1 | \section{EKFfixed Class Reference} |
---|
2 | \label{classEKFfixed}\index{EKFfixed@{EKFfixed}} |
---|
3 | Extended \doxyref{Kalman}{p.}{classKalman} Filter with full matrices in fixed point arithmetic. |
---|
4 | |
---|
5 | |
---|
6 | {\tt \#include $<$ekf\_\-obj.h$>$} |
---|
7 | |
---|
8 | Inheritance diagram for EKFfixed:\nopagebreak |
---|
9 | \begin{figure}[H] |
---|
10 | \begin{center} |
---|
11 | \leavevmode |
---|
12 | \includegraphics[width=72pt]{classEKFfixed__inherit__graph} |
---|
13 | \end{center} |
---|
14 | \end{figure} |
---|
15 | Collaboration diagram for EKFfixed:\nopagebreak |
---|
16 | \begin{figure}[H] |
---|
17 | \begin{center} |
---|
18 | \leavevmode |
---|
19 | \includegraphics[height=400pt]{classEKFfixed__coll__graph} |
---|
20 | \end{center} |
---|
21 | \end{figure} |
---|
22 | \subsection*{Public Member Functions} |
---|
23 | \begin{CompactItemize} |
---|
24 | \item |
---|
25 | void \textbf{init\_\-ekf} (double Tv)\label{classEKFfixed_cece920bbf58fc72b25a6417b3ef0259} |
---|
26 | |
---|
27 | \item |
---|
28 | void \textbf{ekf} (double ux, double uy, double isxd, double isyd)\label{classEKFfixed_491e636b259dda3b876b7bd492df6b7c} |
---|
29 | |
---|
30 | \item |
---|
31 | void \textbf{prediction} (int $\ast$ux)\label{classEKFfixed_e77b35e1a11356dbfb1fdfa3017f60d3} |
---|
32 | |
---|
33 | \item |
---|
34 | void \textbf{correction} (void)\label{classEKFfixed_83ed56b86a056d7dbdd6ce44145fa5f3} |
---|
35 | |
---|
36 | \item |
---|
37 | void \textbf{update\_\-psi} (void)\label{classEKFfixed_dce43355681cfe8f1905db207b4dde8d} |
---|
38 | |
---|
39 | \item |
---|
40 | {\bf EKFfixed} ({\bf RV} rvx, {\bf RV} {\bf rvc})\label{classEKFfixed_64d7b1a39c27b1846bcd5628928748ef} |
---|
41 | |
---|
42 | \begin{CompactList}\small\item\em Default constructor. \item\end{CompactList}\item |
---|
43 | void {\bf bayes} (const vec \&dt)\label{classEKFfixed_ddf5334bc1207658fd53698fffbac028} |
---|
44 | |
---|
45 | \begin{CompactList}\small\item\em Here dt = [yt;ut] of appropriate dimensions. \item\end{CompactList}\item |
---|
46 | {\bf epdf} \& {\bf \_\-epdf} ()\label{classEKFfixed_085cf16c573eda32d8d03619c6c4b518} |
---|
47 | |
---|
48 | \begin{CompactList}\small\item\em dummy! \item\end{CompactList}\item |
---|
49 | void {\bf condition} (const vec \&Q0)\label{classEKFfixed_c7fee79e75ad7f0c0e96c5a322cbf44e} |
---|
50 | |
---|
51 | \begin{CompactList}\small\item\em Substitute {\tt val} for {\tt rvc}. \item\end{CompactList}\item |
---|
52 | void {\bf bayes} (mat Dt)\label{classBM_87b07867fd4c133aa89a18543f68d9f9} |
---|
53 | |
---|
54 | \begin{CompactList}\small\item\em Batch Bayes rule (columns of Dt are observations). \item\end{CompactList}\item |
---|
55 | const {\bf RV} \& {\bf \_\-rv} () const \label{classBM_126bd2595c48e311fc2a7ab72876092a} |
---|
56 | |
---|
57 | \begin{CompactList}\small\item\em access function \item\end{CompactList}\item |
---|
58 | double {\bf \_\-ll} () const \label{classBM_87f4a547d2c29180be88175e5eab9c88} |
---|
59 | |
---|
60 | \begin{CompactList}\small\item\em access function \item\end{CompactList}\item |
---|
61 | const {\bf RV} \& {\bf \_\-rvc} () const \label{classBMcond_3fa60348b2da6b4208bb95b8d146900a} |
---|
62 | |
---|
63 | \begin{CompactList}\small\item\em access function \item\end{CompactList}\end{CompactItemize} |
---|
64 | \subsection*{Public Attributes} |
---|
65 | \begin{CompactItemize} |
---|
66 | \item |
---|
67 | int \textbf{Q} [16]\label{classEKFfixed_d04ddf049475a15e1ba93161aa5586ab} |
---|
68 | |
---|
69 | \item |
---|
70 | int \textbf{R} [4]\label{classEKFfixed_d914213d413b4d8f8d7bb728c5063d5e} |
---|
71 | |
---|
72 | \item |
---|
73 | int \textbf{x\_\-est} [4]\label{classEKFfixed_7fd20a80b00e9782da676e48eb5b54b3} |
---|
74 | |
---|
75 | \item |
---|
76 | int \textbf{x\_\-pred} [4]\label{classEKFfixed_9518fa723d7324f75df7822a589ee196} |
---|
77 | |
---|
78 | \item |
---|
79 | int \textbf{P\_\-pred} [16]\label{classEKFfixed_0b731c546a474433c1ea6f36f0125774} |
---|
80 | |
---|
81 | \item |
---|
82 | int \textbf{P\_\-est} [16]\label{classEKFfixed_b9ec9cb2d092ca3f4ad2a3b4420867ac} |
---|
83 | |
---|
84 | \item |
---|
85 | int \textbf{Y\_\-mes} [2]\label{classEKFfixed_5a8040cdb8bb5dca753485dc67db3287} |
---|
86 | |
---|
87 | \item |
---|
88 | int \textbf{ukalm} [2]\label{classEKFfixed_9292e43fb8e6fedfabb3a9b3c2118e33} |
---|
89 | |
---|
90 | \item |
---|
91 | int \textbf{Kalm} [8]\label{classEKFfixed_f754902bb769d3b58b89108c76d9a394} |
---|
92 | |
---|
93 | \item |
---|
94 | int \textbf{PSI} [16]\label{classEKFfixed_bf4b3d55c8d277673bf77f37f6590217} |
---|
95 | |
---|
96 | \item |
---|
97 | int \textbf{temp15a} [16]\label{classEKFfixed_8a677b253b54696701c1ca0cb6f7a622} |
---|
98 | |
---|
99 | \item |
---|
100 | int \textbf{cA}\label{classEKFfixed_6d4354dad09286a7a209983732853c5b} |
---|
101 | |
---|
102 | \item |
---|
103 | int \textbf{cB}\label{classEKFfixed_eac752adfb921c1c525f8c3b3fd15dad} |
---|
104 | |
---|
105 | \item |
---|
106 | int \textbf{cC}\label{classEKFfixed_2f35ef3dce13131ae9b4427309a1d005} |
---|
107 | |
---|
108 | \item |
---|
109 | int \textbf{cG}\label{classEKFfixed_50b31e70bb17cbdde2e28c83b9612c47} |
---|
110 | |
---|
111 | \item |
---|
112 | int \textbf{cH}\label{classEKFfixed_086e18ad28d139b0a2c0f77badc77a9a} |
---|
113 | |
---|
114 | \item |
---|
115 | long \textbf{temp30a} [4]\label{classEKFfixed_540046e3ab4d0bed4791f397062a626f} |
---|
116 | |
---|
117 | \item |
---|
118 | {\bf enorm}$<$ {\bf fsqmat} $>$ \textbf{E}\label{classEKFfixed_ea92b06e2b66c6771828e689bb727b76} |
---|
119 | |
---|
120 | \item |
---|
121 | mat \textbf{Ry}\label{classEKFfixed_6e5552506214757d24e59e508f91c8aa} |
---|
122 | |
---|
123 | \end{CompactItemize} |
---|
124 | \subsection*{Protected Attributes} |
---|
125 | \begin{CompactItemize} |
---|
126 | \item |
---|
127 | {\bf RV} {\bf rv}\label{classBM_af00f0612fabe66241dd507188cdbf88} |
---|
128 | |
---|
129 | \begin{CompactList}\small\item\em Random variable of the posterior. \item\end{CompactList}\item |
---|
130 | double {\bf ll}\label{classBM_5623fef6572a08c2b53b8c87b82dc979} |
---|
131 | |
---|
132 | \begin{CompactList}\small\item\em Logarithm of marginalized data likelihood. \item\end{CompactList}\item |
---|
133 | bool {\bf evalll}\label{classBM_bf6fb59b30141074f8ee1e2f43d03129} |
---|
134 | |
---|
135 | \begin{CompactList}\small\item\em If true, the filter will compute likelihood of the data record and store it in {\tt ll} . Set to false if you want to save time. \item\end{CompactList}\item |
---|
136 | {\bf RV} {\bf rvc}\label{classBMcond_9ba793c8ec453f04d372d17195ed8dec} |
---|
137 | |
---|
138 | \begin{CompactList}\small\item\em Identificator of the conditioning variable. \item\end{CompactList}\end{CompactItemize} |
---|
139 | |
---|
140 | |
---|
141 | \subsection{Detailed Description} |
---|
142 | Extended \doxyref{Kalman}{p.}{classKalman} Filter with full matrices in fixed point arithmetic. |
---|
143 | |
---|
144 | An approximation of the exact Bayesian filter with Gaussian noices and non-linear evolutions of their mean. |
---|
145 | |
---|
146 | The documentation for this class was generated from the following files:\begin{CompactItemize} |
---|
147 | \item |
---|
148 | work/git/mixpp/pmsm/simulator\_\-zdenek/ekf\_\-example/{\bf ekf\_\-obj.h}\item |
---|
149 | work/git/mixpp/pmsm/simulator\_\-zdenek/ekf\_\-example/ekf\_\-obj.cpp\end{CompactItemize} |
---|