root/doc/latex/classARX.tex @ 208

Revision 181, 11.3 kB (checked in by smidl, 16 years ago)

Regenerated doc

  • Property svn:eol-style set to native
Line 
1\hypertarget{classARX}{
2\section{ARX Class Reference}
3\label{classARX}\index{ARX@{ARX}}
4}
5Linear Autoregressive model with Gaussian noise. 
6
7
8{\tt \#include $<$arx.h$>$}
9
10Inheritance diagram for ARX:\nopagebreak
11\begin{figure}[H]
12\begin{center}
13\leavevmode
14\includegraphics[width=43pt]{classARX__inherit__graph}
15\end{center}
16\end{figure}
17Collaboration diagram for ARX:\nopagebreak
18\begin{figure}[H]
19\begin{center}
20\leavevmode
21\includegraphics[width=96pt]{classARX__coll__graph}
22\end{center}
23\end{figure}
24\subsection*{Public Member Functions}
25\begin{CompactItemize}
26\item 
27\hypertarget{classARX_545e269bf7852c81484cf361b54d9917}{
28\hyperlink{classARX_545e269bf7852c81484cf361b54d9917}{ARX} (const \hyperlink{classRV}{RV} \&\hyperlink{classBM_af00f0612fabe66241dd507188cdbf88}{rv}, const mat \&V0, const double \&nu0, const double frg0=1.0)}
29\label{classARX_545e269bf7852c81484cf361b54d9917}
30
31\begin{CompactList}\small\item\em Full constructor. \item\end{CompactList}\item 
32\hypertarget{classARX_a5358883a49b52f50755ad8770c2bbdb}{
33\hyperlink{classARX_a5358883a49b52f50755ad8770c2bbdb}{ARX} (const \hyperlink{classARX}{ARX} \&A0)}
34\label{classARX_a5358883a49b52f50755ad8770c2bbdb}
35
36\begin{CompactList}\small\item\em Copy constructor. \item\end{CompactList}\item 
37\hypertarget{classARX_5de61fbd4f97fa3216760b1f733f5af0}{
38\hyperlink{classARX}{ARX} $\ast$ \hyperlink{classARX_5de61fbd4f97fa3216760b1f733f5af0}{\_\-copy\_\-} (bool changerv=false)}
39\label{classARX_5de61fbd4f97fa3216760b1f733f5af0}
40
41\begin{CompactList}\small\item\em Auxiliary function. \item\end{CompactList}\item 
42\hypertarget{classARX_bc8c36399e82b2fc504baed845ed2007}{
43void \hyperlink{classARX_bc8c36399e82b2fc504baed845ed2007}{set\_\-parameters} (const \hyperlink{classldmat}{ldmat} \&V0, const double \&nu0)}
44\label{classARX_bc8c36399e82b2fc504baed845ed2007}
45
46\begin{CompactList}\small\item\em Set sufficient statistics. \item\end{CompactList}\item 
47\hypertarget{classARX_26925d66dfc366815c497d67b62ee49c}{
48void \hyperlink{classARX_26925d66dfc366815c497d67b62ee49c}{set\_\-statistics} (const \hyperlink{classBMEF}{BMEF} $\ast$BM0)}
49\label{classARX_26925d66dfc366815c497d67b62ee49c}
50
51\begin{CompactList}\small\item\em get statistics from another model \item\end{CompactList}\item 
52\hypertarget{classARX_29f55b43b8b6f5c4a55f6176aa85c494}{
53void \hyperlink{classARX_29f55b43b8b6f5c4a55f6176aa85c494}{get\_\-parameters} (mat \&V0, double \&nu0)}
54\label{classARX_29f55b43b8b6f5c4a55f6176aa85c494}
55
56\begin{CompactList}\small\item\em Returns sufficient statistics. \item\end{CompactList}\item 
57\hypertarget{classARX_14d62abfe355275ea3b8d0c5d40f01a0}{
58void \hyperlink{classARX_14d62abfe355275ea3b8d0c5d40f01a0}{bayes} (const vec \&dt, const double w)}
59\label{classARX_14d62abfe355275ea3b8d0c5d40f01a0}
60
61\begin{CompactList}\small\item\em Here $dt = [y_t psi_t] $. \item\end{CompactList}\item 
62void \hyperlink{classARX_ba82c956ca893826811aefe1e4af465d}{bayes} (const vec \&dt)
63\begin{CompactList}\small\item\em Incremental Bayes rule. \item\end{CompactList}\item 
64\hypertarget{classARX_c13df43e0af87697fda6b457d56a6d45}{
65const \hyperlink{classepdf}{epdf} \& \hyperlink{classARX_c13df43e0af87697fda6b457d56a6d45}{\_\-epdf} () const }
66\label{classARX_c13df43e0af87697fda6b457d56a6d45}
67
68\begin{CompactList}\small\item\em Returns a pointer to the \hyperlink{classepdf}{epdf} representing posterior density on parameters. Use with care! \item\end{CompactList}\item 
69double \hyperlink{classARX_e7f9e7823aec9bf7ddc3b42d9b3304c4}{logpred} (const vec \&dt) const
70\item 
71\hypertarget{classARX_d75fadb7f828bf134df30919b8baf6b2}{
72void \hyperlink{classARX_d75fadb7f828bf134df30919b8baf6b2}{flatten} (const \hyperlink{classBMEF}{BMEF} $\ast$B)}
73\label{classARX_d75fadb7f828bf134df30919b8baf6b2}
74
75\begin{CompactList}\small\item\em Flatten the posterior according to the given \hyperlink{classBMEF}{BMEF} (of the same type!). \item\end{CompactList}\item 
76\hypertarget{classARX_377f069934f03e08502199bf6bad5e83}{
77\hyperlink{classenorm}{enorm}$<$ \hyperlink{classldmat}{ldmat} $>$ $\ast$ \hyperlink{classARX_377f069934f03e08502199bf6bad5e83}{predictor} (const \hyperlink{classRV}{RV} \&\hyperlink{classBM_af00f0612fabe66241dd507188cdbf88}{rv})}
78\label{classARX_377f069934f03e08502199bf6bad5e83}
79
80\begin{CompactList}\small\item\em Constructs a predictive density (marginal density on data). \item\end{CompactList}\item 
81ivec \hyperlink{classARX_130bb7336aac681ce14b027b8f1409fa}{structure\_\-est} (\hyperlink{classegiw}{egiw} Eg0)
82\begin{CompactList}\small\item\em Brute force structure estimation. \item\end{CompactList}\item 
83\hypertarget{classBMEF_c285f29db290d05428bf1aa2cd7c35ad}{
84virtual void \hyperlink{classBMEF_c285f29db290d05428bf1aa2cd7c35ad}{flatten} (double nu0)}
85\label{classBMEF_c285f29db290d05428bf1aa2cd7c35ad}
86
87\begin{CompactList}\small\item\em Flatten the posterior as if to keep nu0 data. \item\end{CompactList}\item 
88\hypertarget{classBM_0186270f75189677f390fe088a9947e9}{
89virtual void \hyperlink{classBM_0186270f75189677f390fe088a9947e9}{bayesB} (const mat \&Dt)}
90\label{classBM_0186270f75189677f390fe088a9947e9}
91
92\begin{CompactList}\small\item\em Batch Bayes rule (columns of Dt are observations). \item\end{CompactList}\item 
93\hypertarget{classBM_cd0660f2a1a344b56ac39802708ff165}{
94vec \hyperlink{classBM_cd0660f2a1a344b56ac39802708ff165}{logpred\_\-m} (const mat \&dt) const }
95\label{classBM_cd0660f2a1a344b56ac39802708ff165}
96
97\begin{CompactList}\small\item\em Matrix version of logpred. \item\end{CompactList}\item 
98\hypertarget{classBM_126bd2595c48e311fc2a7ab72876092a}{
99const \hyperlink{classRV}{RV} \& \hyperlink{classBM_126bd2595c48e311fc2a7ab72876092a}{\_\-rv} () const }
100\label{classBM_126bd2595c48e311fc2a7ab72876092a}
101
102\begin{CompactList}\small\item\em access function \item\end{CompactList}\item 
103\hypertarget{classBM_87f4a547d2c29180be88175e5eab9c88}{
104double \hyperlink{classBM_87f4a547d2c29180be88175e5eab9c88}{\_\-ll} () const }
105\label{classBM_87f4a547d2c29180be88175e5eab9c88}
106
107\begin{CompactList}\small\item\em access function \item\end{CompactList}\item 
108\hypertarget{classBM_1ffa9f23669aabecc3760c06c6987522}{
109void \hyperlink{classBM_1ffa9f23669aabecc3760c06c6987522}{set\_\-evalll} (bool evl0)}
110\label{classBM_1ffa9f23669aabecc3760c06c6987522}
111
112\begin{CompactList}\small\item\em access function \item\end{CompactList}\end{CompactItemize}
113\subsection*{Protected Attributes}
114\begin{CompactItemize}
115\item 
116\hypertarget{classARX_691d023662beffa1dda611b416c0e27e}{
117\hyperlink{classegiw}{egiw} \hyperlink{classARX_691d023662beffa1dda611b416c0e27e}{est}}
118\label{classARX_691d023662beffa1dda611b416c0e27e}
119
120\begin{CompactList}\small\item\em Posterior estimate of $\theta,r$ in the form of Normal-inverse Wishart density. \item\end{CompactList}\item 
121\hypertarget{classARX_2291297861dd74ca0175a01f910a0ef7}{
122\hyperlink{classldmat}{ldmat} \& \hyperlink{classARX_2291297861dd74ca0175a01f910a0ef7}{V}}
123\label{classARX_2291297861dd74ca0175a01f910a0ef7}
124
125\begin{CompactList}\small\item\em cached value of est.V \item\end{CompactList}\item 
126\hypertarget{classARX_a4182c281098b2d86b62518a7493d9be}{
127double \& \hyperlink{classARX_a4182c281098b2d86b62518a7493d9be}{nu}}
128\label{classARX_a4182c281098b2d86b62518a7493d9be}
129
130\begin{CompactList}\small\item\em cached value of est.nu \item\end{CompactList}\item 
131\hypertarget{classBMEF_538d632e59f9afa8daa1de74da12ce71}{
132double \hyperlink{classBMEF_538d632e59f9afa8daa1de74da12ce71}{frg}}
133\label{classBMEF_538d632e59f9afa8daa1de74da12ce71}
134
135\begin{CompactList}\small\item\em forgetting factor \item\end{CompactList}\item 
136\hypertarget{classBMEF_308cf5d4133cd471fdf1ecd5dfa09d02}{
137double \hyperlink{classBMEF_308cf5d4133cd471fdf1ecd5dfa09d02}{last\_\-lognc}}
138\label{classBMEF_308cf5d4133cd471fdf1ecd5dfa09d02}
139
140\begin{CompactList}\small\item\em cached value of lognc() in the previous step (used in evaluation of {\tt ll} ) \item\end{CompactList}\item 
141\hypertarget{classBM_af00f0612fabe66241dd507188cdbf88}{
142\hyperlink{classRV}{RV} \hyperlink{classBM_af00f0612fabe66241dd507188cdbf88}{rv}}
143\label{classBM_af00f0612fabe66241dd507188cdbf88}
144
145\begin{CompactList}\small\item\em Random variable of the posterior. \item\end{CompactList}\item 
146\hypertarget{classBM_5623fef6572a08c2b53b8c87b82dc979}{
147double \hyperlink{classBM_5623fef6572a08c2b53b8c87b82dc979}{ll}}
148\label{classBM_5623fef6572a08c2b53b8c87b82dc979}
149
150\begin{CompactList}\small\item\em Logarithm of marginalized data likelihood. \item\end{CompactList}\item 
151\hypertarget{classBM_bf6fb59b30141074f8ee1e2f43d03129}{
152bool \hyperlink{classBM_bf6fb59b30141074f8ee1e2f43d03129}{evalll}}
153\label{classBM_bf6fb59b30141074f8ee1e2f43d03129}
154
155\begin{CompactList}\small\item\em If true, the filter will compute likelihood of the data record and store it in {\tt ll} . Set to false if you want to save computational time. \item\end{CompactList}\end{CompactItemize}
156
157
158\subsection{Detailed Description}
159Linear Autoregressive model with Gaussian noise.
160
161Regression of the following kind: \[ y_t = \theta_1 \psi_1 + \theta_2 + \psi_2 +\ldots + \theta_n \psi_n + r e_t \] where unknown parameters {\tt rv} are $[\theta r]$, regression vector $\psi=\psi(y_{1:t},u_{1:t})$ is a known function of past outputs and exogeneous variables $u_t$. Distrubances $e_t$ are supposed to be normally distributed: \[ e_t \sim \mathcal{N}(0,1). \]
162
163Extension for time-variant parameters $\theta_t,r_t$ may be achived using exponential forgetting (Kulhavy and Zarrop, 1993). In such a case, the forgetting factor {\tt frg} $\in <0,1>$ should be given in the constructor. Time-invariant parameters are estimated for {\tt frg} = 1.
164
165\subsection{Member Function Documentation}
166\hypertarget{classARX_ba82c956ca893826811aefe1e4af465d}{
167\index{ARX@{ARX}!bayes@{bayes}}
168\index{bayes@{bayes}!ARX@{ARX}}
169\subsubsection[bayes]{\setlength{\rightskip}{0pt plus 5cm}void ARX::bayes (const vec \& {\em dt})\hspace{0.3cm}{\tt  \mbox{[}inline, virtual\mbox{]}}}}
170\label{classARX_ba82c956ca893826811aefe1e4af465d}
171
172
173Incremental Bayes rule.
174
175\begin{Desc}
176\item[Parameters:]
177\begin{description}
178\item[{\em dt}]vector of input data \end{description}
179\end{Desc}
180
181
182Reimplemented from \hyperlink{classBMEF_52b7719312d545215cca1ff87722a35a}{BMEF}.
183
184References bayes().\hypertarget{classARX_e7f9e7823aec9bf7ddc3b42d9b3304c4}{
185\index{ARX@{ARX}!logpred@{logpred}}
186\index{logpred@{logpred}!ARX@{ARX}}
187\subsubsection[logpred]{\setlength{\rightskip}{0pt plus 5cm}double ARX::logpred (const vec \& {\em dt}) const\hspace{0.3cm}{\tt  \mbox{[}virtual\mbox{]}}}}
188\label{classARX_e7f9e7823aec9bf7ddc3b42d9b3304c4}
189
190
191Evaluates predictive log-likelihood of the given data record I.e. marginal likelihood of the data with the posterior integrated out.
192
193Reimplemented from \hyperlink{classBM_8a8ce6df431689964c41cc6c849cfd06}{BM}.
194
195References egiw::\_\-nu(), egiw::\_\-V(), est, BM::evalll, BMEF::frg, BMEF::last\_\-lognc, egiw::lognc(), nu, ldmat::opupdt(), egiw::pow(), and V.\hypertarget{classARX_130bb7336aac681ce14b027b8f1409fa}{
196\index{ARX@{ARX}!structure\_\-est@{structure\_\-est}}
197\index{structure\_\-est@{structure\_\-est}!ARX@{ARX}}
198\subsubsection[structure\_\-est]{\setlength{\rightskip}{0pt plus 5cm}ivec ARX::structure\_\-est ({\bf egiw} {\em Eg0})}}
199\label{classARX_130bb7336aac681ce14b027b8f1409fa}
200
201
202Brute force structure estimation.
203
204\begin{Desc}
205\item[Returns:]indeces of accepted regressors. \end{Desc}
206
207
208References RV::count(), est, egiw::lognc(), and BM::rv.
209
210The documentation for this class was generated from the following files:\begin{CompactItemize}
211\item 
212work/git/mixpp/bdm/estim/\hyperlink{arx_8h}{arx.h}\item 
213work/git/mixpp/bdm/estim/arx.cpp\end{CompactItemize}
Note: See TracBrowser for help on using the browser.