1 | \hypertarget{classARX}{ |
---|
2 | \section{ARX Class Reference} |
---|
3 | \label{classARX}\index{ARX@{ARX}} |
---|
4 | } |
---|
5 | Linear Autoregressive model with Gaussian noise. |
---|
6 | |
---|
7 | |
---|
8 | {\tt \#include $<$arx.h$>$} |
---|
9 | |
---|
10 | Inheritance diagram for ARX:\nopagebreak |
---|
11 | \begin{figure}[H] |
---|
12 | \begin{center} |
---|
13 | \leavevmode |
---|
14 | \includegraphics[width=43pt]{classARX__inherit__graph} |
---|
15 | \end{center} |
---|
16 | \end{figure} |
---|
17 | Collaboration diagram for ARX:\nopagebreak |
---|
18 | \begin{figure}[H] |
---|
19 | \begin{center} |
---|
20 | \leavevmode |
---|
21 | \includegraphics[width=96pt]{classARX__coll__graph} |
---|
22 | \end{center} |
---|
23 | \end{figure} |
---|
24 | \subsection*{Public Member Functions} |
---|
25 | \begin{CompactItemize} |
---|
26 | \item |
---|
27 | \hypertarget{classARX_545e269bf7852c81484cf361b54d9917}{ |
---|
28 | \hyperlink{classARX_545e269bf7852c81484cf361b54d9917}{ARX} (const \hyperlink{classRV}{RV} \&\hyperlink{classBM_af00f0612fabe66241dd507188cdbf88}{rv}, const mat \&V0, const double \&nu0, const double frg0=1.0)} |
---|
29 | \label{classARX_545e269bf7852c81484cf361b54d9917} |
---|
30 | |
---|
31 | \begin{CompactList}\small\item\em Full constructor. \item\end{CompactList}\item |
---|
32 | \hypertarget{classARX_a5358883a49b52f50755ad8770c2bbdb}{ |
---|
33 | \hyperlink{classARX_a5358883a49b52f50755ad8770c2bbdb}{ARX} (const \hyperlink{classARX}{ARX} \&A0)} |
---|
34 | \label{classARX_a5358883a49b52f50755ad8770c2bbdb} |
---|
35 | |
---|
36 | \begin{CompactList}\small\item\em Copy constructor. \item\end{CompactList}\item |
---|
37 | \hypertarget{classARX_5de61fbd4f97fa3216760b1f733f5af0}{ |
---|
38 | \hyperlink{classARX}{ARX} $\ast$ \hyperlink{classARX_5de61fbd4f97fa3216760b1f733f5af0}{\_\-copy\_\-} (bool changerv=false)} |
---|
39 | \label{classARX_5de61fbd4f97fa3216760b1f733f5af0} |
---|
40 | |
---|
41 | \begin{CompactList}\small\item\em Auxiliary function. \item\end{CompactList}\item |
---|
42 | \hypertarget{classARX_bc8c36399e82b2fc504baed845ed2007}{ |
---|
43 | void \hyperlink{classARX_bc8c36399e82b2fc504baed845ed2007}{set\_\-parameters} (const \hyperlink{classldmat}{ldmat} \&V0, const double \&nu0)} |
---|
44 | \label{classARX_bc8c36399e82b2fc504baed845ed2007} |
---|
45 | |
---|
46 | \begin{CompactList}\small\item\em Set sufficient statistics. \item\end{CompactList}\item |
---|
47 | \hypertarget{classARX_26925d66dfc366815c497d67b62ee49c}{ |
---|
48 | void \hyperlink{classARX_26925d66dfc366815c497d67b62ee49c}{set\_\-statistics} (const \hyperlink{classBMEF}{BMEF} $\ast$BM0)} |
---|
49 | \label{classARX_26925d66dfc366815c497d67b62ee49c} |
---|
50 | |
---|
51 | \begin{CompactList}\small\item\em get statistics from another model \item\end{CompactList}\item |
---|
52 | \hypertarget{classARX_29f55b43b8b6f5c4a55f6176aa85c494}{ |
---|
53 | void \hyperlink{classARX_29f55b43b8b6f5c4a55f6176aa85c494}{get\_\-parameters} (mat \&V0, double \&nu0)} |
---|
54 | \label{classARX_29f55b43b8b6f5c4a55f6176aa85c494} |
---|
55 | |
---|
56 | \begin{CompactList}\small\item\em Returns sufficient statistics. \item\end{CompactList}\item |
---|
57 | \hypertarget{classARX_14d62abfe355275ea3b8d0c5d40f01a0}{ |
---|
58 | void \hyperlink{classARX_14d62abfe355275ea3b8d0c5d40f01a0}{bayes} (const vec \&dt, const double w)} |
---|
59 | \label{classARX_14d62abfe355275ea3b8d0c5d40f01a0} |
---|
60 | |
---|
61 | \begin{CompactList}\small\item\em Here $dt = [y_t psi_t] $. \item\end{CompactList}\item |
---|
62 | void \hyperlink{classARX_ba82c956ca893826811aefe1e4af465d}{bayes} (const vec \&dt) |
---|
63 | \begin{CompactList}\small\item\em Incremental Bayes rule. \item\end{CompactList}\item |
---|
64 | \hypertarget{classARX_c13df43e0af87697fda6b457d56a6d45}{ |
---|
65 | const \hyperlink{classepdf}{epdf} \& \hyperlink{classARX_c13df43e0af87697fda6b457d56a6d45}{\_\-epdf} () const } |
---|
66 | \label{classARX_c13df43e0af87697fda6b457d56a6d45} |
---|
67 | |
---|
68 | \begin{CompactList}\small\item\em Returns a pointer to the \hyperlink{classepdf}{epdf} representing posterior density on parameters. Use with care! \item\end{CompactList}\item |
---|
69 | double \hyperlink{classARX_e7f9e7823aec9bf7ddc3b42d9b3304c4}{logpred} (const vec \&dt) const |
---|
70 | \item |
---|
71 | \hypertarget{classARX_d75fadb7f828bf134df30919b8baf6b2}{ |
---|
72 | void \hyperlink{classARX_d75fadb7f828bf134df30919b8baf6b2}{flatten} (const \hyperlink{classBMEF}{BMEF} $\ast$B)} |
---|
73 | \label{classARX_d75fadb7f828bf134df30919b8baf6b2} |
---|
74 | |
---|
75 | \begin{CompactList}\small\item\em Flatten the posterior according to the given \hyperlink{classBMEF}{BMEF} (of the same type!). \item\end{CompactList}\item |
---|
76 | \hypertarget{classARX_377f069934f03e08502199bf6bad5e83}{ |
---|
77 | \hyperlink{classenorm}{enorm}$<$ \hyperlink{classldmat}{ldmat} $>$ $\ast$ \hyperlink{classARX_377f069934f03e08502199bf6bad5e83}{predictor} (const \hyperlink{classRV}{RV} \&\hyperlink{classBM_af00f0612fabe66241dd507188cdbf88}{rv})} |
---|
78 | \label{classARX_377f069934f03e08502199bf6bad5e83} |
---|
79 | |
---|
80 | \begin{CompactList}\small\item\em Constructs a predictive density (marginal density on data). \item\end{CompactList}\item |
---|
81 | ivec \hyperlink{classARX_130bb7336aac681ce14b027b8f1409fa}{structure\_\-est} (\hyperlink{classegiw}{egiw} Eg0) |
---|
82 | \begin{CompactList}\small\item\em Brute force structure estimation. \item\end{CompactList}\item |
---|
83 | \hypertarget{classBMEF_c285f29db290d05428bf1aa2cd7c35ad}{ |
---|
84 | virtual void \hyperlink{classBMEF_c285f29db290d05428bf1aa2cd7c35ad}{flatten} (double nu0)} |
---|
85 | \label{classBMEF_c285f29db290d05428bf1aa2cd7c35ad} |
---|
86 | |
---|
87 | \begin{CompactList}\small\item\em Flatten the posterior as if to keep nu0 data. \item\end{CompactList}\item |
---|
88 | \hypertarget{classBM_0186270f75189677f390fe088a9947e9}{ |
---|
89 | virtual void \hyperlink{classBM_0186270f75189677f390fe088a9947e9}{bayesB} (const mat \&Dt)} |
---|
90 | \label{classBM_0186270f75189677f390fe088a9947e9} |
---|
91 | |
---|
92 | \begin{CompactList}\small\item\em Batch Bayes rule (columns of Dt are observations). \item\end{CompactList}\item |
---|
93 | \hypertarget{classBM_cd0660f2a1a344b56ac39802708ff165}{ |
---|
94 | vec \hyperlink{classBM_cd0660f2a1a344b56ac39802708ff165}{logpred\_\-m} (const mat \&dt) const } |
---|
95 | \label{classBM_cd0660f2a1a344b56ac39802708ff165} |
---|
96 | |
---|
97 | \begin{CompactList}\small\item\em Matrix version of logpred. \item\end{CompactList}\item |
---|
98 | \hypertarget{classBM_126bd2595c48e311fc2a7ab72876092a}{ |
---|
99 | const \hyperlink{classRV}{RV} \& \hyperlink{classBM_126bd2595c48e311fc2a7ab72876092a}{\_\-rv} () const } |
---|
100 | \label{classBM_126bd2595c48e311fc2a7ab72876092a} |
---|
101 | |
---|
102 | \begin{CompactList}\small\item\em access function \item\end{CompactList}\item |
---|
103 | \hypertarget{classBM_87f4a547d2c29180be88175e5eab9c88}{ |
---|
104 | double \hyperlink{classBM_87f4a547d2c29180be88175e5eab9c88}{\_\-ll} () const } |
---|
105 | \label{classBM_87f4a547d2c29180be88175e5eab9c88} |
---|
106 | |
---|
107 | \begin{CompactList}\small\item\em access function \item\end{CompactList}\item |
---|
108 | \hypertarget{classBM_1ffa9f23669aabecc3760c06c6987522}{ |
---|
109 | void \hyperlink{classBM_1ffa9f23669aabecc3760c06c6987522}{set\_\-evalll} (bool evl0)} |
---|
110 | \label{classBM_1ffa9f23669aabecc3760c06c6987522} |
---|
111 | |
---|
112 | \begin{CompactList}\small\item\em access function \item\end{CompactList}\end{CompactItemize} |
---|
113 | \subsection*{Protected Attributes} |
---|
114 | \begin{CompactItemize} |
---|
115 | \item |
---|
116 | \hypertarget{classARX_691d023662beffa1dda611b416c0e27e}{ |
---|
117 | \hyperlink{classegiw}{egiw} \hyperlink{classARX_691d023662beffa1dda611b416c0e27e}{est}} |
---|
118 | \label{classARX_691d023662beffa1dda611b416c0e27e} |
---|
119 | |
---|
120 | \begin{CompactList}\small\item\em Posterior estimate of $\theta,r$ in the form of Normal-inverse Wishart density. \item\end{CompactList}\item |
---|
121 | \hypertarget{classARX_2291297861dd74ca0175a01f910a0ef7}{ |
---|
122 | \hyperlink{classldmat}{ldmat} \& \hyperlink{classARX_2291297861dd74ca0175a01f910a0ef7}{V}} |
---|
123 | \label{classARX_2291297861dd74ca0175a01f910a0ef7} |
---|
124 | |
---|
125 | \begin{CompactList}\small\item\em cached value of est.V \item\end{CompactList}\item |
---|
126 | \hypertarget{classARX_a4182c281098b2d86b62518a7493d9be}{ |
---|
127 | double \& \hyperlink{classARX_a4182c281098b2d86b62518a7493d9be}{nu}} |
---|
128 | \label{classARX_a4182c281098b2d86b62518a7493d9be} |
---|
129 | |
---|
130 | \begin{CompactList}\small\item\em cached value of est.nu \item\end{CompactList}\item |
---|
131 | \hypertarget{classBMEF_538d632e59f9afa8daa1de74da12ce71}{ |
---|
132 | double \hyperlink{classBMEF_538d632e59f9afa8daa1de74da12ce71}{frg}} |
---|
133 | \label{classBMEF_538d632e59f9afa8daa1de74da12ce71} |
---|
134 | |
---|
135 | \begin{CompactList}\small\item\em forgetting factor \item\end{CompactList}\item |
---|
136 | \hypertarget{classBMEF_308cf5d4133cd471fdf1ecd5dfa09d02}{ |
---|
137 | double \hyperlink{classBMEF_308cf5d4133cd471fdf1ecd5dfa09d02}{last\_\-lognc}} |
---|
138 | \label{classBMEF_308cf5d4133cd471fdf1ecd5dfa09d02} |
---|
139 | |
---|
140 | \begin{CompactList}\small\item\em cached value of lognc() in the previous step (used in evaluation of {\tt ll} ) \item\end{CompactList}\item |
---|
141 | \hypertarget{classBM_af00f0612fabe66241dd507188cdbf88}{ |
---|
142 | \hyperlink{classRV}{RV} \hyperlink{classBM_af00f0612fabe66241dd507188cdbf88}{rv}} |
---|
143 | \label{classBM_af00f0612fabe66241dd507188cdbf88} |
---|
144 | |
---|
145 | \begin{CompactList}\small\item\em Random variable of the posterior. \item\end{CompactList}\item |
---|
146 | \hypertarget{classBM_5623fef6572a08c2b53b8c87b82dc979}{ |
---|
147 | double \hyperlink{classBM_5623fef6572a08c2b53b8c87b82dc979}{ll}} |
---|
148 | \label{classBM_5623fef6572a08c2b53b8c87b82dc979} |
---|
149 | |
---|
150 | \begin{CompactList}\small\item\em Logarithm of marginalized data likelihood. \item\end{CompactList}\item |
---|
151 | \hypertarget{classBM_bf6fb59b30141074f8ee1e2f43d03129}{ |
---|
152 | bool \hyperlink{classBM_bf6fb59b30141074f8ee1e2f43d03129}{evalll}} |
---|
153 | \label{classBM_bf6fb59b30141074f8ee1e2f43d03129} |
---|
154 | |
---|
155 | \begin{CompactList}\small\item\em If true, the filter will compute likelihood of the data record and store it in {\tt ll} . Set to false if you want to save computational time. \item\end{CompactList}\end{CompactItemize} |
---|
156 | |
---|
157 | |
---|
158 | \subsection{Detailed Description} |
---|
159 | Linear Autoregressive model with Gaussian noise. |
---|
160 | |
---|
161 | Regression of the following kind: \[ y_t = \theta_1 \psi_1 + \theta_2 + \psi_2 +\ldots + \theta_n \psi_n + r e_t \] where unknown parameters {\tt rv} are $[\theta r]$, regression vector $\psi=\psi(y_{1:t},u_{1:t})$ is a known function of past outputs and exogeneous variables $u_t$. Distrubances $e_t$ are supposed to be normally distributed: \[ e_t \sim \mathcal{N}(0,1). \] |
---|
162 | |
---|
163 | Extension for time-variant parameters $\theta_t,r_t$ may be achived using exponential forgetting (Kulhavy and Zarrop, 1993). In such a case, the forgetting factor {\tt frg} $\in <0,1>$ should be given in the constructor. Time-invariant parameters are estimated for {\tt frg} = 1. |
---|
164 | |
---|
165 | \subsection{Member Function Documentation} |
---|
166 | \hypertarget{classARX_ba82c956ca893826811aefe1e4af465d}{ |
---|
167 | \index{ARX@{ARX}!bayes@{bayes}} |
---|
168 | \index{bayes@{bayes}!ARX@{ARX}} |
---|
169 | \subsubsection[bayes]{\setlength{\rightskip}{0pt plus 5cm}void ARX::bayes (const vec \& {\em dt})\hspace{0.3cm}{\tt \mbox{[}inline, virtual\mbox{]}}}} |
---|
170 | \label{classARX_ba82c956ca893826811aefe1e4af465d} |
---|
171 | |
---|
172 | |
---|
173 | Incremental Bayes rule. |
---|
174 | |
---|
175 | \begin{Desc} |
---|
176 | \item[Parameters:] |
---|
177 | \begin{description} |
---|
178 | \item[{\em dt}]vector of input data \end{description} |
---|
179 | \end{Desc} |
---|
180 | |
---|
181 | |
---|
182 | Reimplemented from \hyperlink{classBMEF_52b7719312d545215cca1ff87722a35a}{BMEF}. |
---|
183 | |
---|
184 | References bayes().\hypertarget{classARX_e7f9e7823aec9bf7ddc3b42d9b3304c4}{ |
---|
185 | \index{ARX@{ARX}!logpred@{logpred}} |
---|
186 | \index{logpred@{logpred}!ARX@{ARX}} |
---|
187 | \subsubsection[logpred]{\setlength{\rightskip}{0pt plus 5cm}double ARX::logpred (const vec \& {\em dt}) const\hspace{0.3cm}{\tt \mbox{[}virtual\mbox{]}}}} |
---|
188 | \label{classARX_e7f9e7823aec9bf7ddc3b42d9b3304c4} |
---|
189 | |
---|
190 | |
---|
191 | Evaluates predictive log-likelihood of the given data record I.e. marginal likelihood of the data with the posterior integrated out. |
---|
192 | |
---|
193 | Reimplemented from \hyperlink{classBM_8a8ce6df431689964c41cc6c849cfd06}{BM}. |
---|
194 | |
---|
195 | References egiw::\_\-nu(), egiw::\_\-V(), est, BM::evalll, BMEF::frg, BMEF::last\_\-lognc, egiw::lognc(), nu, ldmat::opupdt(), egiw::pow(), and V.\hypertarget{classARX_130bb7336aac681ce14b027b8f1409fa}{ |
---|
196 | \index{ARX@{ARX}!structure\_\-est@{structure\_\-est}} |
---|
197 | \index{structure\_\-est@{structure\_\-est}!ARX@{ARX}} |
---|
198 | \subsubsection[structure\_\-est]{\setlength{\rightskip}{0pt plus 5cm}ivec ARX::structure\_\-est ({\bf egiw} {\em Eg0})}} |
---|
199 | \label{classARX_130bb7336aac681ce14b027b8f1409fa} |
---|
200 | |
---|
201 | |
---|
202 | Brute force structure estimation. |
---|
203 | |
---|
204 | \begin{Desc} |
---|
205 | \item[Returns:]indeces of accepted regressors. \end{Desc} |
---|
206 | |
---|
207 | |
---|
208 | References RV::count(), est, egiw::lognc(), and BM::rv. |
---|
209 | |
---|
210 | The documentation for this class was generated from the following files:\begin{CompactItemize} |
---|
211 | \item |
---|
212 | work/git/mixpp/bdm/estim/\hyperlink{arx_8h}{arx.h}\item |
---|
213 | work/git/mixpp/bdm/estim/arx.cpp\end{CompactItemize} |
---|