root/doc/latex/classEKFCh.tex @ 109

Revision 99, 6.9 kB (checked in by smidl, 17 years ago)

doc

  • Property svn:eol-style set to native
Line 
1\section{EKFCh Class Reference}
2\label{classEKFCh}\index{EKFCh@{EKFCh}}
3Extended \doxyref{Kalman}{p.}{classKalman} Filter in Square root. 
4
5
6{\tt \#include $<$libKF.h$>$}
7
8Inheritance diagram for EKFCh:\nopagebreak
9\begin{figure}[H]
10\begin{center}
11\leavevmode
12\includegraphics[width=95pt]{classEKFCh__inherit__graph}
13\end{center}
14\end{figure}
15Collaboration diagram for EKFCh:\nopagebreak
16\begin{figure}[H]
17\begin{center}
18\leavevmode
19\includegraphics[width=400pt]{classEKFCh__coll__graph}
20\end{center}
21\end{figure}
22\subsection*{Public Member Functions}
23\begin{CompactItemize}
24\item 
25{\bf EKFCh} ({\bf RV} rvx, {\bf RV} {\bf rvy}, {\bf RV} {\bf rvu})\label{classEKFCh_e9e39a9204db3dda88d06e47c1e19064}
26
27\begin{CompactList}\small\item\em Default constructor. \item\end{CompactList}\item 
28void {\bf set\_\-parameters} ({\bf diffbifn} $\ast$pfxu, {\bf diffbifn} $\ast$phxu, const {\bf chmat} Q0, const {\bf chmat} R0)\label{classEKFCh_0216bed270df59fe65d0d62d41f8257c}
29
30\begin{CompactList}\small\item\em Set nonlinear functions for mean values and covariance matrices. \item\end{CompactList}\item 
31void {\bf bayes} (const vec \&dt)\label{classEKFCh_96f6edda324a0b7ef8b4e86cc7af60c1}
32
33\begin{CompactList}\small\item\em Here dt = [yt;ut] of appropriate dimensions. \item\end{CompactList}\item 
34void {\bf set\_\-parameters} (const mat \&A0, const mat \&B0, const mat \&C0, const mat \&D0, const {\bf chmat} \&R0, const {\bf chmat} \&Q0)\label{classKalmanCh_92fb227287af05c9f0078d523c7c9793}
35
36\begin{CompactList}\small\item\em Set parameters with check of relevance. \item\end{CompactList}\item 
37void {\bf set\_\-est} (const vec \&mu0, const {\bf chmat} \&P0)\label{classKalmanCh_b261b20f6210d4c85131d33302df0adc}
38
39\begin{CompactList}\small\item\em Set estimate values, used e.g. in initialization. \item\end{CompactList}\item 
40void {\bf bayes} (mat Dt)\label{classBM_87b07867fd4c133aa89a18543f68d9f9}
41
42\begin{CompactList}\small\item\em Batch Bayes rule (columns of Dt are observations). \item\end{CompactList}\item 
43{\bf epdf} \& {\bf \_\-epdf} ()\label{classKalman_a213c57aef55b2645e550bed81cfc0d4}
44
45\begin{CompactList}\small\item\em access function \item\end{CompactList}\item 
46mat \& {\bf \_\-\_\-K} ()\label{classKalman_980fcd41c6c548c5da7b8b67c8e6da79}
47
48\begin{CompactList}\small\item\em access function \item\end{CompactList}\item 
49vec {\bf \_\-dP} ()\label{classKalman_ac9540f3850b74d89a5fe4db6fc358ce}
50
51\begin{CompactList}\small\item\em access function \item\end{CompactList}\item 
52const {\bf RV} \& {\bf \_\-rv} () const \label{classBM_126bd2595c48e311fc2a7ab72876092a}
53
54\begin{CompactList}\small\item\em access function \item\end{CompactList}\item 
55double {\bf \_\-ll} () const \label{classBM_87f4a547d2c29180be88175e5eab9c88}
56
57\begin{CompactList}\small\item\em access function \item\end{CompactList}\end{CompactItemize}
58\subsection*{Protected Attributes}
59\begin{CompactItemize}
60\item 
61mat {\bf preA}\label{classKalmanCh_94ee9da75b0e0f632e4a354988ca3798}
62
63\begin{CompactList}\small\item\em pre array (triangular matrix) \item\end{CompactList}\item 
64mat {\bf postA}\label{classKalmanCh_0d31a26dc72b5846cfe5af3ccb63ac87}
65
66\begin{CompactList}\small\item\em post array (triangular matrix) \item\end{CompactList}\item 
67{\bf RV} {\bf rvy}\label{classKalman_7501230c2fafa3655887d2da23b3184c}
68
69\begin{CompactList}\small\item\em Indetifier of output rv. \item\end{CompactList}\item 
70{\bf RV} {\bf rvu}\label{classKalman_44a16ffd5ac1e6e39bae34fea9e1e498}
71
72\begin{CompactList}\small\item\em Indetifier of exogeneous rv. \item\end{CompactList}\item 
73int {\bf dimx}\label{classKalman_39c8c403b46fa3b8c7da77cb2e3729eb}
74
75\begin{CompactList}\small\item\em cache of rv.count() \item\end{CompactList}\item 
76int {\bf dimy}\label{classKalman_ba17b956df1e38b31fbbc299c8213b6a}
77
78\begin{CompactList}\small\item\em cache of rvy.count() \item\end{CompactList}\item 
79int {\bf dimu}\label{classKalman_b0153795a1444b6968a86409c778d9ce}
80
81\begin{CompactList}\small\item\em cache of rvu.count() \item\end{CompactList}\item 
82mat {\bf A}\label{classKalman_5e02efe86ee91e9c74b93b425fe060b9}
83
84\begin{CompactList}\small\item\em Matrix A. \item\end{CompactList}\item 
85mat {\bf B}\label{classKalman_dc87704284a6c0bca13bf51f4345a50a}
86
87\begin{CompactList}\small\item\em Matrix B. \item\end{CompactList}\item 
88mat {\bf C}\label{classKalman_86a805cd6515872d1132ad0d6eb5dc13}
89
90\begin{CompactList}\small\item\em Matrix C. \item\end{CompactList}\item 
91mat {\bf D}\label{classKalman_d69f774ba3335c970c1c5b1d182f4dd1}
92
93\begin{CompactList}\small\item\em Matrix D. \item\end{CompactList}\item 
94{\bf chmat} {\bf Q}\label{classKalman_9b69015c800eb93f3ee49da23a6f55d9}
95
96\begin{CompactList}\small\item\em Matrix Q in square-root form. \item\end{CompactList}\item 
97{\bf chmat} {\bf R}\label{classKalman_11d171dc0e0ab111c56a70f98b97b3ec}
98
99\begin{CompactList}\small\item\em Matrix R in square-root form. \item\end{CompactList}\item 
100{\bf enorm}$<$ {\bf chmat} $>$ {\bf est}\label{classKalman_5568c74bac67ae6d3b1061dba60c9424}
101
102\begin{CompactList}\small\item\em posterior density on \$x\_\-t\$ \item\end{CompactList}\item 
103{\bf enorm}$<$ {\bf chmat} $>$ {\bf fy}\label{classKalman_e580ab06483952bd03f2e651763e184f}
104
105\begin{CompactList}\small\item\em preditive density on \$y\_\-t\$ \item\end{CompactList}\item 
106mat {\bf \_\-K}\label{classKalman_d422f51467c7a06174af2476d2826132}
107
108\begin{CompactList}\small\item\em placeholder for \doxyref{Kalman}{p.}{classKalman} gain \item\end{CompactList}\item 
109vec \& {\bf \_\-yp}\label{classKalman_764bbc95238eda11fc81c5ebd0b1dcfd}
110
111\begin{CompactList}\small\item\em cache of fy.mu \item\end{CompactList}\item 
112{\bf chmat} \& {\bf \_\-Ry}\label{classKalman_45c9f928d2d62e0c884900fb3380f904}
113
114\begin{CompactList}\small\item\em cache of fy.R \item\end{CompactList}\item 
115vec \& {\bf \_\-mu}\label{classKalman_fe803a81d2d847b0b1db3c6b29c18061}
116
117\begin{CompactList}\small\item\em cache of est.mu \item\end{CompactList}\item 
118{\bf chmat} \& {\bf \_\-P}\label{classKalman_9fb808cc94a4c2652e1fb93be9bb7dcf}
119
120\begin{CompactList}\small\item\em cache of est.R \item\end{CompactList}\item 
121{\bf RV} {\bf rv}\label{classBM_af00f0612fabe66241dd507188cdbf88}
122
123\begin{CompactList}\small\item\em Random variable of the posterior. \item\end{CompactList}\item 
124double {\bf ll}\label{classBM_5623fef6572a08c2b53b8c87b82dc979}
125
126\begin{CompactList}\small\item\em Logarithm of marginalized data likelihood. \item\end{CompactList}\item 
127bool {\bf evalll}\label{classBM_bf6fb59b30141074f8ee1e2f43d03129}
128
129\begin{CompactList}\small\item\em If true, the filter will compute likelihood of the data record and store it in {\tt ll} . Set to false if you want to save time. \item\end{CompactList}\end{CompactItemize}
130
131
132\subsection{Detailed Description}
133Extended \doxyref{Kalman}{p.}{classKalman} Filter in Square root.
134
135An approximation of the exact Bayesian filter with Gaussian noices and non-linear evolutions of their mean.
136
137The documentation for this class was generated from the following files:\begin{CompactItemize}
138\item 
139work/mixpp/bdm/estim/{\bf libKF.h}\item 
140work/mixpp/bdm/estim/libKF.cpp\end{CompactItemize}
Note: See TracBrowser for help on using the browser.