |
---|
121 | <li>Try changing the forgetting factor, field <code>estimator.frg</code>, to values <1. You should see increased lower and upper bounds on the estimates. </li> |
---|
122 | <li>Try different set of parameters, filed <code>system.theta</code>, you should note that poles close to zero are harder to identify. </li> |
---|
123 | </ul> |
---|
124 | </div> |
---|
125 | <hr size="1"><address style="text-align: right;"><small>Generated on Thu Apr 9 14:33:20 2009 for mixpp by |
---|
126 | <a href="http://www.doxygen.org/index.html"> |
---|
127 | <img src="doxygen.png" alt="doxygen" align="middle" border="0"></a> 1.5.8 </small></address> |
---|
128 | </body> |
---|
129 | </html> |
---|