1 | \section{BM Class Reference} |
---|
2 | \label{classBM}\index{BM@{BM}} |
---|
3 | Bayesian Model of the world, i.e. all uncertainty is modeled by probabilities. |
---|
4 | |
---|
5 | |
---|
6 | {\tt \#include $<$libBM.h$>$} |
---|
7 | |
---|
8 | Inheritance diagram for BM::\begin{figure}[H] |
---|
9 | \begin{center} |
---|
10 | \leavevmode |
---|
11 | \includegraphics[height=3cm]{classBM} |
---|
12 | \end{center} |
---|
13 | \end{figure} |
---|
14 | \subsection*{Public Member Functions} |
---|
15 | \begin{CompactItemize} |
---|
16 | \item |
---|
17 | virtual void {\bf bayes} (const vec \&dt, bool evall=true)=0 |
---|
18 | \begin{CompactList}\small\item\em Incremental Bayes rule. \item\end{CompactList}\item |
---|
19 | void {\bf bayes} (mat Dt)\label{classBM_87b07867fd4c133aa89a18543f68d9f9} |
---|
20 | |
---|
21 | \begin{CompactList}\small\item\em Batch Bayes rule (columns of Dt are observations). \item\end{CompactList}\end{CompactItemize} |
---|
22 | \subsection*{Public Attributes} |
---|
23 | \begin{CompactItemize} |
---|
24 | \item |
---|
25 | double {\bf ll}\label{classBM_5623fef6572a08c2b53b8c87b82dc979} |
---|
26 | |
---|
27 | \begin{CompactList}\small\item\em Logarithm of marginalized data likelihood. \item\end{CompactList}\end{CompactItemize} |
---|
28 | |
---|
29 | |
---|
30 | \subsection{Detailed Description} |
---|
31 | Bayesian Model of the world, i.e. all uncertainty is modeled by probabilities. |
---|
32 | |
---|
33 | \subsection{Member Function Documentation} |
---|
34 | \index{BM@{BM}!bayes@{bayes}} |
---|
35 | \index{bayes@{bayes}!BM@{BM}} |
---|
36 | \subsubsection{\setlength{\rightskip}{0pt plus 5cm}virtual void BM::bayes (const vec \& {\em dt}, bool {\em evall} = {\tt true})\hspace{0.3cm}{\tt [pure virtual]}}\label{classBM_c52edf4ad6e1dff9bf64b9e1e0cfb1f0} |
---|
37 | |
---|
38 | |
---|
39 | Incremental Bayes rule. |
---|
40 | |
---|
41 | \begin{Desc} |
---|
42 | \item[Parameters:] |
---|
43 | \begin{description} |
---|
44 | \item[{\em dt}]vector of input data \item[{\em evall}]If true, the filter will compute likelihood of the data record and store it in {\tt ll} \end{description} |
---|
45 | \end{Desc} |
---|
46 | |
---|
47 | |
---|
48 | Implemented in {\bf KalmanFull} \doxyref{}{p.}{classKalmanFull_048b13739b94c331cda08249b278552b}, {\bf Kalman$<$ sq\_\-T $>$} \doxyref{}{p.}{classKalman_e945d9205ca14acbd83ba80ea6f72b8e}, and {\bf TrivialPF} \doxyref{}{p.}{classTrivialPF_77a92bf054d763f806d27fc37a058389}. |
---|
49 | |
---|
50 | The documentation for this class was generated from the following file:\begin{CompactItemize} |
---|
51 | \item |
---|
52 | work/mixpp/{\bf libBM.h}\end{CompactItemize} |
---|