1 | \section{ARX Class Reference} |
---|
2 | \label{classARX}\index{ARX@{ARX}} |
---|
3 | Linear Autoregressive model with Gaussian noise. |
---|
4 | |
---|
5 | |
---|
6 | {\tt \#include $<$arx.h$>$} |
---|
7 | |
---|
8 | Inheritance diagram for ARX:\nopagebreak |
---|
9 | \begin{figure}[H] |
---|
10 | \begin{center} |
---|
11 | \leavevmode |
---|
12 | \includegraphics[width=40pt]{classARX__inherit__graph} |
---|
13 | \end{center} |
---|
14 | \end{figure} |
---|
15 | Collaboration diagram for ARX:\nopagebreak |
---|
16 | \begin{figure}[H] |
---|
17 | \begin{center} |
---|
18 | \leavevmode |
---|
19 | \includegraphics[width=90pt]{classARX__coll__graph} |
---|
20 | \end{center} |
---|
21 | \end{figure} |
---|
22 | \subsection*{Public Member Functions} |
---|
23 | \begin{CompactItemize} |
---|
24 | \item |
---|
25 | {\bf ARX} ({\bf RV} \&{\bf rv}, mat \&V0, double \&nu0, double frg0=1.0)\label{classARX_5fc6c18e73dcc0f1135eef33f42db8be} |
---|
26 | |
---|
27 | \begin{CompactList}\small\item\em Full constructor. \item\end{CompactList}\item |
---|
28 | void {\bf bayes} (const vec \&dt)\label{classARX_ba82c956ca893826811aefe1e4af465d} |
---|
29 | |
---|
30 | \begin{CompactList}\small\item\em Here $dt = [y_t psi_t] $. \item\end{CompactList}\item |
---|
31 | {\bf epdf} \& {\bf \_\-epdf} ()\label{classARX_9d8eff7a9df81786191a4c55b27e5b8a} |
---|
32 | |
---|
33 | \begin{CompactList}\small\item\em Returns a pointer to the \doxyref{epdf}{p.}{classepdf} representing posterior density on parameters. Use with care! \item\end{CompactList}\item |
---|
34 | ivec {\bf structure\_\-est} ({\bf egiw} Eg0) |
---|
35 | \begin{CompactList}\small\item\em Brute force structure estimation. \item\end{CompactList}\item |
---|
36 | void {\bf bayes} (mat Dt)\label{classBM_87b07867fd4c133aa89a18543f68d9f9} |
---|
37 | |
---|
38 | \begin{CompactList}\small\item\em Batch Bayes rule (columns of Dt are observations). \item\end{CompactList}\item |
---|
39 | const {\bf RV} \& {\bf \_\-rv} () const \label{classBM_126bd2595c48e311fc2a7ab72876092a} |
---|
40 | |
---|
41 | \begin{CompactList}\small\item\em access function \item\end{CompactList}\item |
---|
42 | double {\bf \_\-ll} () const \label{classBM_87f4a547d2c29180be88175e5eab9c88} |
---|
43 | |
---|
44 | \begin{CompactList}\small\item\em access function \item\end{CompactList}\end{CompactItemize} |
---|
45 | \subsection*{Protected Attributes} |
---|
46 | \begin{CompactItemize} |
---|
47 | \item |
---|
48 | {\bf egiw} {\bf est}\label{classARX_691d023662beffa1dda611b416c0e27e} |
---|
49 | |
---|
50 | \begin{CompactList}\small\item\em Posterior estimate of $\theta,r$ in the form of Normal-inverse Wishart density. \item\end{CompactList}\item |
---|
51 | {\bf ldmat} \& {\bf V}\label{classARX_2291297861dd74ca0175a01f910a0ef7} |
---|
52 | |
---|
53 | \begin{CompactList}\small\item\em cached value of est.V \item\end{CompactList}\item |
---|
54 | double \& {\bf nu}\label{classARX_a4182c281098b2d86b62518a7493d9be} |
---|
55 | |
---|
56 | \begin{CompactList}\small\item\em cached value of est.nu \item\end{CompactList}\item |
---|
57 | double {\bf frg}\label{classARX_e467144efb0a5acbc10dba4eff8638fe} |
---|
58 | |
---|
59 | \begin{CompactList}\small\item\em forgetting factor \item\end{CompactList}\item |
---|
60 | double {\bf last\_\-lognc}\label{classARX_6d0cd0f0734aa77cdc5e48f1cf6737ec} |
---|
61 | |
---|
62 | \begin{CompactList}\small\item\em cached value of lognc() in the previous step (used in evaluation of {\tt ll} ) \item\end{CompactList}\item |
---|
63 | {\bf RV} {\bf rv}\label{classBM_af00f0612fabe66241dd507188cdbf88} |
---|
64 | |
---|
65 | \begin{CompactList}\small\item\em Random variable of the posterior. \item\end{CompactList}\item |
---|
66 | double {\bf ll}\label{classBM_5623fef6572a08c2b53b8c87b82dc979} |
---|
67 | |
---|
68 | \begin{CompactList}\small\item\em Logarithm of marginalized data likelihood. \item\end{CompactList}\item |
---|
69 | bool {\bf evalll}\label{classBM_bf6fb59b30141074f8ee1e2f43d03129} |
---|
70 | |
---|
71 | \begin{CompactList}\small\item\em If true, the filter will compute likelihood of the data record and store it in {\tt ll} . Set to false if you want to save time. \item\end{CompactList}\end{CompactItemize} |
---|
72 | |
---|
73 | |
---|
74 | \subsection{Detailed Description} |
---|
75 | Linear Autoregressive model with Gaussian noise. |
---|
76 | |
---|
77 | Regression of the following kind: \[ y_t = \theta_1 \psi_1 + \theta_2 + \psi_2 +\ldots + \theta_n \psi_n + r e_t \] where unknown parameters {\tt rv} are $[\theta r]$, regression vector $\psi=\psi(y_{1:t},u_{1:t})$ is a known function of past outputs and exogeneous variables $u_t$. Distrubances $e_t$ are supposed to be normally distributed: \[ e_t \sim \mathcal{N}(0,1). \] |
---|
78 | |
---|
79 | Extension for time-variant parameters $\theta_t,r_t$ may be achived using exponential forgetting (Kulhavy and Zarrop, 1993). In such a case, the forgetting factor {\tt frg} $\in <0,1>$ should be given in the constructor. Time-invariant parameters are estimated for {\tt frg} = 1. |
---|
80 | |
---|
81 | \subsection{Member Function Documentation} |
---|
82 | \index{ARX@{ARX}!structure\_\-est@{structure\_\-est}} |
---|
83 | \index{structure\_\-est@{structure\_\-est}!ARX@{ARX}} |
---|
84 | \subsubsection{\setlength{\rightskip}{0pt plus 5cm}ivec ARX::structure\_\-est ({\bf egiw} {\em Eg0})}\label{classARX_130bb7336aac681ce14b027b8f1409fa} |
---|
85 | |
---|
86 | |
---|
87 | Brute force structure estimation. |
---|
88 | |
---|
89 | \begin{Desc} |
---|
90 | \item[Returns:]indeces of accepted regressors. \end{Desc} |
---|
91 | |
---|
92 | |
---|
93 | References RV::count(), est, egiw::lognc(), and BM::rv. |
---|
94 | |
---|
95 | The documentation for this class was generated from the following files:\begin{CompactItemize} |
---|
96 | \item |
---|
97 | work/mixpp/bdm/estim/{\bf arx.h}\item |
---|
98 | work/mixpp/bdm/estim/arx.cpp\end{CompactItemize} |
---|