root/doc/latex/classEKF.tex @ 37

Revision 33, 6.6 kB (checked in by smidl, 17 years ago)

Oprava PF a MPF + jejich implementace pro pmsm system

  • Property svn:eol-style set to native
Line 
1\section{EKF$<$ sq\_\-T $>$ Class Template Reference}
2\label{classEKF}\index{EKF@{EKF}}
3Extended \doxyref{Kalman}{p.}{classKalman} Filter. 
4
5
6{\tt \#include $<$libKF.h$>$}
7
8Inheritance diagram for EKF$<$ sq\_\-T $>$:\nopagebreak
9\begin{figure}[H]
10\begin{center}
11\leavevmode
12\includegraphics[width=101pt]{classEKF__inherit__graph}
13\end{center}
14\end{figure}
15Collaboration diagram for EKF$<$ sq\_\-T $>$:\nopagebreak
16\begin{figure}[H]
17\begin{center}
18\leavevmode
19\includegraphics[width=400pt]{classEKF__coll__graph}
20\end{center}
21\end{figure}
22\subsection*{Public Member Functions}
23\begin{CompactItemize}
24\item 
25{\bf EKF} ({\bf RV} rvx, {\bf RV} {\bf rvy}, {\bf RV} {\bf rvu})\label{classEKF_ea4f3254cacf0a92d2a820b1201d049e}
26
27\begin{CompactList}\small\item\em Default constructor. \item\end{CompactList}\item 
28void {\bf set\_\-parameters} ({\bf diffbifn} $\ast$pfxu, {\bf diffbifn} $\ast$phxu, const sq\_\-T Q0, const sq\_\-T R0)\label{classEKF_28d058ae4d24d992d2f055419a06ee66}
29
30\begin{CompactList}\small\item\em Set nonlinear functions for mean values and covariance matrices. \item\end{CompactList}\item 
31void {\bf bayes} (const vec \&dt)\label{classEKF_c79c62c9b3e0b56b3aaa1b6f1d9a7af7}
32
33\begin{CompactList}\small\item\em Here dt = [yt;ut] of appropriate dimensions. \item\end{CompactList}\item 
34void {\bf set\_\-parameters} (const mat \&A0, const mat \&B0, const mat \&C0, const mat \&D0, const {\bf ldmat} \&R0, const {\bf ldmat} \&Q0)\label{classKalman_239b28a0380946f5749b2f8d2807f93a}
35
36\begin{CompactList}\small\item\em Set parameters with check of relevance. \item\end{CompactList}\item 
37void {\bf set\_\-est} (const vec \&mu0, const {\bf ldmat} \&P0)\label{classKalman_80bcf29466d9a9dd2b8f74699807d0c0}
38
39\begin{CompactList}\small\item\em Set estimate values, used e.g. in initialization. \item\end{CompactList}\item 
40void {\bf bayes} (mat Dt)\label{classBM_87b07867fd4c133aa89a18543f68d9f9}
41
42\begin{CompactList}\small\item\em Batch Bayes rule (columns of Dt are observations). \item\end{CompactList}\item 
43{\bf epdf} \& {\bf \_\-epdf} ()\label{classKalman_a213c57aef55b2645e550bed81cfc0d4}
44
45\begin{CompactList}\small\item\em access function \item\end{CompactList}\item 
46const {\bf RV} \& {\bf \_\-rv} () const \label{classBM_126bd2595c48e311fc2a7ab72876092a}
47
48\begin{CompactList}\small\item\em access function \item\end{CompactList}\item 
49double {\bf \_\-ll} () const \label{classBM_87f4a547d2c29180be88175e5eab9c88}
50
51\begin{CompactList}\small\item\em access function \item\end{CompactList}\end{CompactItemize}
52\subsection*{Protected Attributes}
53\begin{CompactItemize}
54\item 
55{\bf RV} {\bf rvy}\label{classKalman_7501230c2fafa3655887d2da23b3184c}
56
57\begin{CompactList}\small\item\em Indetifier of output rv. \item\end{CompactList}\item 
58{\bf RV} {\bf rvu}\label{classKalman_44a16ffd5ac1e6e39bae34fea9e1e498}
59
60\begin{CompactList}\small\item\em Indetifier of exogeneous rv. \item\end{CompactList}\item 
61int {\bf dimx}\label{classKalman_39c8c403b46fa3b8c7da77cb2e3729eb}
62
63\begin{CompactList}\small\item\em cache of rv.count() \item\end{CompactList}\item 
64int {\bf dimy}\label{classKalman_ba17b956df1e38b31fbbc299c8213b6a}
65
66\begin{CompactList}\small\item\em cache of rvy.count() \item\end{CompactList}\item 
67int {\bf dimu}\label{classKalman_b0153795a1444b6968a86409c778d9ce}
68
69\begin{CompactList}\small\item\em cache of rvu.count() \item\end{CompactList}\item 
70mat {\bf A}\label{classKalman_5e02efe86ee91e9c74b93b425fe060b9}
71
72\begin{CompactList}\small\item\em Matrix A. \item\end{CompactList}\item 
73mat {\bf B}\label{classKalman_dc87704284a6c0bca13bf51f4345a50a}
74
75\begin{CompactList}\small\item\em Matrix B. \item\end{CompactList}\item 
76mat {\bf C}\label{classKalman_86a805cd6515872d1132ad0d6eb5dc13}
77
78\begin{CompactList}\small\item\em Matrix C. \item\end{CompactList}\item 
79mat {\bf D}\label{classKalman_d69f774ba3335c970c1c5b1d182f4dd1}
80
81\begin{CompactList}\small\item\em Matrix D. \item\end{CompactList}\item 
82{\bf ldmat} {\bf Q}\label{classKalman_9b69015c800eb93f3ee49da23a6f55d9}
83
84\begin{CompactList}\small\item\em Matrix Q in square-root form. \item\end{CompactList}\item 
85{\bf ldmat} {\bf R}\label{classKalman_11d171dc0e0ab111c56a70f98b97b3ec}
86
87\begin{CompactList}\small\item\em Matrix R in square-root form. \item\end{CompactList}\item 
88{\bf enorm}$<$ {\bf ldmat} $>$ {\bf est}\label{classKalman_5568c74bac67ae6d3b1061dba60c9424}
89
90\begin{CompactList}\small\item\em posterior density on \$x\_\-t\$ \item\end{CompactList}\item 
91{\bf enorm}$<$ {\bf ldmat} $>$ {\bf fy}\label{classKalman_e580ab06483952bd03f2e651763e184f}
92
93\begin{CompactList}\small\item\em preditive density on \$y\_\-t\$ \item\end{CompactList}\item 
94mat {\bf \_\-K}\label{classKalman_d422f51467c7a06174af2476d2826132}
95
96\begin{CompactList}\small\item\em placeholder for \doxyref{Kalman}{p.}{classKalman} gain \item\end{CompactList}\item 
97vec $\ast$ {\bf \_\-yp}\label{classKalman_5188eb0329f8561f0b357af329769bf8}
98
99\begin{CompactList}\small\item\em cache of fy.mu \item\end{CompactList}\item 
100{\bf ldmat} $\ast$ {\bf \_\-Ry}\label{classKalman_e17dd745daa8a958035a334a56fa4674}
101
102\begin{CompactList}\small\item\em cache of fy.R \item\end{CompactList}\item 
103{\bf ldmat} $\ast$ {\bf \_\-iRy}\label{classKalman_8a35bd14afa5a2d9bbd23ad333bec874}
104
105\begin{CompactList}\small\item\em cache of fy.iR \item\end{CompactList}\item 
106vec $\ast$ {\bf \_\-mu}\label{classKalman_d1f669b5b3421a070cc75d77b55ba734}
107
108\begin{CompactList}\small\item\em cache of est.mu \item\end{CompactList}\item 
109{\bf ldmat} $\ast$ {\bf \_\-P}\label{classKalman_b3388218567128a797e69b109138271d}
110
111\begin{CompactList}\small\item\em cache of est.R \item\end{CompactList}\item 
112{\bf ldmat} $\ast$ {\bf \_\-iP}\label{classKalman_13fec2c93d8a132201e28b70270acf5c}
113
114\begin{CompactList}\small\item\em cache of est.iR \item\end{CompactList}\item 
115{\bf RV} {\bf rv}\label{classBM_af00f0612fabe66241dd507188cdbf88}
116
117\begin{CompactList}\small\item\em Random variable of the posterior. \item\end{CompactList}\item 
118double {\bf ll}\label{classBM_5623fef6572a08c2b53b8c87b82dc979}
119
120\begin{CompactList}\small\item\em Logarithm of marginalized data likelihood. \item\end{CompactList}\item 
121bool {\bf evalll}\label{classBM_bf6fb59b30141074f8ee1e2f43d03129}
122
123\begin{CompactList}\small\item\em If true, the filter will compute likelihood of the data record and store it in {\tt ll} . Set to false if you want to save time. \item\end{CompactList}\end{CompactItemize}
124
125
126\subsection{Detailed Description}
127\subsubsection*{template$<$class sq\_\-T$>$ class EKF$<$ sq\_\-T $>$}
128
129Extended \doxyref{Kalman}{p.}{classKalman} Filter.
130
131An approximation of the exact Bayesian filter with Gaussian noices and non-linear evolutions of their mean.
132
133The documentation for this class was generated from the following file:\begin{CompactItemize}
134\item 
135work/mixpp/bdm/estim/{\bf libKF.h}\end{CompactItemize}
Note: See TracBrowser for help on using the browser.