\section{BM Class Reference} \label{classBM}\index{BM@{BM}} Bayesian Model of the world, i.e. all uncertainty is modeled by probabilities. {\tt \#include $<$libBM.h$>$} Inheritance diagram for BM:\nopagebreak \begin{figure}[H] \begin{center} \leavevmode \includegraphics[width=168pt]{classBM__inherit__graph} \end{center} \end{figure} Collaboration diagram for BM:\nopagebreak \begin{figure}[H] \begin{center} \leavevmode \includegraphics[width=38pt]{classBM__coll__graph} \end{center} \end{figure} \subsection*{Public Member Functions} \begin{CompactItemize} \item {\bf BM} (const {\bf RV} \&rv0)\label{classBM_605d28b426adb677c86a57ddb525132a} \begin{CompactList}\small\item\em Default constructor. \item\end{CompactList}\item virtual void {\bf bayes} (const vec \&dt)=0 \begin{CompactList}\small\item\em Incremental Bayes rule. \item\end{CompactList}\item void {\bf bayes} (mat Dt)\label{classBM_87b07867fd4c133aa89a18543f68d9f9} \begin{CompactList}\small\item\em Batch Bayes rule (columns of Dt are observations). \item\end{CompactList}\item virtual {\bf epdf} \& {\bf \_\-epdf} ()=0\label{classBM_3dc45554556926bde996a267636abe55} \begin{CompactList}\small\item\em Returns a pointer to the \doxyref{epdf}{p.}{classepdf} representing posterior density on parameters. Use with care! \item\end{CompactList}\item virtual {\bf $\sim$BM} ()\label{classBM_ca0f02b3b4144e0895cc14f7e0374bdd} \begin{CompactList}\small\item\em Destructor for future use;. \item\end{CompactList}\item const {\bf RV} \& {\bf \_\-rv} () const \label{classBM_126bd2595c48e311fc2a7ab72876092a} \begin{CompactList}\small\item\em access function \item\end{CompactList}\item double {\bf \_\-ll} () const \label{classBM_87f4a547d2c29180be88175e5eab9c88} \begin{CompactList}\small\item\em access function \item\end{CompactList}\end{CompactItemize} \subsection*{Protected Attributes} \begin{CompactItemize} \item {\bf RV} {\bf rv}\label{classBM_af00f0612fabe66241dd507188cdbf88} \begin{CompactList}\small\item\em Random variable of the posterior. \item\end{CompactList}\item double {\bf ll}\label{classBM_5623fef6572a08c2b53b8c87b82dc979} \begin{CompactList}\small\item\em Logarithm of marginalized data likelihood. \item\end{CompactList}\item bool {\bf evalll}\label{classBM_bf6fb59b30141074f8ee1e2f43d03129} \begin{CompactList}\small\item\em If true, the filter will compute likelihood of the data record and store it in {\tt ll} . Set to false if you want to save time. \item\end{CompactList}\end{CompactItemize} \subsection{Detailed Description} Bayesian Model of the world, i.e. all uncertainty is modeled by probabilities. \subsection{Member Function Documentation} \index{BM@{BM}!bayes@{bayes}} \index{bayes@{bayes}!BM@{BM}} \subsubsection{\setlength{\rightskip}{0pt plus 5cm}virtual void BM::bayes (const vec \& {\em dt})\hspace{0.3cm}{\tt [pure virtual]}}\label{classBM_a892eff438aab2dd1a9e2efcb7fb5bdf} Incremental Bayes rule. \begin{Desc} \item[Parameters:] \begin{description} \item[{\em dt}]vector of input data \end{description} \end{Desc} Implemented in {\bf Kalman$<$ sq\_\-T $>$} \doxyref{}{p.}{classKalman_7750ffd73f261828a32c18aaeb65c75c}, {\bf EKF$<$ sq\_\-T $>$} \doxyref{}{p.}{classEKF_c79c62c9b3e0b56b3aaa1b6f1d9a7af7}, {\bf PF} \doxyref{}{p.}{classPF_64f636bbd63bea9efd778214e6b631d3}, {\bf MPF$<$ BM\_\-T $>$} \doxyref{}{p.}{classMPF_55daf8e4b6553dd9f47c692de7931623}, {\bf Kalman$<$ ldmat $>$} \doxyref{}{p.}{classKalman_7750ffd73f261828a32c18aaeb65c75c}, and {\bf EKF$<$ ldmat $>$} \doxyref{}{p.}{classEKF_c79c62c9b3e0b56b3aaa1b6f1d9a7af7}. The documentation for this class was generated from the following file:\begin{CompactItemize} \item work/mixpp/bdm/stat/{\bf libBM.h}\end{CompactItemize}