| 1 | \section{EKF\_\-unQ Class Reference} |
|---|
| 2 | \label{classEKF__unQ}\index{EKF_unQ@{EKF\_\-unQ}} |
|---|
| 3 | Extended \doxyref{Kalman}{p.}{classKalman} filter with unknown {\tt Q}. |
|---|
| 4 | |
|---|
| 5 | |
|---|
| 6 | Inheritance diagram for EKF\_\-unQ:\nopagebreak |
|---|
| 7 | \begin{figure}[H] |
|---|
| 8 | \begin{center} |
|---|
| 9 | \leavevmode |
|---|
| 10 | \includegraphics[width=101pt]{classEKF__unQ__inherit__graph} |
|---|
| 11 | \end{center} |
|---|
| 12 | \end{figure} |
|---|
| 13 | Collaboration diagram for EKF\_\-unQ:\nopagebreak |
|---|
| 14 | \begin{figure}[H] |
|---|
| 15 | \begin{center} |
|---|
| 16 | \leavevmode |
|---|
| 17 | \includegraphics[width=400pt]{classEKF__unQ__coll__graph} |
|---|
| 18 | \end{center} |
|---|
| 19 | \end{figure} |
|---|
| 20 | \subsection*{Public Member Functions} |
|---|
| 21 | \begin{CompactItemize} |
|---|
| 22 | \item |
|---|
| 23 | {\bf EKF\_\-unQ} ({\bf RV} rx, {\bf RV} ry, {\bf RV} ru, {\bf RV} rQ)\label{classEKF__unQ_159eaaa5a05c5ceecdaa20956a307244} |
|---|
| 24 | |
|---|
| 25 | \begin{CompactList}\small\item\em Default constructor. \item\end{CompactList}\item |
|---|
| 26 | void {\bf condition} (const vec \&Q0)\label{classEKF__unQ_cd06a8c662da244cf61bb5bd39688c99} |
|---|
| 27 | |
|---|
| 28 | \begin{CompactList}\small\item\em Substitute {\tt val} for {\tt rvc}. \item\end{CompactList}\item |
|---|
| 29 | void {\bf set\_\-parameters} ({\bf diffbifn} $\ast$pfxu, {\bf diffbifn} $\ast$phxu, const ldmatQ0, const ldmatR0)\label{classEKF_28d058ae4d24d992d2f055419a06ee66} |
|---|
| 30 | |
|---|
| 31 | \begin{CompactList}\small\item\em Set nonlinear functions for mean values and covariance matrices. \item\end{CompactList}\item |
|---|
| 32 | void {\bf set\_\-parameters} (const mat \&A0, const mat \&B0, const mat \&C0, const mat \&D0, const {\bf ldmat} \&R0, const {\bf ldmat} \&Q0)\label{classKalman_239b28a0380946f5749b2f8d2807f93a} |
|---|
| 33 | |
|---|
| 34 | \begin{CompactList}\small\item\em Set parameters with check of relevance. \item\end{CompactList}\item |
|---|
| 35 | void {\bf bayes} (const vec \&dt)\label{classEKF_c79c62c9b3e0b56b3aaa1b6f1d9a7af7} |
|---|
| 36 | |
|---|
| 37 | \begin{CompactList}\small\item\em Here dt = [yt;ut] of appropriate dimensions. \item\end{CompactList}\item |
|---|
| 38 | void {\bf bayes} (mat Dt)\label{classBM_87b07867fd4c133aa89a18543f68d9f9} |
|---|
| 39 | |
|---|
| 40 | \begin{CompactList}\small\item\em Batch Bayes rule (columns of Dt are observations). \item\end{CompactList}\item |
|---|
| 41 | void {\bf set\_\-est} (const vec \&mu0, const {\bf ldmat} \&P0)\label{classKalman_80bcf29466d9a9dd2b8f74699807d0c0} |
|---|
| 42 | |
|---|
| 43 | \begin{CompactList}\small\item\em Set estimate values, used e.g. in initialization. \item\end{CompactList}\item |
|---|
| 44 | {\bf epdf} \& {\bf \_\-epdf} ()\label{classKalman_a213c57aef55b2645e550bed81cfc0d4} |
|---|
| 45 | |
|---|
| 46 | \begin{CompactList}\small\item\em access function \item\end{CompactList}\item |
|---|
| 47 | const {\bf RV} \& {\bf \_\-rv} () const \label{classBM_126bd2595c48e311fc2a7ab72876092a} |
|---|
| 48 | |
|---|
| 49 | \begin{CompactList}\small\item\em access function \item\end{CompactList}\item |
|---|
| 50 | double {\bf \_\-ll} () const \label{classBM_87f4a547d2c29180be88175e5eab9c88} |
|---|
| 51 | |
|---|
| 52 | \begin{CompactList}\small\item\em access function \item\end{CompactList}\item |
|---|
| 53 | const {\bf RV} \& {\bf \_\-rvc} () const \label{classBMcond_3fa60348b2da6b4208bb95b8d146900a} |
|---|
| 54 | |
|---|
| 55 | \begin{CompactList}\small\item\em access function \item\end{CompactList}\end{CompactItemize} |
|---|
| 56 | \subsection*{Protected Attributes} |
|---|
| 57 | \begin{CompactItemize} |
|---|
| 58 | \item |
|---|
| 59 | {\bf RV} {\bf rvy}\label{classKalman_7501230c2fafa3655887d2da23b3184c} |
|---|
| 60 | |
|---|
| 61 | \begin{CompactList}\small\item\em Indetifier of output rv. \item\end{CompactList}\item |
|---|
| 62 | {\bf RV} {\bf rvu}\label{classKalman_44a16ffd5ac1e6e39bae34fea9e1e498} |
|---|
| 63 | |
|---|
| 64 | \begin{CompactList}\small\item\em Indetifier of exogeneous rv. \item\end{CompactList}\item |
|---|
| 65 | int {\bf dimx}\label{classKalman_39c8c403b46fa3b8c7da77cb2e3729eb} |
|---|
| 66 | |
|---|
| 67 | \begin{CompactList}\small\item\em cache of rv.count() \item\end{CompactList}\item |
|---|
| 68 | int {\bf dimy}\label{classKalman_ba17b956df1e38b31fbbc299c8213b6a} |
|---|
| 69 | |
|---|
| 70 | \begin{CompactList}\small\item\em cache of rvy.count() \item\end{CompactList}\item |
|---|
| 71 | int {\bf dimu}\label{classKalman_b0153795a1444b6968a86409c778d9ce} |
|---|
| 72 | |
|---|
| 73 | \begin{CompactList}\small\item\em cache of rvu.count() \item\end{CompactList}\item |
|---|
| 74 | mat {\bf A}\label{classKalman_5e02efe86ee91e9c74b93b425fe060b9} |
|---|
| 75 | |
|---|
| 76 | \begin{CompactList}\small\item\em Matrix A. \item\end{CompactList}\item |
|---|
| 77 | mat {\bf B}\label{classKalman_dc87704284a6c0bca13bf51f4345a50a} |
|---|
| 78 | |
|---|
| 79 | \begin{CompactList}\small\item\em Matrix B. \item\end{CompactList}\item |
|---|
| 80 | mat {\bf C}\label{classKalman_86a805cd6515872d1132ad0d6eb5dc13} |
|---|
| 81 | |
|---|
| 82 | \begin{CompactList}\small\item\em Matrix C. \item\end{CompactList}\item |
|---|
| 83 | mat {\bf D}\label{classKalman_d69f774ba3335c970c1c5b1d182f4dd1} |
|---|
| 84 | |
|---|
| 85 | \begin{CompactList}\small\item\em Matrix D. \item\end{CompactList}\item |
|---|
| 86 | {\bf ldmat} {\bf Q}\label{classKalman_9b69015c800eb93f3ee49da23a6f55d9} |
|---|
| 87 | |
|---|
| 88 | \begin{CompactList}\small\item\em Matrix Q in square-root form. \item\end{CompactList}\item |
|---|
| 89 | {\bf ldmat} {\bf R}\label{classKalman_11d171dc0e0ab111c56a70f98b97b3ec} |
|---|
| 90 | |
|---|
| 91 | \begin{CompactList}\small\item\em Matrix R in square-root form. \item\end{CompactList}\item |
|---|
| 92 | {\bf enorm}$<$ {\bf ldmat} $>$ {\bf est}\label{classKalman_5568c74bac67ae6d3b1061dba60c9424} |
|---|
| 93 | |
|---|
| 94 | \begin{CompactList}\small\item\em posterior density on \$x\_\-t\$ \item\end{CompactList}\item |
|---|
| 95 | {\bf enorm}$<$ {\bf ldmat} $>$ {\bf fy}\label{classKalman_e580ab06483952bd03f2e651763e184f} |
|---|
| 96 | |
|---|
| 97 | \begin{CompactList}\small\item\em preditive density on \$y\_\-t\$ \item\end{CompactList}\item |
|---|
| 98 | mat {\bf \_\-K}\label{classKalman_d422f51467c7a06174af2476d2826132} |
|---|
| 99 | |
|---|
| 100 | \begin{CompactList}\small\item\em placeholder for \doxyref{Kalman}{p.}{classKalman} gain \item\end{CompactList}\item |
|---|
| 101 | vec $\ast$ {\bf \_\-yp}\label{classKalman_5188eb0329f8561f0b357af329769bf8} |
|---|
| 102 | |
|---|
| 103 | \begin{CompactList}\small\item\em cache of fy.mu \item\end{CompactList}\item |
|---|
| 104 | {\bf ldmat} $\ast$ {\bf \_\-Ry}\label{classKalman_e17dd745daa8a958035a334a56fa4674} |
|---|
| 105 | |
|---|
| 106 | \begin{CompactList}\small\item\em cache of fy.R \item\end{CompactList}\item |
|---|
| 107 | {\bf ldmat} $\ast$ {\bf \_\-iRy}\label{classKalman_8a35bd14afa5a2d9bbd23ad333bec874} |
|---|
| 108 | |
|---|
| 109 | \begin{CompactList}\small\item\em cache of fy.iR \item\end{CompactList}\item |
|---|
| 110 | vec $\ast$ {\bf \_\-mu}\label{classKalman_d1f669b5b3421a070cc75d77b55ba734} |
|---|
| 111 | |
|---|
| 112 | \begin{CompactList}\small\item\em cache of est.mu \item\end{CompactList}\item |
|---|
| 113 | {\bf ldmat} $\ast$ {\bf \_\-P}\label{classKalman_b3388218567128a797e69b109138271d} |
|---|
| 114 | |
|---|
| 115 | \begin{CompactList}\small\item\em cache of est.R \item\end{CompactList}\item |
|---|
| 116 | {\bf ldmat} $\ast$ {\bf \_\-iP}\label{classKalman_13fec2c93d8a132201e28b70270acf5c} |
|---|
| 117 | |
|---|
| 118 | \begin{CompactList}\small\item\em cache of est.iR \item\end{CompactList}\item |
|---|
| 119 | {\bf RV} {\bf rv}\label{classBM_af00f0612fabe66241dd507188cdbf88} |
|---|
| 120 | |
|---|
| 121 | \begin{CompactList}\small\item\em Random variable of the posterior. \item\end{CompactList}\item |
|---|
| 122 | double {\bf ll}\label{classBM_5623fef6572a08c2b53b8c87b82dc979} |
|---|
| 123 | |
|---|
| 124 | \begin{CompactList}\small\item\em Logarithm of marginalized data likelihood. \item\end{CompactList}\item |
|---|
| 125 | bool {\bf evalll}\label{classBM_bf6fb59b30141074f8ee1e2f43d03129} |
|---|
| 126 | |
|---|
| 127 | \begin{CompactList}\small\item\em If true, the filter will compute likelihood of the data record and store it in {\tt ll} . Set to false if you want to save time. \item\end{CompactList}\item |
|---|
| 128 | {\bf RV} {\bf rvc}\label{classBMcond_9ba793c8ec453f04d372d17195ed8dec} |
|---|
| 129 | |
|---|
| 130 | \begin{CompactList}\small\item\em Identificator of the conditioning variable. \item\end{CompactList}\end{CompactItemize} |
|---|
| 131 | |
|---|
| 132 | |
|---|
| 133 | \subsection{Detailed Description} |
|---|
| 134 | Extended \doxyref{Kalman}{p.}{classKalman} filter with unknown {\tt Q}. |
|---|
| 135 | |
|---|
| 136 | The documentation for this class was generated from the following file:\begin{CompactItemize} |
|---|
| 137 | \item |
|---|
| 138 | work/mixpp/tests/pmsm\_\-unkQpf.cpp\end{CompactItemize} |
|---|