root/doc/latex/classEKFCh.tex @ 225

Revision 224, 15.2 kB (checked in by smidl, 16 years ago)

doc

  • Property svn:eol-style set to native
Line 
1\hypertarget{classEKFCh}{
2\section{EKFCh Class Reference}
3\label{classEKFCh}\index{EKFCh@{EKFCh}}
4}
5Extended \hyperlink{classKalman}{Kalman} Filter in Square root. 
6
7
8{\tt \#include $<$libKF.h$>$}
9
10Inheritance diagram for EKFCh:\nopagebreak
11\begin{figure}[H]
12\begin{center}
13\leavevmode
14\includegraphics[width=108pt]{classEKFCh__inherit__graph}
15\end{center}
16\end{figure}
17Collaboration diagram for EKFCh:\nopagebreak
18\begin{figure}[H]
19\begin{center}
20\leavevmode
21\includegraphics[width=400pt]{classEKFCh__coll__graph}
22\end{center}
23\end{figure}
24\subsection*{Public Member Functions}
25\begin{CompactItemize}
26\item 
27\hypertarget{classEKFCh_e9e39a9204db3dda88d06e47c1e19064}{
28\hyperlink{classEKFCh_e9e39a9204db3dda88d06e47c1e19064}{EKFCh} (\hyperlink{classRV}{RV} rvx, \hyperlink{classRV}{RV} \hyperlink{classKalman_7501230c2fafa3655887d2da23b3184c}{rvy}, \hyperlink{classRV}{RV} \hyperlink{classKalman_44a16ffd5ac1e6e39bae34fea9e1e498}{rvu})}
29\label{classEKFCh_e9e39a9204db3dda88d06e47c1e19064}
30
31\begin{CompactList}\small\item\em Default constructor. \item\end{CompactList}\item 
32\hypertarget{classEKFCh_0216bed270df59fe65d0d62d41f8257c}{
33void \hyperlink{classEKFCh_0216bed270df59fe65d0d62d41f8257c}{set\_\-parameters} (\hyperlink{classdiffbifn}{diffbifn} $\ast$\hyperlink{classEKFCh_f4d595c2a674f8c6831eb1909bf21757}{pfxu}, \hyperlink{classdiffbifn}{diffbifn} $\ast$\hyperlink{classEKFCh_02503fee942fb63bfbe27354cdf8e734}{phxu}, const \hyperlink{classchmat}{chmat} Q0, const \hyperlink{classchmat}{chmat} R0)}
34\label{classEKFCh_0216bed270df59fe65d0d62d41f8257c}
35
36\begin{CompactList}\small\item\em Set nonlinear functions for mean values and covariance matrices. \item\end{CompactList}\item 
37\hypertarget{classEKFCh_96f6edda324a0b7ef8b4e86cc7af60c1}{
38void \hyperlink{classEKFCh_96f6edda324a0b7ef8b4e86cc7af60c1}{bayes} (const vec \&dt)}
39\label{classEKFCh_96f6edda324a0b7ef8b4e86cc7af60c1}
40
41\begin{CompactList}\small\item\em Here dt = \mbox{[}yt;ut\mbox{]} of appropriate dimensions. \item\end{CompactList}\item 
42\hypertarget{classKalmanCh_92fb227287af05c9f0078d523c7c9793}{
43void \hyperlink{classKalmanCh_92fb227287af05c9f0078d523c7c9793}{set\_\-parameters} (const mat \&A0, const mat \&B0, const mat \&C0, const mat \&D0, const \hyperlink{classchmat}{chmat} \&R0, const \hyperlink{classchmat}{chmat} \&Q0)}
44\label{classKalmanCh_92fb227287af05c9f0078d523c7c9793}
45
46\begin{CompactList}\small\item\em Set parameters with check of relevance. \item\end{CompactList}\item 
47\hypertarget{classKalmanCh_b261b20f6210d4c85131d33302df0adc}{
48void \hyperlink{classKalmanCh_b261b20f6210d4c85131d33302df0adc}{set\_\-est} (const vec \&mu0, const \hyperlink{classchmat}{chmat} \&P0)}
49\label{classKalmanCh_b261b20f6210d4c85131d33302df0adc}
50
51\begin{CompactList}\small\item\em Set estimate values, used e.g. in initialization. \item\end{CompactList}\item 
52\hypertarget{classKalman_67cccaf1c4dcdcd1df110e15ef326bfe}{
53const \hyperlink{classepdf}{epdf} \& \hyperlink{classKalman_67cccaf1c4dcdcd1df110e15ef326bfe}{\_\-epdf} () const }
54\label{classKalman_67cccaf1c4dcdcd1df110e15ef326bfe}
55
56\begin{CompactList}\small\item\em access function \item\end{CompactList}\item 
57\hypertarget{classKalman_11f82ef04e3dbc54bd1d3d89edb6aa07}{
58const \hyperlink{classenorm}{enorm}$<$ \hyperlink{classchmat}{chmat} $>$ $\ast$ \hyperlink{classKalman_11f82ef04e3dbc54bd1d3d89edb6aa07}{\_\-e} () const }
59\label{classKalman_11f82ef04e3dbc54bd1d3d89edb6aa07}
60
61\begin{CompactList}\small\item\em Returns a pointer to the \hyperlink{classepdf}{epdf} representing posterior density on parameters. Use with care! \item\end{CompactList}\item 
62\hypertarget{classKalman_980fcd41c6c548c5da7b8b67c8e6da79}{
63mat \& \hyperlink{classKalman_980fcd41c6c548c5da7b8b67c8e6da79}{\_\-\_\-K} ()}
64\label{classKalman_980fcd41c6c548c5da7b8b67c8e6da79}
65
66\begin{CompactList}\small\item\em access function \item\end{CompactList}\item 
67\hypertarget{classKalman_ac9540f3850b74d89a5fe4db6fc358ce}{
68vec \hyperlink{classKalman_ac9540f3850b74d89a5fe4db6fc358ce}{\_\-dP} ()}
69\label{classKalman_ac9540f3850b74d89a5fe4db6fc358ce}
70
71\begin{CompactList}\small\item\em access function \item\end{CompactList}\item 
72\hypertarget{classBM_0186270f75189677f390fe088a9947e9}{
73virtual void \hyperlink{classBM_0186270f75189677f390fe088a9947e9}{bayesB} (const mat \&Dt)}
74\label{classBM_0186270f75189677f390fe088a9947e9}
75
76\begin{CompactList}\small\item\em Batch Bayes rule (columns of Dt are observations). \item\end{CompactList}\item 
77virtual double \hyperlink{classBM_8a8ce6df431689964c41cc6c849cfd06}{logpred} (const vec \&dt) const
78\item 
79\hypertarget{classBM_cd0660f2a1a344b56ac39802708ff165}{
80vec \hyperlink{classBM_cd0660f2a1a344b56ac39802708ff165}{logpred\_\-m} (const mat \&dt) const }
81\label{classBM_cd0660f2a1a344b56ac39802708ff165}
82
83\begin{CompactList}\small\item\em Matrix version of logpred. \item\end{CompactList}\item 
84\hypertarget{classBM_5594d68ee9aa6fc8c1e79019da5c9d56}{
85virtual \hyperlink{classepdf}{epdf} $\ast$ \hyperlink{classBM_5594d68ee9aa6fc8c1e79019da5c9d56}{predictor} (const \hyperlink{classRV}{RV} \&\hyperlink{classBM_af00f0612fabe66241dd507188cdbf88}{rv}) const }
86\label{classBM_5594d68ee9aa6fc8c1e79019da5c9d56}
87
88\begin{CompactList}\small\item\em Constructs a predictive density (marginal density on data). \item\end{CompactList}\item 
89\hypertarget{classBM_126bd2595c48e311fc2a7ab72876092a}{
90const \hyperlink{classRV}{RV} \& \hyperlink{classBM_126bd2595c48e311fc2a7ab72876092a}{\_\-rv} () const }
91\label{classBM_126bd2595c48e311fc2a7ab72876092a}
92
93\begin{CompactList}\small\item\em access function \item\end{CompactList}\item 
94\hypertarget{classBM_87f4a547d2c29180be88175e5eab9c88}{
95double \hyperlink{classBM_87f4a547d2c29180be88175e5eab9c88}{\_\-ll} () const }
96\label{classBM_87f4a547d2c29180be88175e5eab9c88}
97
98\begin{CompactList}\small\item\em access function \item\end{CompactList}\item 
99\hypertarget{classBM_1ffa9f23669aabecc3760c06c6987522}{
100void \hyperlink{classBM_1ffa9f23669aabecc3760c06c6987522}{set\_\-evalll} (bool evl0)}
101\label{classBM_1ffa9f23669aabecc3760c06c6987522}
102
103\begin{CompactList}\small\item\em access function \item\end{CompactList}\item 
104virtual \hyperlink{classBM}{BM} $\ast$ \hyperlink{classBM_eb58c81d6a7b75b05fc6f276eed78887}{\_\-copy\_\-} (bool changerv=false)
105\end{CompactItemize}
106\subsection*{Protected Attributes}
107\begin{CompactItemize}
108\item 
109\hypertarget{classEKFCh_f4d595c2a674f8c6831eb1909bf21757}{
110\hyperlink{classdiffbifn}{diffbifn} $\ast$ \hyperlink{classEKFCh_f4d595c2a674f8c6831eb1909bf21757}{pfxu}}
111\label{classEKFCh_f4d595c2a674f8c6831eb1909bf21757}
112
113\begin{CompactList}\small\item\em Internal Model f(x,u). \item\end{CompactList}\item 
114\hypertarget{classEKFCh_02503fee942fb63bfbe27354cdf8e734}{
115\hyperlink{classdiffbifn}{diffbifn} $\ast$ \hyperlink{classEKFCh_02503fee942fb63bfbe27354cdf8e734}{phxu}}
116\label{classEKFCh_02503fee942fb63bfbe27354cdf8e734}
117
118\begin{CompactList}\small\item\em Observation Model h(x,u). \item\end{CompactList}\item 
119\hypertarget{classKalmanCh_94ee9da75b0e0f632e4a354988ca3798}{
120mat \hyperlink{classKalmanCh_94ee9da75b0e0f632e4a354988ca3798}{preA}}
121\label{classKalmanCh_94ee9da75b0e0f632e4a354988ca3798}
122
123\begin{CompactList}\small\item\em pre array (triangular matrix) \item\end{CompactList}\item 
124\hypertarget{classKalmanCh_0d31a26dc72b5846cfe5af3ccb63ac87}{
125mat \hyperlink{classKalmanCh_0d31a26dc72b5846cfe5af3ccb63ac87}{postA}}
126\label{classKalmanCh_0d31a26dc72b5846cfe5af3ccb63ac87}
127
128\begin{CompactList}\small\item\em post array (triangular matrix) \item\end{CompactList}\item 
129\hypertarget{classKalman_7501230c2fafa3655887d2da23b3184c}{
130\hyperlink{classRV}{RV} \hyperlink{classKalman_7501230c2fafa3655887d2da23b3184c}{rvy}}
131\label{classKalman_7501230c2fafa3655887d2da23b3184c}
132
133\begin{CompactList}\small\item\em Indetifier of output rv. \item\end{CompactList}\item 
134\hypertarget{classKalman_44a16ffd5ac1e6e39bae34fea9e1e498}{
135\hyperlink{classRV}{RV} \hyperlink{classKalman_44a16ffd5ac1e6e39bae34fea9e1e498}{rvu}}
136\label{classKalman_44a16ffd5ac1e6e39bae34fea9e1e498}
137
138\begin{CompactList}\small\item\em Indetifier of exogeneous rv. \item\end{CompactList}\item 
139\hypertarget{classKalman_39c8c403b46fa3b8c7da77cb2e3729eb}{
140int \hyperlink{classKalman_39c8c403b46fa3b8c7da77cb2e3729eb}{dimx}}
141\label{classKalman_39c8c403b46fa3b8c7da77cb2e3729eb}
142
143\begin{CompactList}\small\item\em cache of rv.count() \item\end{CompactList}\item 
144\hypertarget{classKalman_ba17b956df1e38b31fbbc299c8213b6a}{
145int \hyperlink{classKalman_ba17b956df1e38b31fbbc299c8213b6a}{dimy}}
146\label{classKalman_ba17b956df1e38b31fbbc299c8213b6a}
147
148\begin{CompactList}\small\item\em cache of rvy.count() \item\end{CompactList}\item 
149\hypertarget{classKalman_b0153795a1444b6968a86409c778d9ce}{
150int \hyperlink{classKalman_b0153795a1444b6968a86409c778d9ce}{dimu}}
151\label{classKalman_b0153795a1444b6968a86409c778d9ce}
152
153\begin{CompactList}\small\item\em cache of rvu.count() \item\end{CompactList}\item 
154\hypertarget{classKalman_5e02efe86ee91e9c74b93b425fe060b9}{
155mat \hyperlink{classKalman_5e02efe86ee91e9c74b93b425fe060b9}{A}}
156\label{classKalman_5e02efe86ee91e9c74b93b425fe060b9}
157
158\begin{CompactList}\small\item\em Matrix A. \item\end{CompactList}\item 
159\hypertarget{classKalman_dc87704284a6c0bca13bf51f4345a50a}{
160mat \hyperlink{classKalman_dc87704284a6c0bca13bf51f4345a50a}{B}}
161\label{classKalman_dc87704284a6c0bca13bf51f4345a50a}
162
163\begin{CompactList}\small\item\em Matrix B. \item\end{CompactList}\item 
164\hypertarget{classKalman_86a805cd6515872d1132ad0d6eb5dc13}{
165mat \hyperlink{classKalman_86a805cd6515872d1132ad0d6eb5dc13}{C}}
166\label{classKalman_86a805cd6515872d1132ad0d6eb5dc13}
167
168\begin{CompactList}\small\item\em Matrix C. \item\end{CompactList}\item 
169\hypertarget{classKalman_d69f774ba3335c970c1c5b1d182f4dd1}{
170mat \hyperlink{classKalman_d69f774ba3335c970c1c5b1d182f4dd1}{D}}
171\label{classKalman_d69f774ba3335c970c1c5b1d182f4dd1}
172
173\begin{CompactList}\small\item\em Matrix D. \item\end{CompactList}\item 
174\hypertarget{classKalman_9b69015c800eb93f3ee49da23a6f55d9}{
175\hyperlink{classchmat}{chmat} \hyperlink{classKalman_9b69015c800eb93f3ee49da23a6f55d9}{Q}}
176\label{classKalman_9b69015c800eb93f3ee49da23a6f55d9}
177
178\begin{CompactList}\small\item\em Matrix Q in square-root form. \item\end{CompactList}\item 
179\hypertarget{classKalman_11d171dc0e0ab111c56a70f98b97b3ec}{
180\hyperlink{classchmat}{chmat} \hyperlink{classKalman_11d171dc0e0ab111c56a70f98b97b3ec}{R}}
181\label{classKalman_11d171dc0e0ab111c56a70f98b97b3ec}
182
183\begin{CompactList}\small\item\em Matrix R in square-root form. \item\end{CompactList}\item 
184\hypertarget{classKalman_5568c74bac67ae6d3b1061dba60c9424}{
185\hyperlink{classenorm}{enorm}$<$ \hyperlink{classchmat}{chmat} $>$ \hyperlink{classKalman_5568c74bac67ae6d3b1061dba60c9424}{est}}
186\label{classKalman_5568c74bac67ae6d3b1061dba60c9424}
187
188\begin{CompactList}\small\item\em posterior density on \$x\_\-t\$ \item\end{CompactList}\item 
189\hypertarget{classKalman_e580ab06483952bd03f2e651763e184f}{
190\hyperlink{classenorm}{enorm}$<$ \hyperlink{classchmat}{chmat} $>$ \hyperlink{classKalman_e580ab06483952bd03f2e651763e184f}{fy}}
191\label{classKalman_e580ab06483952bd03f2e651763e184f}
192
193\begin{CompactList}\small\item\em preditive density on \$y\_\-t\$ \item\end{CompactList}\item 
194\hypertarget{classKalman_d422f51467c7a06174af2476d2826132}{
195mat \hyperlink{classKalman_d422f51467c7a06174af2476d2826132}{\_\-K}}
196\label{classKalman_d422f51467c7a06174af2476d2826132}
197
198\begin{CompactList}\small\item\em placeholder for \hyperlink{classKalman}{Kalman} gain \item\end{CompactList}\item 
199\hypertarget{classKalman_764bbc95238eda11fc81c5ebd0b1dcfd}{
200vec \& \hyperlink{classKalman_764bbc95238eda11fc81c5ebd0b1dcfd}{\_\-yp}}
201\label{classKalman_764bbc95238eda11fc81c5ebd0b1dcfd}
202
203\begin{CompactList}\small\item\em cache of fy.mu \item\end{CompactList}\item 
204\hypertarget{classKalman_45c9f928d2d62e0c884900fb3380f904}{
205\hyperlink{classchmat}{chmat} \& \hyperlink{classKalman_45c9f928d2d62e0c884900fb3380f904}{\_\-Ry}}
206\label{classKalman_45c9f928d2d62e0c884900fb3380f904}
207
208\begin{CompactList}\small\item\em cache of fy.R \item\end{CompactList}\item 
209\hypertarget{classKalman_fe803a81d2d847b0b1db3c6b29c18061}{
210vec \& \hyperlink{classKalman_fe803a81d2d847b0b1db3c6b29c18061}{\_\-mu}}
211\label{classKalman_fe803a81d2d847b0b1db3c6b29c18061}
212
213\begin{CompactList}\small\item\em cache of est.mu \item\end{CompactList}\item 
214\hypertarget{classKalman_9fb808cc94a4c2652e1fb93be9bb7dcf}{
215\hyperlink{classchmat}{chmat} \& \hyperlink{classKalman_9fb808cc94a4c2652e1fb93be9bb7dcf}{\_\-P}}
216\label{classKalman_9fb808cc94a4c2652e1fb93be9bb7dcf}
217
218\begin{CompactList}\small\item\em cache of est.R \item\end{CompactList}\item 
219\hypertarget{classBM_af00f0612fabe66241dd507188cdbf88}{
220\hyperlink{classRV}{RV} \hyperlink{classBM_af00f0612fabe66241dd507188cdbf88}{rv}}
221\label{classBM_af00f0612fabe66241dd507188cdbf88}
222
223\begin{CompactList}\small\item\em Random variable of the posterior. \item\end{CompactList}\item 
224\hypertarget{classBM_5623fef6572a08c2b53b8c87b82dc979}{
225double \hyperlink{classBM_5623fef6572a08c2b53b8c87b82dc979}{ll}}
226\label{classBM_5623fef6572a08c2b53b8c87b82dc979}
227
228\begin{CompactList}\small\item\em Logarithm of marginalized data likelihood. \item\end{CompactList}\item 
229\hypertarget{classBM_bf6fb59b30141074f8ee1e2f43d03129}{
230bool \hyperlink{classBM_bf6fb59b30141074f8ee1e2f43d03129}{evalll}}
231\label{classBM_bf6fb59b30141074f8ee1e2f43d03129}
232
233\begin{CompactList}\small\item\em If true, the filter will compute likelihood of the data record and store it in {\tt ll} . Set to false if you want to save computational time. \item\end{CompactList}\end{CompactItemize}
234
235
236\subsection{Detailed Description}
237Extended \hyperlink{classKalman}{Kalman} Filter in Square root.
238
239An approximation of the exact Bayesian filter with Gaussian noices and non-linear evolutions of their mean.
240
241\subsection{Member Function Documentation}
242\hypertarget{classBM_8a8ce6df431689964c41cc6c849cfd06}{
243\index{EKFCh@{EKFCh}!logpred@{logpred}}
244\index{logpred@{logpred}!EKFCh@{EKFCh}}
245\subsubsection[logpred]{\setlength{\rightskip}{0pt plus 5cm}virtual double BM::logpred (const vec \& {\em dt}) const\hspace{0.3cm}{\tt  \mbox{[}inline, virtual, inherited\mbox{]}}}}
246\label{classBM_8a8ce6df431689964c41cc6c849cfd06}
247
248
249Evaluates predictive log-likelihood of the given data record I.e. marginal likelihood of the data with the posterior integrated out.
250
251Reimplemented in \hyperlink{classARX_e7f9e7823aec9bf7ddc3b42d9b3304c4}{ARX}, \hyperlink{classMixEF_424ca64f36d4e41de7a7e7ae921d35ea}{MixEF}, and \hyperlink{classmultiBM_13e26a61757278981fd8cac9a7ef91eb}{multiBM}.
252
253Referenced by BM::logpred\_\-m().\hypertarget{classBM_eb58c81d6a7b75b05fc6f276eed78887}{
254\index{EKFCh@{EKFCh}!\_\-copy\_\-@{\_\-copy\_\-}}
255\index{\_\-copy\_\-@{\_\-copy\_\-}!EKFCh@{EKFCh}}
256\subsubsection[\_\-copy\_\-]{\setlength{\rightskip}{0pt plus 5cm}virtual {\bf BM}$\ast$ BM::\_\-copy\_\- (bool {\em changerv} = {\tt false})\hspace{0.3cm}{\tt  \mbox{[}inline, virtual, inherited\mbox{]}}}}
257\label{classBM_eb58c81d6a7b75b05fc6f276eed78887}
258
259
260Copy function required in vectors, Arrays of \hyperlink{classBM}{BM} etc. Have to be DELETED manually! Prototype: BM$\ast$ \hyperlink{classBM_eb58c81d6a7b75b05fc6f276eed78887}{\_\-copy\_\-()}\{\hyperlink{classBM}{BM} Tmp$\ast$=new Tmp(this$\ast$); return Tmp; \} 
261
262Reimplemented in \hyperlink{classARX_5de61fbd4f97fa3216760b1f733f5af0}{ARX}, and \hyperlink{classBMEF_97f5312efe4a5bedb86d2daec59d8651}{BMEF}.
263
264The documentation for this class was generated from the following files:\begin{CompactItemize}
265\item 
266work/git/mixpp/bdm/estim/\hyperlink{libKF_8h}{libKF.h}\item 
267work/git/mixpp/bdm/estim/libKF.cpp\end{CompactItemize}
Note: See TracBrowser for help on using the browser.