root/doc/latex/annotated.tex @ 244

Revision 234, 13.2 kB (checked in by smidl, 16 years ago)

doc

  • Property svn:eol-style set to native
Line 
1\section{Class List}
2Here are the classes, structs, unions and interfaces with brief descriptions:\begin{CompactList}
3\item\contentsline{section}{\hyperlink{classARX}{ARX} (Linear Autoregressive model with Gaussian noise )}{\pageref{classARX}}{}
4\item\contentsline{section}{\hyperlink{classAssertXercesIsAlive}{AssertXercesIsAlive} (Class initializing Xerces library )}{\pageref{classAssertXercesIsAlive}}{}
5\item\contentsline{section}{\hyperlink{classAttribute}{Attribute} (Abstract class declaring general properties of a frame for data binding )}{\pageref{classAttribute}}{}
6\item\contentsline{section}{\hyperlink{classbilinfn}{bilinfn} (Class representing function $f(x,u) = Ax+Bu$ )}{\pageref{classbilinfn}}{}
7\item\contentsline{section}{\hyperlink{classBindingFrame}{BindingFrame} (Abstract class declaring general properties of a frame for data binding )}{\pageref{classBindingFrame}}{}
8\item\contentsline{section}{\hyperlink{classBM}{BM} (Bayesian Model of the world, i.e. all uncertainty is modeled by probabilities )}{\pageref{classBM}}{}
9\item\contentsline{section}{\hyperlink{classBMcond}{BMcond} (Conditional Bayesian Filter )}{\pageref{classBMcond}}{}
10\item\contentsline{section}{\hyperlink{classBMEF}{BMEF} (Estimator for Exponential family )}{\pageref{classBMEF}}{}
11\item\contentsline{section}{\hyperlink{classchmat}{chmat} (Symmetric matrix stored in square root decomposition using upper cholesky )}{\pageref{classchmat}}{}
12\item\contentsline{section}{\hyperlink{classcompositepdf}{compositepdf} (Abstract composition of pdfs, a base for specific classes this abstract class is common to \hyperlink{classepdf}{epdf} and \hyperlink{classmpdf}{mpdf} )}{\pageref{classcompositepdf}}{}
13\item\contentsline{section}{\hyperlink{classCompoundUserInfo}{CompoundUserInfo$<$ T $>$} (The main userinfo template class. You should derive this class whenever you need a new userinfo of a class which is compound from smaller elements (all having its own userinfo class prepared) )}{\pageref{classCompoundUserInfo}}{}
14\item\contentsline{section}{\hyperlink{classCompoundUserInfo_1_1BindedElement}{CompoundUserInfo$<$ T $>$::BindedElement$<$ U $>$} (Templated class binding inner element with its XML tag and automating data transfers in both directions )}{\pageref{classCompoundUserInfo_1_1BindedElement}}{}
15\item\contentsline{section}{\hyperlink{classconstfn}{constfn} (Class representing function $f(x) = a$, here {\tt rv} is empty )}{\pageref{classconstfn}}{}
16\item\contentsline{section}{\hyperlink{classdatalink__e2e}{datalink\_\-e2e} }{\pageref{classdatalink__e2e}}{}
17\item\contentsline{section}{\hyperlink{classdatalink__m2e}{datalink\_\-m2e} (Data link between )}{\pageref{classdatalink__m2e}}{}
18\item\contentsline{section}{\hyperlink{classdatalink__m2m}{datalink\_\-m2m} }{\pageref{classdatalink__m2m}}{}
19\item\contentsline{section}{\hyperlink{classdiffbifn}{diffbifn} (Class representing a differentiable function of two variables $f(x,u)$ )}{\pageref{classdiffbifn}}{}
20\item\contentsline{section}{\hyperlink{classdirfilelog}{dirfilelog} (Logging into dirfile with buffer in memory )}{\pageref{classdirfilelog}}{}
21\item\contentsline{section}{\hyperlink{classDS}{DS} (Abstract class for discrete-time sources of data )}{\pageref{classDS}}{}
22\item\contentsline{section}{\hyperlink{classeDirich}{eDirich} (Dirichlet posterior density )}{\pageref{classeDirich}}{}
23\item\contentsline{section}{\hyperlink{classeEF}{eEF} (General conjugate exponential family posterior density )}{\pageref{classeEF}}{}
24\item\contentsline{section}{\hyperlink{classeEmp}{eEmp} (Weighted empirical density )}{\pageref{classeEmp}}{}
25\item\contentsline{section}{\hyperlink{classegamma}{egamma} (Gamma posterior density )}{\pageref{classegamma}}{}
26\item\contentsline{section}{\hyperlink{classegiw}{egiw} (Gauss-inverse-Wishart density stored in LD form )}{\pageref{classegiw}}{}
27\item\contentsline{section}{\hyperlink{classeigamma}{eigamma} (Inverse-Gamma posterior density )}{\pageref{classeigamma}}{}
28\item\contentsline{section}{\hyperlink{classEKF}{EKF$<$ sq\_\-T $>$} (Extended \hyperlink{classKalman}{Kalman} Filter )}{\pageref{classEKF}}{}
29\item\contentsline{section}{\hyperlink{classEKF__unQ}{EKF\_\-unQ} (Extended \hyperlink{classKalman}{Kalman} filter with unknown {\tt Q} )}{\pageref{classEKF__unQ}}{}
30\item\contentsline{section}{\hyperlink{classEKFCh}{EKFCh} (Extended \hyperlink{classKalman}{Kalman} Filter in Square root )}{\pageref{classEKFCh}}{}
31\item\contentsline{section}{\hyperlink{classEKFCh__cond}{EKFCh\_\-cond} (Extended \hyperlink{classKalman}{Kalman} filter with unknown parameters in {\tt IM} )}{\pageref{classEKFCh__cond}}{}
32\item\contentsline{section}{\hyperlink{classEKFCh__du__kQ}{EKFCh\_\-du\_\-kQ} (Extended \hyperlink{classKalman}{Kalman} filter with unknown {\tt Q} and delta u )}{\pageref{classEKFCh__du__kQ}}{}
33\item\contentsline{section}{\hyperlink{classEKFCh__unQ}{EKFCh\_\-unQ} (Extended \hyperlink{classKalman}{Kalman} filter in Choleski form with unknown {\tt Q} )}{\pageref{classEKFCh__unQ}}{}
34\item\contentsline{section}{\hyperlink{classEKFfixed}{EKFfixed} (Extended \hyperlink{classKalman}{Kalman} Filter with full matrices in fixed point arithmetic )}{\pageref{classEKFfixed}}{}
35\item\contentsline{section}{\hyperlink{classEKFful__unQR}{EKFful\_\-unQR} (Extended \hyperlink{classKalman}{Kalman} filter with unknown {\tt Q} and {\tt R} )}{\pageref{classEKFful__unQR}}{}
36\item\contentsline{section}{\hyperlink{classEKFfull}{EKFfull} (Extended \hyperlink{classKalman}{Kalman} Filter in full matrices )}{\pageref{classEKFfull}}{}
37\item\contentsline{section}{\hyperlink{classemix}{emix} (Mixture of epdfs )}{\pageref{classemix}}{}
38\item\contentsline{section}{\hyperlink{classenorm}{enorm$<$ sq\_\-T $>$} (Gaussian density with positive definite (decomposed) covariance matrix )}{\pageref{classenorm}}{}
39\item\contentsline{section}{\hyperlink{classepdf}{epdf} (Probability density function with numerical statistics, e.g. posterior density )}{\pageref{classepdf}}{}
40\item\contentsline{section}{\hyperlink{classeprod}{eprod} (Product of independent epdfs. For dependent pdfs, use \hyperlink{classmprod}{mprod} )}{\pageref{classeprod}}{}
41\item\contentsline{section}{\hyperlink{classeuni}{euni} (Uniform distributed density on a rectangular support )}{\pageref{classeuni}}{}
42\item\contentsline{section}{\hyperlink{classfnc}{fnc} (Class representing function $f(x)$ of variable $x$ represented by {\tt rv} )}{\pageref{classfnc}}{}
43\item\contentsline{section}{\hyperlink{classfsqmat}{fsqmat} (Fake \hyperlink{classsqmat}{sqmat}. This class maps \hyperlink{classsqmat}{sqmat} operations to operations on full matrix )}{\pageref{classfsqmat}}{}
44\item\contentsline{section}{\hyperlink{classitpp_1_1Gamma__RNG}{itpp::Gamma\_\-RNG} (Gamma distribution )}{\pageref{classitpp_1_1Gamma__RNG}}{}
45\item\contentsline{section}{\hyperlink{classIMk1}{IMk1} (Model stredni hodnoty vyvoje stavu pro k1 )}{\pageref{classIMk1}}{}
46\item\contentsline{section}{\hyperlink{classIMpmsm}{IMpmsm} (State evolution model for a PMSM drive and its derivative with respect to $x$ )}{\pageref{classIMpmsm}}{}
47\item\contentsline{section}{\hyperlink{classIMpmsm2o}{IMpmsm2o} (State evolution model for a PMSM drive and its derivative with respect to $x$ )}{\pageref{classIMpmsm2o}}{}
48\item\contentsline{section}{\hyperlink{classIMpmsmStat}{IMpmsmStat} (State evolution model for a PMSM drive and its derivative with respect to $x$, equation for $\omega$ is omitted.\$ )}{\pageref{classIMpmsmStat}}{}
49\item\contentsline{section}{\hyperlink{classKalman}{Kalman$<$ sq\_\-T $>$} (\hyperlink{classKalman}{Kalman} filter with covariance matrices in square root form )}{\pageref{classKalman}}{}
50\item\contentsline{section}{\hyperlink{classKalmanCh}{KalmanCh} (\hyperlink{classKalman}{Kalman} filter in square root form )}{\pageref{classKalmanCh}}{}
51\item\contentsline{section}{\hyperlink{classKalmanFull}{KalmanFull} (Basic \hyperlink{classKalman}{Kalman} filter with full matrices (education purpose only)! Will be deleted soon! )}{\pageref{classKalmanFull}}{}
52\item\contentsline{section}{\hyperlink{classKFcondQR}{KFcondQR} (\hyperlink{classKalman}{Kalman} Filter with conditional diagonal matrices R and Q )}{\pageref{classKFcondQR}}{}
53\item\contentsline{section}{\hyperlink{classKFcondR}{KFcondR} (\hyperlink{classKalman}{Kalman} Filter with conditional diagonal matrices R and Q )}{\pageref{classKFcondR}}{}
54\item\contentsline{section}{\hyperlink{classldmat}{ldmat} (Matrix stored in LD form, (commonly known as UD) )}{\pageref{classldmat}}{}
55\item\contentsline{section}{\hyperlink{classlinfn}{linfn} (Class representing function $f(x) = Ax+B$ )}{\pageref{classlinfn}}{}
56\item\contentsline{section}{\hyperlink{classlogger}{logger} (Class for storing results (and semi-results) of an experiment )}{\pageref{classlogger}}{}
57\item\contentsline{section}{\hyperlink{classmEF}{mEF} (Exponential family model )}{\pageref{classmEF}}{}
58\item\contentsline{section}{\hyperlink{classMemDS}{MemDS} (Class representing off-line data stored in memory )}{\pageref{classMemDS}}{}
59\item\contentsline{section}{\hyperlink{classmemlog}{memlog} (Logging into matrices in data format in memory )}{\pageref{classmemlog}}{}
60\item\contentsline{section}{\hyperlink{classmepdf}{mepdf} (Unconditional \hyperlink{classmpdf}{mpdf}, allows using \hyperlink{classepdf}{epdf} in the role of \hyperlink{classmpdf}{mpdf} )}{\pageref{classmepdf}}{}
61\item\contentsline{section}{\hyperlink{classmerger}{merger} (Function for general combination of pdfs )}{\pageref{classmerger}}{}
62\item\contentsline{section}{\hyperlink{classmgamma}{mgamma} (Gamma random walk )}{\pageref{classmgamma}}{}
63\item\contentsline{section}{\hyperlink{classmgamma__fix}{mgamma\_\-fix} (Gamma random walk around a fixed point )}{\pageref{classmgamma__fix}}{}
64\item\contentsline{section}{\hyperlink{classmigamma}{migamma} (Inverse-Gamma random walk )}{\pageref{classmigamma}}{}
65\item\contentsline{section}{\hyperlink{classmigamma__fix}{migamma\_\-fix} (Inverse-Gamma random walk around a fixed point )}{\pageref{classmigamma__fix}}{}
66\item\contentsline{section}{\hyperlink{classMixEF}{MixEF} (Mixture of Exponential Family Densities )}{\pageref{classMixEF}}{}
67\item\contentsline{section}{\hyperlink{classmlnorm}{mlnorm$<$ sq\_\-T $>$} (Normal distributed linear function with linear function of mean value; )}{\pageref{classmlnorm}}{}
68\item\contentsline{section}{\hyperlink{classmlstudent}{mlstudent} }{\pageref{classmlstudent}}{}
69\item\contentsline{section}{\hyperlink{classmmix}{mmix} (Mixture of mpdfs with constant weights, all mpdfs are of equal type )}{\pageref{classmmix}}{}
70\item\contentsline{section}{\hyperlink{classmpdf}{mpdf} (Conditional probability density, e.g. modeling some dependencies )}{\pageref{classmpdf}}{}
71\item\contentsline{section}{\hyperlink{classMPF}{MPF$<$ BM\_\-T $>$} (Marginalized Particle filter )}{\pageref{classMPF}}{}
72\item\contentsline{section}{\hyperlink{classmprod}{mprod} (Chain rule decomposition of \hyperlink{classepdf}{epdf} )}{\pageref{classmprod}}{}
73\item\contentsline{section}{\hyperlink{classmratio}{mratio} (Class representing ratio of two densities which arise e.g. by applying the Bayes rule. It represents density in the form: \[ f(rv|rvc) = \frac{f(rv,rvc)}{f(rvc)} \] where $ f(rvc) = \int f(rv,rvc) d\ rv $ )}{\pageref{classmratio}}{}
74\item\contentsline{section}{\hyperlink{classmultiBM}{multiBM} (Estimator for Multinomial density )}{\pageref{classmultiBM}}{}
75\item\contentsline{section}{\hyperlink{classOMk1}{OMk1} (Model stredni hodnoty pozorovani pro k1 )}{\pageref{classOMk1}}{}
76\item\contentsline{section}{\hyperlink{classOMpmsm}{OMpmsm} (Observation model for PMSM drive and its derivative with respect to $x$ )}{\pageref{classOMpmsm}}{}
77\item\contentsline{section}{\hyperlink{classPF}{PF} (Trivial particle filter with proposal density equal to parameter evolution model )}{\pageref{classPF}}{}
78\item\contentsline{section}{\hyperlink{classRootElement}{RootElement} (This class serves to load and/or save DOMElements into/from files stored on a hard-disk )}{\pageref{classRootElement}}{}
79\item\contentsline{section}{\hyperlink{classRV}{RV} (Class representing variables, most often random variables )}{\pageref{classRV}}{}
80\item\contentsline{section}{\hyperlink{classsqmat}{sqmat} (Virtual class for representation of double symmetric matrices in square-root form )}{\pageref{classsqmat}}{}
81\item\contentsline{section}{\hyperlink{classstr}{str} (Structure of \hyperlink{classRV}{RV} (used internally), i.e. expanded RVs )}{\pageref{classstr}}{}
82\item\contentsline{section}{\hyperlink{classTypedUserInfo}{TypedUserInfo$<$ T $>$} (TypeUserInfo is still an abstract class, but contrary to the \hyperlink{classUserInfo}{UserInfo} class it is already templated. It serves as a bridge to non-abstract classes CompoundUserInfo$<$T$>$ or ValuedUserInfo$<$T$>$ )}{\pageref{classTypedUserInfo}}{}
83\item\contentsline{section}{\hyperlink{classUserInfo}{UserInfo} (\hyperlink{classUserInfo}{UserInfo} is an abstract is for internal purposes only. Use CompoundUserInfo$<$T$>$ or ValuedUserInfo$<$T$>$ instead. The raison d'etre of this class is to allow pointers to its templated descendants )}{\pageref{classUserInfo}}{}
84\item\contentsline{section}{\hyperlink{classValuedUserInfo}{ValuedUserInfo$<$ T $>$} (The main userinfo template class. It should be derived whenever you need a new userinfo of a class which does not contain any subelements. It is the case of basic classes(or types) like int, string, double, etc )}{\pageref{classValuedUserInfo}}{}
85\end{CompactList}
Note: See TracBrowser for help on using the browser.